
BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH

JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

Abstract. In this paper we consider a combinatorial analogue of the Bernoulli convolution problem
from real analysis. We discuss several innovative algorithms for computing the sequences in this
new approach. In particular, these algorithms assist us in gathering data regarding the maximum
values and give an improvement on the best known bound. This work was completed as part of the
Clemson University REU, an NSF funded program1.

1. Introduction

The classic Bernoulli convolution problem in analysis has an elegant combinatorial analogue which
we now describe. Consider the two maps dupn, shfn : Rn −→ R3n defined by

dupn : (a1, a2, ..., an−1, an) 7−→ (a1, a1, a2, a2, ..., an−1, an−1, an, an,

n times︷ ︸︸ ︷
0, ..., 0) (1)

shfn : (a1, a2, ..., an−1, an) 7−→ (
n times︷ ︸︸ ︷
0, ..., 0, a1, a1, a2, a2, ..., an−1, an−1, an, an). (2)

The names “dup” and “shf” reference the duplication and shifting of the coordinates. Consider the
finite sequences of increasing length given by B0 = (1) and Bn+1 = dupn(Bn) + shfn(Bn). In this
paper, we are primarily interested in the rate at which the maximum mn of Bn is growing with
n. We develop three independent algorithms: the first gives a recursive method for computing the
entire sequence Bn when n is small, the second gives a method for computing given entries of Bn

when n is larger, and the third improves the best known bound on the growth of mn. Additionally,
we provide numerical data and put forth several conjectures concerning various properties of the
sequence Bn.

1.1. Motivation. Classically, Bernoulli convolutions have been studied as a problem in real analy-
sis. A Bernoulli convolution is a measure obtained as an infinite convolution of Bernoulli measures
[1]. This concept was first studied by Jessen and Wintner [4]. In our research, we look at an
equivalent description of the classic Bernoulli convolution problem. For 0 < q < 1, consider the
functional equation

F (t) =
1
2
F

(
t− 1

q

)
+

1
2
F

(
t + 1

q

)
(3)

for t on the interval Iq := [−1/(1− q), 1/(1− q)]. It can be shown that there is a unique continuous
solution Fq(t) to the above equation; for a very good introduction to this refer to Chapter 5 in
Experimental Mathematics in Action [1]. For a more in depth report on what is known, refer to
Sixty years of Bernoulli convolutions [6].

The major question regarding the solutions of (3) is that of determining the values of q that make
Fq(t) absolutely continuous and the values that make Fq(t) singular. When 0 < q < 1/2, Kershner
and Wintner [5] have shown that Fq(t) is always singular. For these values of q, the solution Fq(t)

Date: July 5, 2008.
1 This research was supported by NSF grant DMS-0552799.

1

2 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

is an example of a Cantor function, a function that is constant almost everywhere. It is also easy
to see that for q = 1/2, the solution Fq(t) is absolutely continuous. The case when q > 1/2 is much
harder and more interesting. In 1939, Erdős [3] showed that if q is of the form q = 1/θ where θ is
a Pisot number, then Fq(t) is again singular. There is little else that is known for other values of
q > 1/2. One interesting result due to Solomyak [7] is that almost every q > 1/2 yields a solution
Fq(t) that is absolutely continuous. Hence it is surprising that no actual example of such a q is
known. Specifically, the obvious case when q = 2/3 remains a mystery.

Rather than looking at the function Fq(t), one can also consider its derivative fq(t) = F ′
q(t). Upon

differentiating, the functional equation for Fq(t) gives the following equation for fq(t):

f(t) =
1
2q

f

(
t− 1

q

)
+

1
2q

f

(
t + 1

q

)
. (4)

The question of the existence of an absolutely continuous solution Fq(t) to (3) is equivalent to the
the existence of an L1(Iq) solution fq(t) to (4).

In [1], Girgensohn asks the question of computing fq(t) for various values of q. The author considers
starting with an arbitrary initial function f0(t) ∈ L1(Iq) and iterating the transform

Tq : f(t) 7−→ 1
2q

f

(
t− 1

q

)
+

1
2q

f

(
t + 1

q

)
(5)

to gain a sequence of functions f0, f1, f2, If this sequence converges, then it converges to the
solution of (4).

Neil Calkin [2] then looked at the above process for q = 2/3. Rather then working on the interval
Iq, we shift the entire interval to [0, 1] for simplicity. The transform Tq now becomes the transform
T : L1([0, 1]) −→ L1([0, 1]) where

T : f(x) 7−→ 3
4
f

(
3x

2

)
+

3
4
f

(
3x− 1

2

)
. (6)

Intuitively, this transform (6) takes two scaled copies of f(x): one on the interval [0, 2/3] and the
other on [1/3, 1], and adds them. The scaling factor of 3/4 gives us that∫ 1

0
f(x)dx =

∫ 1

0
Tf(x)dx,

in other words the average value of Tf(x) is the same as that of f(x). In this setting, the question
to be answered is: starting with the function f0(x) = 1, does the iteration determined by the
transform in (6) converge to a bounded function?

1.2. Combinatorial approach. Instead of viewing T as a transform on [0, 1], we consider the
combinatorial analogue initially mentioned. The sequences dup(Bn) and shf(Bn) defined in (1) and
(2) are analogous to the two shifted copies of the function on [0, 1]. We start with the sequence
B0 = (1). We recursively generate sequences given by

Bn+1 = dupn(Bn) + shfn(Bn). (7)

We now discuss some notation that we find useful throughout this paper. We call Bn the Bernoulli
sequence on level n. Likewise, we refer to the map (dupn + shfn) : Rn −→ R3n seen in (7) as the

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 3

process of duplicate, shift, add or DSA for short. When indexing nth level Bernoulli sequence, we
start from 0 rather than 1. We write

Bn = (b0, b1, ..., b3n−1).

The fact that Bn has a total of 3n terms follows directly from the definition of dupn and shfn in
(1) and (2).

Figure 1. This shows the process of DSA at three low levels. At the top, we see
how to compute the first level from the zeroth. In the middle, we see how to compute
the second level from the first. Finally we see how to compute the third level from
the second. This figure also demonstrates the O(3n) growth in the length of Bn.

