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Abstract. We present some properties of k-existentially-closed and k-saturated

graphs, as steps toward discovering a 4-saturated graph. We demonstrate a
construction for 2-saturated graphs, prove the existence of k-e.c. graphs, and

show that the chromatic number of k-saturated graphs increases with k. Fi-

nally, we detail an algorithm for finding k-existentially-closed and k-saturated
graphs.

1. Introduction

Sometimes mathematicians have too much time on their hands so they invent
with pretty pictures and pretend to be artists. Sadly, mathematicians make such
poor artisits, they have in the past 30 years or so dedicated an entire field to the
study of artistry, beginning with only dots and lines which define what most peo-
ple know of math(read The Dot and The Line: A Romance in Lower Mathematics
(1963)). From here, we see that the more triangles in these pretty pictures, the less
clear it is (something about optical illusions), so here we try to make the prettiest
picture we can without any triangles and without using too many dots.

1.1. Background. We denote a graph G with vertex set V (G) to be k-existentially
closed (k-e.c.) if |V (G)| ≥ k and for every subset K of k vertices, every subset J
of K of size j is adjoined to a common vertex in V (G) −K which is not adjacent
to any vertex in K − J . We refer to this vertex for some subset K and subset J
as a (K,J) subset pair witness. Every vertex in the graph is a witness for at least
one (K,J) subset pair, and more than one witness may, and usually will, exist for
and (K,J) subset pair in V (G).

Further, we say that a graph is k-saturated if it is triangle-free, meaning it con-
tains no 3-cycles, and has the same witness conditions as a k-existentially closed
graph, except that only subsets J which are independent are required to be wit-
nessed. 1-, 2-, and 3-saturated graphs are known to exist, but no 4-saturated graph
has been found or been proven to exist[?]. To check whether a graph is k-saturated
is a mostly trivial excercise of computer programing, but the number of graphs
which exist on n vertices is far too broad an area to check each graph.

1.2. Problem Statement and Outline. Our ultimate research goal is to prove
or disprove the existence of 4-saturated graphs. In this paper, we present a variety
of algorithms and results about k-saturated and k-e.c. graphs that assist towards
this goal.
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In Section 2, we present known examples and constructions of k-saturated graphs.
In Section 3, we tighten the bounds on the smallest number of vertices for both
k-saturated and k-e.c. graphs, and determine a probibalistic approach as to what
number of vertices to begin the search for these graphs. In Section 4, we discuss
the connection between k-saturation and chromatic number, and give an algorithm,
given any positive integer n, for finding a k for which all k-saturated graphs must
have chromatic number at least n. Finally, we present an algorithm to find k-
saturated and k-e.c. graphs in Section ?? and some graphs found by running the
algorithm in Section ??.

2. Examples of k-Saturated Graphs

An example of a 1-saturated graph is 4-cycle. A 1-saturated graph implies that
each vertex is adjacent to at least one vertex in the graph and not adjacent to at
least one vertex in the graph. Each vertex in a 4-cycle is adjacent to two vertices
and not adjacent to one.

A 2-saturated graph can be built using a construction called the Mycielskian.
The Mycielskian construction, named after Jan Myscielski [?], proves that triangle
free graphs exist of any given chromatic number. The construction is built by cre-
ating a creating a copy of each vertex in the graph, here after called a shadow of
the vertex, and adjoining it to every vertex the original vertex is adjoined with, and
creating a last vertex, called the Central Vertex (CV) which is not a shadow of any
vertex, and attaching each shadow vertex to the CV. Note that the shadow vertices
are not adjoined to their original vertex, and that this construction increases the
number of vertices in a graph from n to 2n+ 1. Two properties about the Myciel-
skian construction of interest in this research are that if a graph has a chromatic
number k, then the Mycielskian of this graph has a chromatic number k + 1, and
that if a graph is triangle-free, the Mycielskian is also triangle-free.

