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Abstract

In this paper, we compute constants CE,r found in the Lang-Trotter conjecture
for many elliptic curves E and integers r. These computations are simplified when E
belongs to a special class of curves called Serre curves. This is due to the fact that the
image of the Galois representation for E is as large as possible for a Serre curve.

1 Introduction

First, we recall some facts about elliptic curves. Recall that an elliptic curve E over a field
K is a nonsingular plane curve of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1)

The discriminant for such a curve is given by ∆ = −16(4A3 + 27B2). In this paper, we
consider elliptic curves over Q and their reductions modulo primes q. A minimal model for
E is an equation of the form (1) with smallest discriminant. When reducing modulo q, we
always work with a minimal model. In the the cases where q is not 2 or 3, we may assume
that our minimal model can be reduced to the form

E : y2 = x3 + Ax+B. (2)

If the reduction of E modulo q is nonsingular, then E is said to have good reduction at
q. Otherwise, E is said to have bad reduction at q. There are two cases of bad reduction.

(i) E has additive reduction if its reduction modulo q has a cusp, or a root of multiplicity
3 modulo q.

(ii) E has multiplicative reduction if its reduction modulo q has a node, or a root of
multiplicity 2 modulo q.

Definition 1. An elliptic curve is semistable if and only if the curve has good reduction
all primes p or multiplcative reduction at all primes p.
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We want establish a simple way to determine whether a given elliptic curve is semistable
For a given elliptic curve E, define fp as follows:

fp =


0, if E has good reduction at p,

1, if E has multiplicative reduction at p,

2 + δp, if E has additive reduction at p.

The value of δp is equal to 0 for fields of characteristic 6= 2, 3. We use Tate’s algorithm [3]
to determine the values of fp.

Definition 2. The conductor NE of an elliptic curve E is defined as:

NE =
∏
p

pfp

The following theorem simply follows from the definitions of semistability and the con-
ductor of an elliptic curve:

Theorem 1. An elliptic curve E is semistable if and only if the conductor NE is square-free.

Conjecture 1 (Lang and Trotter). Let E be an elliptic curve, q a prime, and r ∈ Z,

#{q ≤ X : aq(E) = r} ∼ CE,r

√
X

logX
,

where CE,r is some explicit constant defined in terms of Galois representations and the error
term is defined as aq(E) = q + 1−#E(Fq).

We now describe the constant CE,r. The absolute Galois group acts on the N-torsion
points of E as follows:

Gal(Q/Q)× E[N ] −→ E[N ]

(σ, (x, y)) 7−→ (σx, σy)

This action induces the representation

φN,E : Gal(Q/Q) −→ Aut(E[N ]) ∼= GL2(Z/NZ)

For any subgroup G of GL2(Z/NZ), let Gr denote the subset of elements with trace r.
By [9] (see also [4]), there is an integer mE such that for all primes q - mE, φq,E(Gal(Q/Q))
= GL2(Z/qZ).

Then Lang and Trotter [6] define

CE,r :=
2

π
· mE ·#(φmE ,E(Gal(Q/Q))r)

#(φmE ,E(Gal(Q/Q)))

∏
p-mE
p-r

p(p2 − p− 1)

(p+ 1)(p− 1)2

∏
p-mE
p|r

p2

p2 − 1
. (3)

We calculate the constant CE,r for a range of r and for a number of elliptic curves E that
are Serre curves.
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Lemma 1. The size of GL2(Z/NZ) is
∏
p|N

(p2 − 1)(p2 − p)(p4(ordp(N)−1)).

Proof. To compute the size of GL2(Z/NZ), for N prime, we look at an element ( a bc d ) ∈
GL2(Z/NZ). By definition, the columns of ( a bc d ) are linearly independent. There are N
choices for a and N choices for c. However, linear independence implies that the zero vector
cannot be included in the set of vectors ( ac ). So, there are N2−1 choices for ( ac ). The vector
( bd ) cannot be a multiple of ( ac ). Similarly, there are N2 choices for ( bd ) and since there are
N choices for both a and c, there are N possible multiples of the vector ( ac ). Therefore,
there are N2 −N choices for ( bd ), giving (N2 − 1)(N2 −N) elements in GL2(Z/NZ).