1.3. Overview of the problem. As students in the 2008 Clemson University REU, Julia Davis,
Michelle Delcourt, and Zebediah Engberg worked under the direction of Neil Calkin and Kevin
James on several questions regarding the Bernoulli sequences Bn. One of the major problems we
considered was putting a reasonable bound on the growth rate of mn := max(Bn). It is immediate
that the maximum value must occur on the middle third of the Bernoulli sequence. Furthermore,
because the sequence is palindromic, the maximum must occur on the first half of the middle third.
Hence we gathered a significant amount of data on the entries in this range. It is easy to see that
the mean µ(Bn) = (4/3)n (see Section 5.1). The major question that we considered was if mn also
grows like O((4/3)n). This is the combinatorial analogue of the existence of a bounded solution to
the functional equation (4). Beginning with a computational approach, we address this and other
related questions throughout this paper.

2. Recursive algorithms

2.1. The naive algorithm: DSA. The process of duplicate, shift, add gives a naive method
for computing Bernoulli sequences. Despite the simplicity in describing this process, DSA is not
computationally feasible for large values of n. One concern with the DSA method is that each
level Bn has 3n terms—each successive level computation takes three times as long as the previous.
Likewise, at each successive level we must store three times as many entries as on the previous level.
Using the DSA method, we have been able to compute Bn up to n = 20. With better computing
facilities we could possibly push this method several levels further, but certainly not significantly
further. For a graphical representation of various levels, see Figure 2 and Figure 3 in the Appendix.

4 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

2.2. The sophisticated algorithm: DEM. We now consider an alternate approach that ad-
dresses some of the issues arising with the DSA algorithm. The process we call double, enlarge,
merge, abbreviated DEM, is a way of encoding the Bernoulli sequence Bn as a sequence of length
2(2n− 1). The advantage with DEM is that the sequence grows in size like 2n as opposed to the 3n

size increase required for the DSA process. The DEM algorithm is based on the observation that
in a given Bernoulli sequence, many individual entries are consecutively repeated. Rather than
keeping consecutive repeats, we only keep the entries where the Bernoulli sequence either increases
or decreases. It is important to note that when comparing two consecutive entries in a Bernoulli
sequence, the jump between these entries will never be greater than one. This can easily be proved
inductively. Given the Bernoulli sequence Bn, the DEM representation is (d1, ..., dr) where di is
the index of the ith jump in Bn up to a sign. Suppose the ith jump occurs at index j in Bn, that
is bj and bj+1 are different. Then

di =
{

j if bj < bj+1

−j if bj > bj+1.

For example, the DEM representation of B2 = (1, 1, 2, 3, 2, 3, 2, 1, 1) is (2, 3,−4, 5,−6,−7).

We now describe how to translate the process of DSA to this new representation. The process of
duplicate becomes double: each element from the original list is multiplied by two. The process
of shift becomes enlarge: each element from the original list is modified by 3n. If the element is
positive, we add 3n, for negative elements we subtract 3n. The process of add translates to merge:
we discard the original elements and concatenate the new lists attained in the double and enlarge
processes. We then add two additional elements −2(3n) and 3n to the list. Finally, we merge sort
the elements according to their absolute value.

2.3. Data. Using the DEM method, we have been able to compute the Bernoulli sequence up to
level n = 26. For each of these levels, the maximum value is of particular interest. Refer to Table
1 in the Appendix for numerical data on these maximums.

3. A Polynomial Approach to DSA

3.1. Translating DSA as a polynomial recursion. By encoding these sequences as coefficients
of polynomials, the process of duplicate, shift, add gives a particularly nice recursive relation among
the polynomials. Let Bn = (b0, b1, ..., bt) be the Bernoulli sequence on level n where t = 3n − 1.
Consider the polynomial pn(x) := b0 + b1x + ... + btx

t.

We create a dictionary that translates the process of DSA into recursive relations among the
polynomials. We see that the duplication b0, b0, b1, b1, ..., br, br corresponds to the polynomial (1 +
x)pn(x2). Shifting the sequence 3n places to the right corresponds to multiplication by x3n

. By
adding the duplicate and the shift of the sequence, we get the sequence on the next level. This
yields the recurrence relation

pn+1(x) = (1 + x)pn(x2)
(
1 + x3n)

.

3.2. Explicit Formula. This formula allows us to explicitly solve for pn(x).

Theorem 3.1. The polynomials pn(x) satisfy

pn(x) =
n−1∏
i=0

(
1 + x2i

) n−1∏
j=0

(
1 + x2n−1(3/2)j

)
. (8)

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 5

Proof. We proceed by induction on n. When n = 1, we have that

1 + 2x + x2 = (1 + x)(1 + x) = (1 + x20
)(1 + x20(3/2)0).

Now assume the formula holds for pn(x). We will show that it holds for pn+1(x). We have

pn+1(x) = (1 + x)pn(x2)
(
1 + x3n)

= (1 + x)
n−1∏
i=0

(
1 + (x2)2

i
) n−1∏

j=0

(
1 + (x2)2

n−1(3/2)j
) (

1 + x3n)
= (1 + x)

n−1∏
i=0

(
1 + x2i+1

) n−1∏
j=0

(
1 + x2n(3/2)j

)(
1 + x2n(3/2)n

)
=

n∏
i=0

(
1 + x2i

) n∏
j=0

(
1 + x2n(3/2)j

)
.

�

3.3. A Bound on the Coefficients. By factoring pn in a clever way, we can put a bound on how
fast the coefficients grow with the level n.

Theorem 3.2. ([2]) On level n, the maximum value mn = O((
√

2)n).

Proof. To start, define polynomials qn, rn, sn by

qn(x) =
n−1∏
i=0

(
1 + x2i

)
sn(x) =

∏
1≤j≤n−1

j odd

(
1 + x2n−1(3/2)j

)

rn(x) =
∏

1≤j≤n−1
j even

(
1 + x2n−1(3/2)j

)
=

b(n−1)/2c∏
j=1

(
1 + x2n−1(9/4)j

)
.