Theorem 2.1. For any graph G, if all (K,J) subset pairs, where k = 2, have
witnesses except for the null set, then the Mycielski of the graph is 2-saturated.

Proof. For use in this proof, we will define G to be the original set of vertices, and
S to be the set of shadow vertices. Note that no edges exist between vertices in S
because of the construction, thus there are four cases for (K,J) subset pairs, which
need a witness. Only one case is drawn out in detail due to the similarity of the
proofs.

case 1: For all 2 vertices in S

• A witness for the null set, a 0-witness, exists because any other vertex in S
satisfies this condition
• Without loss of generality, a 1-witness for either of these shadow vertices is

the 1-witness of its original vertex in G
• A 2-witness for this K set in S is the CV

case 2: For all 1 vertex in S and 1 vertex in G
case 3: For the CV and 1 vertex in S
case 4: For the CV and 1 vertex in G

�
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The smallest known triangle free graph for which each (K,J) subset pair has at
least one witness, where k = 3, consists of 16 vertices. This construction can be
visualized by denoting four sets S0, S1, S2, and S3, each with four vertices vSi ,0,
vSi

,1, vSi
,2, vSi

,3, where each vSi
,j is adjoined to each vSi+1,j and each vSi

,j is
adjoined to each v ∈ Si + 2− vSi+2,j . This is the graph K(3, 3, 3).[?]

The Steiner system construction of the Higman-Sims graph bares much resem-
blance to the Mycielskian construction of triangle-free graphs. The smallest known
graph in which each (K,J) subset pair is witnessed at least twice is known as the
Higman-Sims graph, discovered by Donald G. Higman and Charles C. Sims. The
graph is built on 100 vertices using a construction from Steiner systems based on
block design. A Steiner system, S, with parameters t, k, and n is an n-element set
S together with a set of k-element subsets of S (called blocks) with the property
that each t-element subset of S is contained in exactly one block. As an example,
a Steiner system where t = 3, k = 6, and n = 22, written S(3, 6, 22) is the set of
blocks of 6 vertices where no 3 vertices are in more than one block together. This
particular system is the Higman-Sims graph [?]

Definition 2.2 (Regular). A graph G is called ρ-regular if every vertex in G has
degree ρ

Definition 2.3 (Strongly Regular). A graph G is called strongly ρ-regular, or
simply strongly regular, if there exist positive integers κ, λ, and µ such that every
vertex has κ neighbors (i.e., the graph is a regular graph), every adjacent pair
of vertices has λ common neighbors, and every nonadjacent pair has µ common
neighbors [?]

Removing one vertex from the strongly regular Higman-Sims graph results in a
3-saturated graph which is not regular.

3. Proof of Main Results

We use the probabilistic method to determine an estimate of how many wit-
nesses for each valid (K,J) subset pair are needed for a k-saturated graph to be
(k + 1)-saturated.

Theorem 3.1. For every n such that

(1)
(
n

k

)
2k

r−1∑
i=0

(
n− k
i

)
2−ki(1− 2−k)n−k−i < 1

there exists a graph on n vertices that is k-e.c. with r witnesses.

Proof. First we will demonstrate for r = 1.
We use the probability model Gn,(1/2) where n is the number of vertices and the
edges are chosen with independent, random probability of (1/2). Then we can see
that for each K set and each J ⊂ K, k edges determine a witness for (K, J). So
the probability that any vertex is a witness for (K, J) is 2−k. Then (1 − 2−k) is
the probability that any vertex is not a witness for (K, J). Let AK,J be the event
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that (K, J) has no witness.