We see that

pn(x) = qn(x)
(
1 + x2n−1

)
rn(x)sn(x).

Consider the polynomial qn(x)rn(x). Because 9/4 > 2, we have distinct powers of x when we
expand qn(x)rn(x). In other words, the coefficients are all either 0 or 1. Hence the coefficients of
qn(x)rn(x)(1 + x2n−1

) are all either 0, 1, or 2. In particular, the coefficients are bounded. On the
other hand, there are at most n/2 terms in the product defining sn(x). Hence there are at most
2n/2 nonzero terms in the polynomial sn(x) since we have 2 choices from each term in the product.
Therefore the coefficients of pn(x) are all O(2n/2) = O((

√
2) n). �

How far can this bound be improved? Looking at numerical data in Table 1 in the Appendix, it
appears as if mn = O((4/3)n). Also see the plot in Figure 6. For more on improving this bound,
see Section 4.

6 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

3.4. An algorithmic implementation: PIP. The fact that our sequence can be realized as the
coefficients of an explicitly defined polynomial provides us with an algorithm for computing isolated
points on high levels. The algorithms DSA and DEM are useful for computing entire levels, but
this becomes impossible for large n due to the recursive nature of the algorithm. The following
algorithm, which we call PIP, allows us to compute with much larger n values. The algorithm
is nonrecursive—we need no previous levels to compute entries on Bn. The name PIP stands for
polynomial isolated point because this algorithm computes the entry corresponding to a given index
and given level number.

Our algorithm is based on the following idea. Suppose S = {a1, ..., an} is a set of distinct positive
integers. Consider the polynomial

f(x) =
n∏

i=1

(1 + xai) =
m∑

j=1

αjx
j .

Then αj is the number of ways to write j as a sum of distinct elements from S. This idea is
applicable to the coefficients of our polynomial because our polynomial is a product of terms of the
form (1+xa). The only difficulty that arises is that the powers of x in the terms in the product are
not distinct—indeed the term (1+x2n−1

) is repeated twice. To this end we do not view S in (9) as
a set. This poses no problem; the above argument goes through when thinking of S as a sequence
or ordered tuple. Hence we get that the coefficient bj of xj in pn(x) (which is the jth entry on the
nth Bernoulli sequence) is precisely the number of ways that j can be written as a sum of distinct
terms in the sequence

S = {1, 2, 4, ..., 2n−2, 2n−1, 2n−1, 2n−23, 2n−332, ..., 223n−3, 213n−2, 3n−1}. (9)

We now outline an algorithm that can be used to calculate the entry bj for a fixed level n. The
entire algorithm is based on the following ideas:

• Let S = {a1, ..., an} where each ai > 0. Let NS(k) denote the number of ways to write k as
a sum of elements from S. Then for any i ∈ {1, ..., n}, the following holds

NS(k) = NS\{ai}(k) + NS\{ai}(k − ai). (10)

• If k >
∑

s∈S s, then NS(k) = 0.
• If k < 0, then NS(k) = 0.
• Let S be as in (9). We see that if 0 < k < 2n−1, then NS(k) = NS′(k) where S′ =
{1, 2, 4, ..., 2n−2} since all other elements of S are too large. However, every k with 0 <
k < 2n−1 can be written uniquely as a sum from elements of S′; this is simply the binary
expansion of k.

3.5. Data. In Table 2 and Table 3 found in the Appendix, we use the PIP algorithm to compute
isolated points on high levels. We first pick α ∈ [0, 1]. We then consider the index k = dα(3n− 1)e.
We compute the entry bk at index k for levels n = 1, 2, ..., 40 (we have used PIP to compute entries
on levels as high as n = 70). Finally we take the quotient of bk by (4/3)n. Table 2 shows evenly
spaced α values within the first half of the middle third of the sequence (remember that this is the
only interesting piece of Bn). Table 3 shows an accumulation of α values as α gets close to 1/2.
Also of interest is the flowchart in Figure 4 which shows an explicit example of our implementation
of the PIP algorithm in use. Further data gathered using PIP is found in Table 1 containing the
maximum values (and approximate maximum values) of the first 32 levels.

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 7

4. An Improvement on the Bound

4.1. Background. Seeing that our sequence on level n has length 3n, we naturally index it by the
first 3n nonnegative integers. In certain circumstances, it is advantageous to normalize the indexing
in such a way that each index is on the interval [0, 1]. To this end, we can simply take the image
of k ∈ {0, 1, 2, ..., 3n − 1} under the map k 7→ k/3n. This normalization scheme has the advantage
that each level can be made to live on [0, 1]; indeed for a subset S ⊂ [0, 1], we define

Γn(S) = max
x∈S̄

gn(x)

where S̄ = S ∩ {0, 1/3n, 2/3n, ..., (3n − 1)/3n} and gn(x) denotes the nth level Bernoulli sequence
where now x ∈ [0, 1]. In other words,

gn

(
k

3n

)
= bk for k = 0, 1, ...3n − 1. (11)

Consider the two maps predup, preshf : [0, 1] ∪ ∅ −→ [0, 1] ∪ ∅ defined by

predup : x 7−→
{

(3/2)x if x ∈ [0, 2/3]
∅ otherwise preshf : x 7−→

{
(3/2)(x + 1/3) if x ∈ [1/3, 1]

∅ otherwise.

Also predup(∅) = ∅ and predup(∅) = ∅. The normalization scheme is now apparent—the functions
predup and preshf are defined independently of n.

For a given entry gn(x) on the nth level, gn(x) can be written as a sum of two entries on level n− 1
provided x is in the middle third. If x is in the first third or the last third, then gn(x) only comes
from one entry on the previous level. The maps predup and preshf give the preimage of the index x
on the duplicated copy of the (n−1)th level and the shifted copy of the (n−1)th level, respectively.
This explains the strange names “predup” and “preshf”. These maps reflect the behavior of the
indices in the duplication process and shifting. Indeed, in this new setting the process of duplicate,
shift, add translates to the equation

gn+1(x) = gn(predup(x)) + gn(preshf(x)) (12)

where gn(∅) = 0.