Pr(AK,J) = (1− 2−k)n−k

Now let X equal the total number of unwitnessed sets. So we let IK,J be a random,
independent variable such that

IK,J =
{

1 if event AK,J occurs
0 otherwise

Then
X =

∑
K

∑
J

IK,J

E(X) =
∑
K

∑
J

E(IK,J)

=
(
n

k

)
2k(1− 2−k)n−k

Markov’s Inequality 3.2. If X takes only non-negative values, then Pr(X ≥
a) ≤ E(X)/a

Using Markov’s Inequality, we will let a = 1 and the random variable X. Then
Pr(X ≥ 1) ≤ E(X). So Pr(X = 0) > 1 − E(X). Hence when E(X) < 1 we are
guaranteed the existence of a k-e.c. graph. So choose n such that

E(X) =
(
n

k

)
2k(1− 2−k)n−k < 1

Thus for any k there exists a graph with 1 witness for every J set.
Now consider when r = 2. The probability that there exists exactly one witness
for (K, J) (i.e. v is a witness for (K, J) for some vertex, v, in the graph and no
other vertex is a witness) is 2−k(1− 2−k)n−k−1. Then the probability that (K, J)
has less than 2 witnesses is:

(1− 2−k)n−k + (n− k)2−k(1− 2−k)n−k−1

Similarly for r = 3, the probability that (K, J) has less than 3 witnesses is:

(1− 2−k)n−k + (n− k)2−k(1− 2−k)n−k−1 +
(
n− k

2

)
2−2k(1− 2−k)n−k−2

In general, let RK,J be the event that (K, J) has less than r witnesses. Then

Pr(RK,J) =
r−1∑
i=0

(
n− k
i

)
2−ki(1− 2−k)n−k−i

In this case we let X equal the total number of sets with less than r witnesses and
we let IK,J be a random variable such that

IK,J =
{

1 if event RK,J occurs
0 otherwise
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Applying Markov’s Inequality, we see that we can choose n such that

E(X) =
(
n

k

)
2k

r−1∑
i=0

(
n− k
i

)
2−ki(1− 2−k)n−k−i < 1

�

When r = 1, we examine the asymptotics of the expected value and find an
expression for n as k increases,

n ∼ k22k ln 2(1 +
ln k
k ln 2

+
ln 2 + 1 + ln ln 2

k ln 2
+

ln(1 + ln k
k ln 2 + ln 2+1+ln ln 2

k ln 2 )
k ln 2

)

We notice that
(
n
k

)
= Ank/k! where A =

∏
k(1− i

n ).
Then

logA =
∑

log(1− i

n
)

=
∑ −i

n
(1− x

2
+
x2

3
− . . .)

≈ −
k∑

i=1

i

n
=
−k2 − k

2n

As k <<
√
n then −k2−k

2n goes to 0 and e
−k2−k

2n goes to 1. So
(
n
k

)
≈ nk/k!

We also notice that from Stirling’s Approximation, k! ≈ kk

ek .
Hence when k <<

√
n,

E(X) ≈ nkek

kk
2k(1− 2−k)n

.
We use our approximation for n in this equation to get

E(X) ≈ (
k22k ln 2(1 + ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 + ln(1+ ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 )

k ln 2 )2e
k

)k

∗(1− 2−k)k22k ln 2(1+ ln k
k ln 2 + ln 2+1+ln ln 2

k ln 2 +
ln(1+ ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 )

k ln 2 )

We now apply the approximation, (1− a
n )n ≈ e−a to (1− 2−k)2k

. So

E(X) ≈ (
k2k ln 2(1 + ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 + ln(1+ ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 )

k ln 2 )2e

ek ln 2(1+ ln k
k ln 2 + ln 2+1+ln ln 2

k ln 2 +
ln(1+ ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 )

k ln 2 )

)k

≈ (
(1 + ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 + ln(1+ ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 )

k ln 2 )

ek ln 2(
ln(1+ ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 )

k ln 2 )

)k

≈ (
ln(1+ ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 )

k ln 2

1 + ln k
k ln 2 + ln 2+1+ln ln 2

k ln 2

)k

For our approximation to be accurate

lim
k→∞

(
ln(1+ ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 )

k ln 2

1 + ln k
k ln 2 + ln 2+1+ln ln 2

k ln 2

)k −→ 1
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Or

lim
k→∞

k ln((
ln(1+ ln k

k ln 2 + ln 2+1+ln ln 2
k ln 2 )

k ln 2

1 + ln k
k ln 2 + ln 2+1+ln ln 2

k ln 2

)k) −→ 0

Using L’Hopital’s Rule, it can be verified that this holds true.