4.2. Description of Algorithm. We wish to give a reasonable bound on the growth of Γn :=
Γn([0, 1]) in terms of n. Realize that Γn is equivalent terminology for mn; the new notation reinforces
the fact that we are now thinking of the indices of Bn as living on [0, 1]. The following procedure
gives a method for computing a positive real number θ so that Γn = O(θn). The exact number θ
will depend on several factors discussed in the remarks in Section 4.4.

(1) Write the interval [0, 1] as a union

[0, 1] =
w⋃

j=1

Dj (13)

where each Dj is a closed interval.
(2) Now fix an index j and let D = Dj . Consider the image of D under predup and preshf. We

pullback D one level to obtain the two intervals predup(D) and preshf(D). Note that one
of predup(D) or preshf(D) maybe be empty, but this poses no problem. Pulling D back
two levels, we are left with the four intervals

(predup(predup)(D)), (preshf(predup(D)), (predup(preshf(D)), (preshf(preshf)(D)).

Continuing in this manner, we are left with 2r intervals after considering the image of D
under all pullbacks to level n− r. Call these intervals E1, E2, ..., E2r .

8 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

(3) For each i = 1, 2, ..., 2r, consider the particular interval Ei. If Ei is empty, we disregard Ei.
For technical reasons, if Ei only contains 0 or 1, we also disregard it. The reason for this
is that Γn({0}) = 1 and Γn({1}) = 0. Hence intervals will contribute nothing—this will be
clear in the proof. Otherwise there exists a y ∈ Ei so that |y−1/2| ≤ |w−1/2| for all other
w ∈ Ei. In other words, we select the element from Ei that is closest to 1/2. If y > 1/2,
replace y with 1− y ∈ (0, 1/2] in the following.

(4) Consider the sequence of rationals a0, a1, a2, ... where

ak =
1
3

(
2
3

)k

.

We see that ak → 0 as k →∞, hence there exists k = ki so that ak+1 ≤ y < ak.
(5) For this index i, define the monomial moni(X) := Xn−r−ki ∈ R[X]. If Ei = ∅, {0}, or {1},

then set moni(X) = 0. Recall that D = Dj and consider the polynomial

fj(X) = Xn −
2r∑

i=1

moni(X). (14)

Note that fj is not necessarily a polynomial. If n is small, then the powers n− r − k of X
may turn out to be negative. To this end, we assume that n is large enough so that fj is
indeed a polynomial. Increasing the value of n only increases the multiplicity of the root
at X = 0, this is irrelevant to us. For each j = 1, 2, ..., w, let θj be the greatest real root of
fj(X).

(6) Let θ = maxj θj .
After computing θ, we have Γn = O(θn).

4.3. Verification of Algorithm. After first reading the above algorithm, it is not clear how or
even why it works. We now prove that this algorithm does indeed provide a bound for Γn.

Theorem 4.1. Suppose θ is found using the above method. Then ΓN = O(θN) for all positive
integers N .

Proof. We proceed by induction on N . Whenever N is small, ΓN is a bounded integer. Hence
ΓN < CθN for large enough constant C. This establishes the base case; moreover it establishes
the bound for any N less than some fixed positive integer. Before we begin the inductive step, we
revisit our algorithm. We will see that the above algorithm is essentially the computation involved
in the inductive step.

Using the aforementioned notation, we see that in step 1 we have

Γn = max
j∈{1,...,w}

Γn(Dj).

Now using the properties of the functions predup and preshf as in (12), in step 2 we obtain the
rather crude estimate:

Γn(Dj) = Γn(D) ≤
2r∑

i=1

Γn−r(Ei).

Consider the sequence gh(x) on some level h. There is very little we know a priori regarding the
location of the maximum. But one very trivial statement we can make is that the maximum occurs
on [1/3, 2/3]; in the process of duplicate, shift, add the first third of gh(x) is simply the first half

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 9

of gh−1(x). By extending this inductively, if x ∈ [0, (1/3)(2/3)k], then gh(x) is can be realized as a
term of the (h− k)th level. A similar argument applies for x ∈ [1− (1/3)(2/3)k, 1]. We obtain that

gh(x) ≤ Γh−k.

In step 3, we are determining the y ∈ Ei that is closest to 1/2. In step 4, we compute the largest
value of k so that every x ∈ Ei satisfies either x ≤ (1/3)(2/3)k or x ≥ 1− (1/3)(2/3)k. This gives
the estimate

Γn−r(Ei) ≤ Γn−r−ki
.

Putting these two inequalities together, we obtain

Γn(D) ≤
2r∑

i=1

Γn−r−ki
.

We now tackle the inductive step in the proof. Assume that Γn < Cθn for all n < N . We wish to
show that ΓN < CθN . We start

ΓN = max
j

ΓN (Dj)

≤ max
j

2r∑
i=1

ΓN−r−ki

< max
j

2r∑
i=1

CθN−r−ki

= C max
j

(
θN − fj(θ)

)
where the last equality comes from (14). Since fj(X) is a monic polynomial, fj(X) → ∞ as
X → ∞. In particular, fj(X) ≥ 0 for all X ≥ θj , with θj the largest real root of fj(X). Since
θ ≥ θj for all j, it follows that fj(θ) ≥ 0 for all j. Hence

C max
j

(
θN − fj(θ)

)
≤ C max

j
θN = CθN .

�

4.4. Remarks on algorithm. There is much to say regarding this algorithm. Refer to Figure 7
in the Appendix for an example of the implementation of this algorithm. In step 1 of the outline,
we only need to consider breaking up the interval [1/3, 1/2] in (13) as a union of closed intervals
because the maximum is guaranteed to occur on this interval. Also, steps 3 and 4 could be omitted
from the algorithm—the resulting bound would not be as strong, but we would still have a bound.
If this were the case, we would just set moni(X) = Xn−r if Ei 6= ∅ and moni(X) = 0 if Ei = ∅.

As part of our project, we coded the above algorithm using Python. The code can easily be broken
up and shipped out to many computing nodes; indeed this is exactly what is being done in step 1.
We have found that the majority of the running time is spent in steps 3 and 4. Specifically, for a
given interval D, a computer must repeat steps 3 and 4 at most 2r times. In actuality, because some
of the intervals Ei become empty under repeated applications of predup and preshf, the number of
nonempty Ei will not be quite this high. However, the number of nonempty intervals still grows
exponentially.

10 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

There are two essentially different parameters that we have control over when running this algo-
rithm. We are able to choose exactly how we break up the interval [1/3, 1/2] in (13) and we have
able to choose the pullback number r defined in step 2. There is a computational trade off when
setting these two values—it is hard to make both large at once. After testing various ways of
breaking up [1/3, 1/2] in (13) and various pullback numbers r, we find that a small increase in r
will yield a better bound then a finer granulation in (13).

4.5. Data. After writing our code in Python, we ran many jobs using the high-throughput com-
puting facilities of Condor at Clemson University. We submitted tens of thousands of jobs daily
attempting to improve the bound on mn. Before implementing this algorithm, the best known
bound on mn was the O((

√
2)n) bound given in Section 3.3. We succeeded in significantly improv-

ing the bound. For a summary of our work, see Table 4 in the Appendix. Although this algorithm
may not be able to actually achieve the bound mn = O((4/3)n), it succeeds in bringing us much
closer.

5. Statistical Properties of Bernoulli Convolutions

5.1. The mean value of the Bernoulli sequence. It is straightforward to see that the mean
µ(Bn) = (4/3)n. To see this, let Sn =

∑
i bi where bi ∈ Bn.

Proposition 5.1. ([2])

Sn = 4n

Proof. We use induction on n. When n = 0, we have S0 = 1 = 40. Assume that Sn−1 = 4n−1.
Consider the nth level Bernoulli sequence Bn. By definition, Bn = dupn−1(Bn−1) + shfn−1(Bn−1).
However, the sum of elements in dupn−1(Bn−1) is 2Sn−1. A same statement is true with “shf” in
place of “dup”. Hence,

Sn = 2Sn−1 + 2Sn−1 = 4(4n−1) = 4n.

�

Because Bn has 3n entries, as an immediate corollary we have µ(Bn) = (4/3)n.

5.2. The variance and sum of squares of the Bernoulli sequence. Using the formula for
the variance of a set of data and the mean formula provided above, we were able to bound the sum
of squares from above and below.

Proposition 5.2.

42n ≥
3n−1∑
i=0

b2
i ≥

42n

3n

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 11

Proof. Let σ2 denote the variance of Bn, and let t = 3n − 1. Then

σ2 =
1
3n

t∑
i=0

(
bi −

(
4
3

)n)2

=
1
3n

t∑
i=0

(
b2
i − 2

(
4
3

)n

bi +
(

4
3

)2n
)

=

(
1
3n

t∑
i=0

(
b2
i − 2

(
4
3

)n

bi

))
+
(

4
3

)2n

=

(
1
3n

t∑
i=0

b2
i

)
− 2

(
4
3

)2n

+
(

4
3

)2n

=

(
1
3n

t∑
i=0

b2
i

)
−
(

4
3

)2n

(15)

(16)

Since σ2 ≥ 0, we get
∑t

i=0 b2
i ≥ 42n

3n .

Also it is easy to see that

42n =

(
t∑

i=0

bi

)2

≥
t∑

i=0

b2
i .

Thus

42n ≥
t∑

i=0

b2
i ≥

42n

3n
.

�

This provides an upper and a lower bound for the sum of the squares. Using the upper bound on
the sum of squares together with equation (15), the following upper bound on the variance can be
achieved: (

4
3

)2n

(3n − 1) ≥ σ2.

In other words,
42n

3n

(
1− 1

3n

)
≥ σ2.

We believe that the variance is in fact O((4/3)2n) and that the sum of squares is O((16/3)n). See
Figure 5 for a data plot supporting this claim.

5.3. A nice property on the sum of squares. Consider an arbitrary Bernoulli level Bn =
(b0, b1, ..., bt) where t = 3n− 1. Let m = t/2 so that bm represents the midpoint of Bn. Because Bn

is a palindrome, bi = bt−i. Using this notation, we can prove the following:

Proposition 5.3.
∑

i b
2
i is divisible by 4 if and only if bm is divisible by 4.

12 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

Proof. Assume bm is divisible by 4. By proposition 5.1, we know that
∑t

i=0 bi = 4n. Let E denote
the sum of the even terms bi for i = 0, 1, ...,m − 1. Let D denote the sum of the odd terms bi for
i = 0, 1, ...,m− 1. Also, let E2 denote the sum of the squares of the even terms on the same range,
and D2 denote the sums of the squares of the odd terms on the same range. Then,

4n =
t∑

i=0

bi

= 2(b0 + b1 + ... + bm−1) + bm

= 2E + 2D + bm (17)

Clearly 2E ≡ 0 mod 4, and by assumption bm ≡ 0 mod 4. This implies that 2D ≡ 0 mod 4. In
turn, this implies that the number of odd terms is even. Similarly, we can write

t∑
i=0

b2
i = 2(b2

0 + b2
1 + ... + b2

m−1) + b2
m

= 2E2 + 2D2 + b2
m

Clearly 2E2 ≡ 0 mod 4. Since the number of odd terms is even, 2D2 ≡ 0 mod 4. By assumption,
b2
m ≡ 0 mod 4. Thus,

∑
i b

2
i ≡ 0 mod 4. Thus

∑
i b

2
i is divisible by 4.

Now assume
∑

i b
2
i is divisible by 4. From above, we have

∑
i b

2
i = 2E2 + 2D2 + b2

m ≡ 0 mod 4.
Clearly 2E2 ≡ 0 mod 4. If the number of odd terms is even, then 2D2 ≡ 0 mod 4 and b2

t ≡ 0
mod 4 (we are done). Assume the number of odd terms is odd, and then D2 is odd. Then 2D2 =
2(2d+1) for some integer d. Then 2(2d+1)+b2

m ≡ 0 mod 4. This implies that b2
m +2 ≡ 0 mod 4,

which implies that b2
m ≡ 2 mod 4. This is a contradiction—every square number is congruent to

0 or 1 modulo 4. Thus the number of odd terms must be even. Then 2D2 ≡ 0 mod 4, forcing
b2
m ≡ 0 mod 4, or, by 17, forcing bm to be divisible by 4. �

5.4. Using PIP to compute the sum of squares. In this section we describe how a slight
modification of the PIP algorithm can be used to compute the sum of squares for a given Bernoulli
sequence. The way in which we use PIP comes from the following observation.