In general for r <<
√
n,

n ∼ (k + r − 1)2kk ln 2(1 + a+ b+ c+ d)

where

a =
−k ln k − (r − 1) ln(r − 1)

(k + r − 1)k ln 2

b =
(k + r − 1) + k ln 2

(k + r − 1)k ln 2

c =
ln(k + r − 1) + ln k + ln ln 2

k ln 2

d =
ln(1 + a+ b+ c)
(k + r − 1)k ln 2

4. k-Saturated and Chromatic Number

By examining chromatic number, we find that k-saturated graphs are very rare.
The first thing to note is then any k-saturated graph is also j-saturated for all
0 < j < k.

Definition 4.1. A graph has chromatic number ` if the vertices can be colored with
` colors in such a way that every edge has endpoints of different colors and it cannot
be colored in such a way with fewer than ` colors. We say that a graph is `-colorable
if it has chromatic number ≤ n.

We show in this section that as k increases, the chromatic number a graph must
have to be k-saturated increases as well. Erdos, Kleitman, and Rothschild[?] showed
that

|T (n)| = |B(n)|(1 + o(1))
where T (n) is the set of triangle-free graphs on n vertices and B(n) is the set of
bipartite graphs on n vertices. Promel, Schickinger, and Steger[?] extended this
result to show that

|T (n) \B(n)| = |B1(n)|(1 + o(1))
where B1(n) is the set of quasibipartite graphs, or graphs which become bipartite
after the removal of a single vertex.

Note 4.2. A bipartite graph has chromatic number 2 and a quasibipartite graph
has chromatic number 3.

Then asymptotically, a random triangle-free graph is almost surely bipartite, and
a random non-bipartite triangle-free graph almost surely has chromatic number larger
than 3.

We show first two specific results: that no 2-saturated graph can be bipartite
and no 4-saturated graph can be 3-colorable. When k ≥ 4, k-saturated graphs are
4-saturated, meaning that they are not bipartite or quasibipartite and are hence



K-SATURATED GRAPHS 7

rare. We use v ‖ u to denote “v is adjacent to u” and v 
 u to denote “v is not
adjacent to u”.

Theorem 4.3. No k-saturated graph for k ≥ 2 is bipartite.

Proof. It is sufficient to show that no 2-saturated graphs are bipartite, since all
k-saturated for k ≥ 2 are also 2-saturated.

Let G be bipartite, and let the vertices of G be split into two non-empty sets
V1 and V2 by color, so that the vertices in each set are colored a single color. We
prove that G cannot be 2-saturated from examining the following cases.

Case 1: G is complete bipartite, in other words, there is an edge between every
pair of vertices (v1, v2) where v1 ∈ V1 and v2 ∈ V2.

Let v1 be a vertex in V1 and v2 be a vertex in V2. Then there is no witness for
K = {v1, v2} and J = ∅.

Case 2: G is not complete bipartite.
Then there exists some pair of vertices (v1, v2) with v1 ∈ V1 and v2 ∈ V2 such

that there is no edge between v1 and v2. There is no witness for K = {v1, v2} and
J = {v1, v2}. �

To show a more general result, we need the following lemma.

Lemma 4.4. Given a k-saturated graph on n vertices divided into ` sets by color
where k > ` and k ≥ 4, there is at least one set with at least k vertices.

Proof. First we show that there is an independent set of k vertices. Choose any
k-set K and name one vertex v1. Let v2 be the witness for the J subset ∅. Now
choose any K subset containing v1 and v2 and let v3 be a witness for the J subset
∅. Next choose any K subset containing v1, v2, and v3 and let v4 be a witness for
the J subset ∅. Continue this process until there is a set of k independent vertices
{v1, . . . , vk}.