Consider the polynomial pn(x) =
∑

i bix
i as defined in Section 3.1. Let t = 3n − 1. Since Bn is

palindromic, we have bi = bt−i. Consider the coefficient st of xt in pn(x)2. When expanding pn(x)2,
we see that

s =
t∑

i=0

bibt−i =
t∑

i=0

b2
i .

Hence computing the sum of squares is equivalent to computing the middle coefficient in pn(x)2.
Because pn(x)2 is of the form mentioned in Section 3.4, we can use PIP to compute this coefficient.
The only part of the algorithm we change is the sequence S as defined in Section 3.4. This sequence
is now

S = {1, 1, 2, 2, ..., 2n−2, 2n−2, 2n−1, 2n−1, 2n−1, 2n−1, 2n−23, 2n−23, ..., 213n−2, 213n−2, 3n−1, 3n−1}

which can be seen by looking at the product form of pn(x) in Section 3.2.

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 13

6. Conclusion

Studying Bernoulli convolutions through the lens of combinatorics sheds much new insight on the
subject. For some of our work, this point of view is irrelevant (for example the proof of the bound
improvement in Section 4). However, many of our algorithms would not have been discovered with-
out combinatorial thinking (for example the PIP algorithm). The combinatorial point of view is a
very simple way to think about Bernoulli convolutions (the duplicate, shift, add method could be
explained to a small child), but a computer has trouble computing more than a handful of Bernoulli
sequences. In particular, studying Bernoulli convolutions via combinatorics has led to the discovery
and development of three elegant algorithms (DEM, PIP, and the bound improvement algorithm
of Section 4).

In this paper, we have shown that the maximums satisfy mn = O((1.34000224903)n), improving
upon the previously best known bound of O((

√
2)n). We conjecture mn = O((4/3)n). Using our

three algorithms, we have sufficient data to support this claim. These are questions we have been
unable to answer: Can our bound improvement algorithm be pushed to further lower the bound
given more computational power? Is it possible to conclusively prove our conjecture? Furthermore,
is there an explicit formula to describe mn for any arbitrary level? What else can be said regarding
the global behavior of the Bernoulli sequence Bn? We have succeeded in providing partial answers
of these questions through our algorithms and data.

14 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

7. Appendix

Figure 2. This shows some of the low level Bernoulli sequences generated using
DSA. In the following plots, the horizontal axis gives the index and the vertical axis
gives the entry corresponding to that index in a Bernoulli sequence. Below we show
the Bernoulli sequence B7.

Figure 3. Below we show the Bernoulli sequence B11.

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 15

Table 1. The maximums mn appear to be growing like O((4/3)n). Looking at
the convergence of mn(3/4)n provides evidence for this claim. Note that PIP is a
powerful tool used to calculate isolated points on Bn; however, the sequences quickly
become too large to analyze every individual point. We consider the indices on the
first half of the middle third of Bn. We start by calculating the point one third of
the way through and increment through by a constant. When the index increment
is one, we calculate all of the values. This gives us a global picture of the behavior
of Bn. Hence the maximum values mn for n > 26 are not exact, but we do believe
they are only slightly under the actual maximum. This accuracy of course dissolves
for larger index increments.

Level n Maximum Value mn mn(3/4)n Computational Method Index Increment
0 1 1 DSA 1
1 2 1.5 DSA 1
2 3 1.6875 DSA 1
3 4 1.6875 DSA 1
4 6 1.8984375 DSA 1
5 8 1.8984375 DSA 1
6 11 1.957763672 DSA 1
7 14 1.868774414 DSA 1
8 18 1.802032471 DSA 1
9 25 1.877117157 DSA 1
10 33 1.858345985 DSA 1
11 43 1.816110849 DSA 1
12 56 1.773875713 DSA 1
13 75 1.781794801 DSA 1
14 99 1.763976853 DSA 1
15 131 1.750613395 DSA 1
16 176 1.763976853 DSA 1
17 232 1.743931662 DSA 1
18 309 1.742052425 DSA 1
19 410 1.733595860 DSA 1
20 545 1.728310507 DSA 1
21 728 1.731481719 DEM 1
22 962 1.716022061 DEM 1
23 1283 1.716468012 DEM 1
24 1705 1.710782128 DEM 1
25 2266 1.705263476 DEM 1
26 3024 1.706768563 DEM 1
27 ≈ 4025 – PIP 20000
28 ≈ 5357 – PIP 200000
29 ≈ 7170 – PIP 400000
30 ≈ 9531 – PIP 2000000
31 ≈ 12670 – PIP 80000000
32 ≈ 16914 – PIP 200000000

16 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

Table 2. In this table, we consider various values for α appearing in the top row.
Then we compute the kth entry bk of the Bernoulli sequence Bn for k = dα(3n−1)e.
Finally, we compute bk(3/4)n for n = 1, 2, ..., 40. The data suggests this quantity
converges as n grows large.

Level 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5
1 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000
2 1.687500 1.687500 1.687500 1.687500 1.687500 1.125000 1.125000 1.125000
3 1.265625 1.687500 1.687500 1.687500 1.687500 1.265625 1.265625 1.687500
4 1.265625 1.582031 1.582031 1.265625 1.582031 1.265625 1.582031 1.898438
5 1.186523 1.186523 1.661133 1.423828 1.898438 1.423828 1.423828 1.898438
6 1.245850 1.423828 1.779785 1.423828 1.779785 1.423828 1.423828 1.779785
7 1.201355 1.334839 1.735291 1.601807 1.601807 1.334839 1.601807 1.601807
8 1.201355 1.301468 1.802032 1.701920 1.501694 1.401581 1.501694 1.802032
9 1.201355 1.351524 1.877117 1.802032 1.501694 1.351524 1.576778 1.802032
10 1.182584 1.407838 1.858346 1.689405 1.464151 1.520465 1.520465 1.576778
11 1.309289 1.435995 1.816111 1.562700 1.393759 1.520465 1.647170 1.689405
12 1.330407 1.393759 1.742199 1.615494 1.488789 1.520465 1.647170 1.710523
13 1.354164 1.401679 1.710523 1.591737 1.472950 1.520465 1.591737 1.520465
14 1.336346 1.425436 1.674887 1.567979 1.496708 1.478890 1.621433 1.639251
15 1.296256 1.469981 1.643706 1.576888 1.496708 1.496708 1.630342 1.630342
16 1.312960 1.433231 1.603615 1.573548 1.533457 1.493367 1.583570 1.583570
17 1.315466 1.450771 1.578559 1.563525 1.525940 1.510906 1.563525 1.623661
18 1.324862 1.460167 1.578559 1.544733 1.516544 1.482718 1.572921 1.668762
19 1.314996 1.429160 1.594063 1.530638 1.530638 1.496812 1.577149 1.640574
20 1.319224 1.436559 1.585606 1.525353 1.534867 1.474614 1.569750 1.617318
21 1.305747 1.446073 1.591156 1.534074 1.541209 1.479370 1.560236 1.584020
22 1.309314 1.455586 1.589372 1.539425 1.539425 1.478776 1.566182 1.641102
23 1.311098 1.446221 1.581345 1.547898 1.547898 1.485019 1.577331 1.650913
24 1.312436 1.453914 1.585358 1.551243 1.535189 1.483012 1.578334 1.609440
25 1.310178 1.455419 1.592382 1.563785 1.537446 1.478748 1.576579 1.610443
26 1.304910 1.448270 1.603482 1.563409 1.533495 1.479877 1.581470 1.609690
27 1.308438 1.448129 1.609832 1.559881 1.526864 1.478607 1.577237 1.601789
28 1.308967 1.444848 1.615017 1.556601 1.532790 1.485486 1.579142 1.612160
29 1.315555 1.448896 1.616049 1.554379 1.529853 1.476517 1.576046 1.618192
30 1.308114 1.451872 1.616346 1.554914 1.527055 1.471516 1.577594 1.610810
31 1.304274 1.449729 1.617150 1.550718 1.531565 1.470757 1.577639 1.608846
32 1.304073 1.447017 1.616983 1.552593 1.536219 1.473034 1.575094 1.610252
33 1.307213 1.447419 1.616631 1.551990 1.531498 1.474767 1.572030 1.613467
34 1.308757 1.447589 1.615463 1.549579 1.532515 1.474315 1.575458 1.615463
35 1.308474 1.449637 1.616141 1.549989 1.529139 1.473750 1.574780 1.617582
36 1.308125 1.449245 1.617667 1.550127 1.530548 1.474640 1.574123 1.616396
37 1.307886 1.450556 1.617897 1.552057 1.530150 1.474251 1.574417 1.617445
38 1.307892 1.450008 1.619012 1.551682 1.529727 1.473464 1.574763 1.617743
39 1.307544 1.450535 1.619714 1.550310 1.529070 1.473370 1.575921 1.617233
40 1.307356 1.450019 1.620015 1.550705 1.529959 1.475150 1.575666 1.616817

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 17

Table 3. In this table, we consider various values for α appearing in the top row.
Then we compute the kth entry bk of the Bernoulli sequence Bn for k = dα(3n−1)e.
Finally, we compute bk(3/4)n for n = 1, 2, ..., 40. The data suggests this quantity
converges as n grows large.

Level 0.49 0.499 0.4999 0.49999 0.499999 0.4999999 0.49999999 0.5
1 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000 1.500000
2 1.125000 1.125000 1.125000 1.125000 1.125000 1.125000 1.125000 1.125000
3 1.687500 1.687500 1.687500 1.687500 1.687500 1.687500 1.687500 1.687500
4 1.898438 1.898438 1.898438 1.898438 1.898438 1.898438 1.898438 1.898438
5 1.661133 1.898438 1.898438 1.898438 1.898438 1.898438 1.898438 1.898438
6 1.601807 1.779785 1.779785 1.779785 1.779785 1.779785 1.779785 1.779785
7 1.601807 1.601807 1.601807 1.601807 1.601807 1.601807 1.601807 1.601807
8 1.601807 1.802032 1.802032 1.802032 1.802032 1.802032 1.802032 1.802032
9 1.501694 1.802032 1.802032 1.802032 1.802032 1.802032 1.802032 1.802032
10 1.633092 1.633092 1.576778 1.576778 1.576778 1.576778 1.576778 1.576778
11 1.604935 1.647170 1.689405 1.689405 1.689405 1.689405 1.689405 1.689405
12 1.552141 1.615494 1.710523 1.710523 1.710523 1.710523 1.710523 1.710523
13 1.544222 1.663008 1.544222 1.520465 1.520465 1.520465 1.520465 1.520465
14 1.621433 1.621433 1.621433 1.603615 1.621433 1.639251 1.639251 1.639251
15 1.603615 1.603615 1.643706 1.603615 1.616979 1.630342 1.630342 1.630342
16 1.623661 1.593593 1.573548 1.563525 1.573548 1.583570 1.583570 1.583570
17 1.623661 1.623661 1.578559 1.601110 1.616144 1.623661 1.623661 1.623661
18 1.623661 1.601110 1.589834 1.651849 1.663124 1.668762 1.668762 1.668762
19 1.632117 1.581378 1.577149 1.623661 1.636345 1.640574 1.640574 1.640574
20 1.630003 1.601462 1.572921 1.598291 1.614147 1.617318 1.617318 1.617318
21 1.643481 1.600669 1.600669 1.562615 1.576885 1.584020 1.584020 1.584020
22 1.632183 1.616129 1.619696 1.601858 1.630399 1.641102 1.641102 1.641102
23 1.637535 1.614791 1.610777 1.606764 1.640210 1.650913 1.650913 1.650913
24 1.630511 1.602416 1.602416 1.596396 1.601412 1.611446 1.609440 1.609440
25 1.621731 1.603670 1.602165 1.596897 1.598402 1.611196 1.610443 1.610443
26 1.631702 1.602918 1.601224 1.609690 1.606304 1.609690 1.609690 1.609690
27 1.630574 1.608138 1.600942 1.611525 1.604752 1.604329 1.602212 1.601789
28 1.622002 1.607080 1.606763 1.614700 1.611842 1.611525 1.612477 1.612160
29 1.626764 1.611763 1.609382 1.614144 1.616049 1.618668 1.618906 1.618192
30 1.630812 1.615096 1.605632 1.612596 1.612775 1.612596 1.611346 1.610810
31 1.628535 1.610319 1.602551 1.610989 1.613132 1.614204 1.609784 1.608846
32 1.632352 1.613567 1.604828 1.612061 1.615476 1.614170 1.611156 1.610252
33 1.627028 1.615426 1.605858 1.614522 1.613392 1.616932 1.615124 1.613467
34 1.626538 1.612469 1.602919 1.613994 1.613655 1.615407 1.615576 1.615463
35 1.625719 1.613344 1.605165 1.612539 1.612582 1.613938 1.616565 1.617582
36 1.624850 1.614934 1.607941 1.612963 1.614457 1.613472 1.616968 1.616396
37 1.624334 1.612820 1.606050 1.613321 1.616062 1.614751 1.617373 1.617445
38 1.625716 1.613327 1.606497 1.612701 1.615669 1.614900 1.617868 1.617743
39 1.624809 1.613479 1.606439 1.612902 1.615745 1.615584 1.617032 1.617233
40 1.625315 1.613187 1.607183 1.613257 1.614746 1.614786 1.618094 1.616817