Now there must be 2k witnesses for the independent set of k vertices, divided
into ` sets by color. By pidgeon-hole principle, there must be at least one color-set
with 2k

` vertices in it. Now 2k

` > 2k

k and for k ≥ 4, 2k

k ≥ k. So for k ≥ 4, there is
at least one color-set with at least k vertices. �

We prove that no k-saturated graph for k ≥ 4 is 3-colorable as a specific example
and then generalize the proof to find a k for any ` such that no k-saturated is `-
colorable.

Theorem 4.5. No k-saturated graph for k ≥ 4 is 3-colorable.

Proof. It is sufficient to show that no 4-saturated graphs are 3-colorable.
Let G be 3-colorable, assume G is 4-saturated, and let the vertices of G be split

into three non-empty sets V1, V2, and V3 by color. There must be a set with at
least 4 vertices, let’s call it V1. Choose 4 vertices from V1 as a K subset and call
them v1, v2, v3, and v4.

Now consider the J subsets which are subsets of {v1, v2}. There are 22 = 4 such
subsets: {v1, v2}, {v1}, {v2}, and ∅, and 4− 1 = 3 of these are not the empty set.
Thus there are 3 witnesses for non-empty J subsets contained in {v1, v2}. Each of
these witnesses is not in V1 and is not adjacent to v3 or v4. Pidgeon-hole principle
shows that either V2 or V3 has at least two of the three witnesses. We can assume
without loss of generality that it is V2 and call the two witnesses v5 and v6.
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Figure 1. Finding vertices v5 and v6 not adjacent to v3 or v4.

Now consider a witness v7 for the K subset {v3, v4, v5, v6} and the J subset
{v4, v6}. Then v7 
 v5, v5 
 v3, and v3 
 v7.

Figure 2. Creating a triangle with v3, v5, and v7. (non-
adjacencies denoted by dashed lines)

Consider any 4-set as a K subset which contains {v3, v5, v7}. There is no witness
for the J subset {v3, v5, v7}. So G is not 4-saturated. �

Corollary 4.6. No k-saturated graph for k ≥ 4 is quasibipartite.

We now show that in general, as k increases, the chromatic number of a k-
saturated graph must increase as well. To do this, we present a construction, given
`, to find k such that all k-saturated graphs cannot be `-colorable. The algorithm
is as follows: given `, construct a sequence {a1, . . . , a`−2} and {a′1, . . . , a′`−1} such

that a′i+1 = b (2ai−1)i

`−i c for all i and a′i = ai + a′i+1 for all i < ` − 1 with a′`−1 = 2.
Then k = max1≤i≤`−1(ia′i).

Proposition 4.7. Using the above construction to find k, a k-saturated graph is
not `-colorable.

Proof. Let G be a k-saturated `-colorable graph, and let V1, V2, . . . V` be the sets
of vertices of each color of an `-coloring. One color-set contains at least k vertices
by Lemma ??. Assume it is V1 and designate a k-set K0 ⊂ V1. Notice that k ≥ a′1
and designate a subset B1 ⊂ K0 of size a′1.

Now let K0 be a K subset, and choose any a1-set A1 ⊂ B1. Every subset of A1

needs a witness as a J-set, and all 2a1 − 1 witnesses to non-empty subsets are not
in V1. By the pidgeon-hole principle, we can find a color-set, say V2, which contains
at least a′2 witnesses. Denote the set of a′2 witnesses in V2 by B2. By construction,
each element of B2 is not adjacent to any vertex in B1 \A1.

Since |B1\A1| = a′2 and 2a′2 ≤ k, we can choose a k-set containing (B1\A1)∪B2

and consider a set A2 consisting of a2 vertices from B1 \ A1 and a2 vertices from
B2. By pidgeon-hole, we can find a different color-set, say V3, which contains at
least a′3 witnesses of subsets of A2. Denote the set of a′3 witnesses by B3 and notice
that no element of B3 is adjacent to any element of (B1 \ A1) \ A2 or B2 \ A2 by
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construction. Furthermore, |(B1 \ A1) \ A2| = |B2 \ A2| = a′3 and 3a′3 ≤ k. So we
can choose a k-set containing the independent set ((B1 \A1) \A2)∪ (B2 \A2)∪B3

and continue the process.
In the end, we have a set B`−1 of consisting of a′`−1 = 2 vertices, and an inde-

pendent set S = ((B1 \A1) \A2) \ · · · \A`−2)∪ ((B2 \A2) \ · · · \A`−2)∪ · · · ∪B`−1

consisting of 2 vertices in every one of ` − 1 color-sets, say V1, . . . , V`−1. We can
choose a superset of S as a K subset because |S| ≤ k. Now we can chose 1 vertex
from S in each color-set Vj , 1 ≤ j ≤ ` − 1 as a J subset, and call it T . Then
the witness v for T is not adjacent to any vertex in S \ T . But (S \ T ) ∪ {v} has
cardinality less than k and contains a vertex from every color-set V1, . . . , V`. Let
(S \ T )∪ {v} be a J-subset for any K subset containing it. There is no witness for
(S \ T ) ∪ {v}. So G cannot be both k-saturated and `-colorable. �

It is clear by construction that as ` increases, the k needed to show a k-saturated
graph is not `-colorable increases as well. Similarly, as k increases, all k-saturated
graphs must not be `-colorable for increasingly many `.

5. Description of Algorithm

To find k-saturated and k-existentially-closed graphs, we use a simulated anneal-
ing algorithm.

Definition 5.1. A simulated annealing algorithm is an algorithm governing a walk
from an initial state to a global minimum or maximum avoiding local minima and
maxima that works as follows:

(1) The potential next step s is chosen randomly from a set of possible steps
(2) If s improves the current state, the step s is taken
(3) If s does not improve the current state, s taken with some probability p
(4) The probability p of accepting an edge fluctuates throughout the process and

decreases globally as the algorithm continues to run

The idea behind such an algorithm is to “cool” from an initial state to a global
minimum while “heating” temporarily to escape from local minima along the way.

Our algorithm for finding graphs uses a seed graph as the initial state. A step
is the addition or deletion of an edge or set of edges. The overall global minimum
we would like to reach is zero unwitnessed statements, and we say that the state
is improved by a step if the addition or deletion of the chosen edges decreases the
number of unwitnessed statements.

More specifically, our algorithm works as follows to find an n-vertex, k-saturated
or k-existentially-closed graph. We use as a seed a graph that is far from bipartite
to avoid the issues raised in Section 4. We then choose two vertices randomly. If
the addition/deletion of the edge between these two vertices decreases the num-
ber of unwitnessed statements, the edge is added/deleted. Otherwise, the edge is
added/deleted with probability p(∆) = e−∆/b where b is a constant initialized to
10 and ∆ is the change in the number of unwitnessed statements due to the ad-
dition/deletion of the edge. Hence the worse the edge is, the less likely it is to be
added/deleted. If the edge improves the graph, b is set to 2, thereby decreasing the
probability of keeping a “bad” edge since there are “good” choices around. If the
edge does not improve the graph, the constant b is increased by (5

√
1000 + i/30)−1

where i is the total number of iterations of a random edge choice since the start
of the algorithm. Adding to b increases the probability of keeping a bad edge, but
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as the program continues to run, the increase becomes progressively smaller. Thus
locally the algorithm is “heating,” but it is globally “cooling.”