18 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

Figure 4. The above flowchart illustrates this algorithm. It shows the computation
of NS(k) for k = 12 and S = {1, 2, 4, 4, 6, 9}. As the diagram suggests, NS(k) = 3,
corresponding to the fact that there are three boxes containing the word answer++.

Figure 5. This plot shows the quotient of the sum of the squares by (4/3)n for n
up to 25.

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 19

Figure 6. This graph shows the quotient of the maximum mn by (4/3)n for n up
to 27. Are these points approaching a limit?

Figure 7. This diagram provides a good visualization of the logic behind the
better bound algorithm. Here we the pullback number r = 2 and each Ei has
length 1/27 as indicated by the vertical lines. The numbers h on each interval Ei

satisfy Γn−2(Ei) ≤ Γn−h as in steps 3 and 4 in the PIP algorithm.

20 JULIA DAVIS, MICHELLE DELCOURT, AND ZEBEDIAH ENGBERG

Table 4. These are the bounds coming from the algorithm in Section 4.2. We
choose various pullback numbers r as seen in the table below. Our break up the
interval [1/3, 1/2] so that each pullback interval Ei has width according to the values
shown below. The last entry in this table is the best bound we were able to achieve
with the computational power available to us. The values beneath the line at level 22
mark the bounds we achieved after we parallelized our algorithm among thousands
of nodes.

Pullback number r Width of interval Ei Bound θ
1 1/360 1.57795430509
2 1/360 1.41421356237
3 1/360 1.38027756910
4 1/360 1.38581622915
5 1/360 1.36533552385
6 1/360 1.36558440642
7 1/360 1.35579220586
8 1/360 1.35605185929
9 1/360 1.35327499283
10 1/360 1.34930156389
11 1/360 1.34798572414
12 1/360 1.34740387405
13 1/360 1.34614197103
14 1/360 1.34530126253
15 1/210 1.34428051641
16 1/150 1.34411942747
17 1/150 1.34308122018
18 1/150 1.34308363659
19 1/150 1.34237196822
20 1/150 1.34203310608
21 1/150 1.34147328569
22 1/150 1.34113965590
23 1/1200 1.34034466363
23 1/1800 1.34030034266
23 1/2001 1.34028774655
23 1/2100 1.34028422268
24 1/150 1.34045678181
24 1/600 1.34010969510
24 1/1050 1.34000224903

BERNOULLI CONVOLUTIONS: A COMBINATORIAL APPROACH 21

8. Acknowledgments

Special thanks to:
Jobby Jacob for numerous suggestions and patience,
Neil Calkin for motivation on the problem and guidance,
Kevin James for assistance and support,
Our fellow REU students for friendship and comic relief,
Dan Warner for suggesting the use of Python,
Matt Saltzmann for computational advice,
Deniz Savas for help with parallel computing,
The National Science Foundation for their generous grant (DSM-0552799) enabling us to do this
research.

References

[1] David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke, and Victor H. Moll.
Experimental mathematics in action. A K Peters Ltd., Wellesley, MA, 2007.

[2] Neil Calkin. Counting kings, collectings coupons, and other applications of linear algebra to combinatorics. Clem-
son University REU Colloquium Lecture, 2008.

[3] Paul Erdős. On a family of symmetric Bernoulli convolutions. Amer. J. Math., 61:974–976, 1939.
[4] Børge Jessen and Aurel Wintner. Distribution functions and the Riemann zeta function. Trans. Amer. Math.

Soc., 38(1):48–88, 1935.
[5] Richard Kershner and Aurel Wintner. On Symmetric Bernoulli Convolutions. Amer. J. Math., 57(3):541–548,

1935.
[6] Yuval Peres, Wilhelm Schlag, and Boris Solomyak. Sixty years of Bernoulli convolutions. In Fractal geometry and

stochastics, II (Greifswald/Koserow, 1998), volume 46 of Progr. Probab., pages 39–65. Birkhäuser, Basel, 2000.
[7] Boris Solomyak. On the random series

P
±λn (an Erdős problem). Ann. of Math. (2), 142(3):611–625, 1995.

Julia Davis, Department of Mathematics, Grove City College, Grove City, PA 16127
E-mail address: davisjl1@gcc.edu

Michelle Delcourt, School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332
E-mail address: mdelcourt3@gatech.edu

Zebediah Engberg, School of Natural Science, Hampshire College, Amherst, MA
E-mail address: zee05@hampshire.edu