If the number of unwitnessed statements remains the same for 100
(
n
2

)
iterations,

we determine that the program is. “stuck.” We systematically try every possible
edge one at a time to determine which will improve the current state. If at least
one edge does improve the current state, we choose one such edge randomly and
continue the algorithm as before, setting b to 2. If no edges improve the graph, we
choose a vertex v0 and a random number j from 1 to n

3 + 1. We randomly select
j distinct vertices from V (G) − {v0} and determine if the addition/deletion of all
of these edges at once improves the state. Just as in the case of adding an edge
at a time, we add/delete this set of edges if doing so improves the state and we
add/delete this set of edges with the same probability function p(∆) if doing so
does not improve the state. We then continue adding/deleting an edge at a time.
The pseudo-code is given in Algorithm 1.
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Algorithm 1 Finding k-saturated and k-e.c. graphs

Input: The number of vertices n and saturation number k.
Output: A k-saturated or k-e.c. graph

1: Let G be a graph with n vertices and edges between vertices vi and vj , j > i
whenever vj = vi + 1 mod n and whenever vj = vi + 4 mod n.

2: Let b = 10.
3: Let u(G) be the number of unwitnessed statements of G
4: while u(G) > 0 do
5: if not stuck then
6: choose an edge e
7: Let G′ be the result of adding/deleting e.
8: if u(G′) < u(G) then
9: Set b = 2 and G = G′

10: else
11: Set b = b+ 1

5
√

1000+ i
30

12: With probability e(u(G)−u(G′)/b set G = G′.
13: end if
14: else
15: Let E be the set of edges that improve w(G).
16: if E 6= {} then
17: add/delete a randomly chosen element of E to G
18: else
19: Chose a vertex v0 and a random number j, 1 ≤ j ≤ n

3 + 1.
20: Chose j edges with an endpoint at v0 and add/delete them all. Let the

resulting graph be G”
21: if u(G′) < u(G) then
22: Set b = 2 and G = G′

23: else
24: Set b = b+ 1

5
√

1000+ i
30

25: With probability e(u(G)−u(G′)/b set G = G′.
26: end if
27: end if
28: end if
29: end while
30: return G

There are two differences in the implementation of the algorithm between k-
saturated and k-existentially closed. The first is in the adding of an edge. Any edge
is added if we are looking for a k-e.c. graph. If we are looking for a k-saturated
graph, an edge is only added if the resulting graph remains triangle free. Secondly,
the value u(G) is the total number of unwitnessed statements in the k-e.c. case.
In the k-saturated case, u(G) is the number of unwitnessed statements minus the
number of statements that do not need witnesses due to non-independent J-sets.

The implementation of the algorithm uses two data structures. The first is an
n× n bit array A called the adjacency matrix. The entries aij of A are defined as
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follows:

aij =
{

1 if there is an edge between vi and vj

0 otherwise
The second is a matrix M with rows indexed by the

(
n
k

)
K-sets and columns indexed

by the 2k J-sets such that

mij = the number of witnesses for the ith K-set and jth J-set

Additionally, when we look for k-saturated graphs, we use another array Q indexed
exactly like M where

qij =
{

1 if the jth J-set of the ith K-set is not independent
0 otherwise

6. Figures
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Figure 3. 3-saturated graph on 24 vertices

k \ r 1 2 3 4 5 6 7 8 9 10
3 111 139 162 183 202 220 238 255 271 287
4 363 425 477 524 568 609 649 687 724 760
5 1061 1195 1309 1412 1507 1598 1684 1767 1847 1925
6 2888 3174 3418 3638 3843 4037 4223 4401 4573 4740
7 7502 8103 8617 9083 9518 9929 10322 10700 11065 11420
8 18835 20086 21160 22138 23051 23915 24741 25536 26305 27051
9 46085 48673 50906 52943 54847 56651 58377 60039 61647 63208
10 110502 115834 120453 124676 128627 132376 135964 139420 142765 146015

Table 1. Values of n for each k and r witnesses

7. Conclusion/Discussion/Future Work

As noted in the introduction, the similarities in graph design between the Steiner
system and the Mycielskian have been noticed and we would like to inspect these
graphs further.
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