When N is not prime, then N is the product of prime powers, pn1
1 , ..., p

nk
k and the size

of GL2(Z/NZ) is
∏
p|N

(p2 − 1)(p2 − p)(p4(ordp(N)−1)). Then N can be factored as the product,

M1...Mk, where Mi = pnii . A matrix in GL2(Z/MiZ) has the form
(
a0+a1pi b0+b1pi
c0+c1pi d0+d1pi

)
, where

a0, b0, c0, d0 ∈ Z/piZ and 0 ≤ a1, b1, c1, d1 < pni−1
i . Recall that there are (p2

i − 1)(p2
i − pi)

choices for a0, b0, c0, and d0. Similarly, there are pni−1
i choices for each a1, b1, c1, and d1, i.e.

p
(ni−1)
i

4
combinations of a1, b1, c1, and d1. So, there are (p2

i − 1)(p2
i − pi)p

(ni−1)
i

4
choices for(

a0+a1pi b0+b1pi
c0+c1pi d0+d1pi

)
. Then, #GL2(Z/NZ) = #GL2(Z/M1Z) · · ·#GL2(Z/MkZ).
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3 The Definition of a Serre Curve

Roughly speaking, a Serre curve is an elliptic curve whose torsion subgroup has as much
Galois symmetry as possible. Serre has shown that the image of φMW ,E is always contained
in a subgroup of index 2 called the Serre subgroup and denoted by HMW

. The curve E is
said to be a Serre curve when φMW ,E(Gal(Q/Q)) = HMW

.

Definition 3. The Serre number for some elliptic curve E is:

M∆sf
(E) =

{
2|∆sf |, if ∆sf ≡ 1 (mod 4)

4|∆sf |, otherwise
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where ∆sf is the square-free part of the discriminant of E.

The definition of a Serre curve is as follows.

Definition 4. An elliptic curve E is a Serre curve if for every m ∈ Z+, we have:

[GL2(Z/mZ) : φm,E(GQ)] =

{
2, if M∆sf

|m
1, otherwise

Definition 5. The integer N is said to be exceptional for E if φN,E is not surjective.

Theorem 2. [7, p. 131] Let E be a semistable elliptic curve, and N a prime number. Then
the image of φN,E is GL2(Z/NZ) if N ≥ 11. Equivalently, there are no exceptional primes
N ≥ 11 for a semistable elliptic curve E.

In [5, Lemma 5], we find the following sufficient conditions for an elliptic curve to be
Serre.

Lemma 2. If E over Q is an elliptic curve such that:

(i) E has no exceptional primes.

(ii) E is not exceptional at 4 or 9.

(iii) The index [GL2(Z/8Z) : φ8,E(GQ)] 6= 2.

(iv) There exists a prime p > 3 which divides the Serre number M∆sf
(E).

Then, E is a Serre curve.

We see that checking an elliptic curve for semistability is a matter of calculating the
conductor. It is easy to apply Lemma 2 to semistable curves because we need only check
that primes less than 11 are not exceptional.

To identify Serre curves, we use [8, Theorem 3.2] by Reverter and Vila, as well as the
Antwerp tables [1] to choose curves to which we can apply Lemma 2. From this theorem we
see that for many elliptic curves E/Q without complex multiplication and with conductor
NE ≤ 200, E has no exceptional primes. For these curves, we need only check conditions
2− 4 of Lemma 2.

4 Examples of Serre Curves

Proposition 1. The following elliptic curves in table A.1 are Serre curves.

(i) E1 : y2 = x3 − 4x+ 4

(ii) E2 : y2 = x3 + 32x+ 212
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Proof. First, we consider the curve E1. According to part (i) of the theorem by Reverter and
Vila [8] the fact that E1 has conductor 88 ≤ 200 and does not have complex multiplication
implies that ρE,p(GQ) is GL2(Fp) for all prime numbers p > 13. Therefore, E1 has no
exceptional primes greater than 13. Part (iii) of the theorem states that the image of
ρE,11(GQ) is GL2(F11) with the exception of five curves, not including E1. Parts (iv), (v),
and (vi) show that the primes 7, 5, and 3 are not exceptional. We now check that E1 is
not exceptional at 8 and 9. Since we have checked whether 23 = 8 is exceptional, we are
not required to check if 22 = 4 is exceptional because if E is not exceptional at pn, then
E is not exceptional at pn−1, for p prime. Recall then, that the integer N is exceptional
for E if φN,E is not surjective. Therefore, in order to verify that E1 is a Serre curve, we
compute GL2(Z/8Z) and GL2(Z/9Z) as well as Gal(Q(E[8])/Q) and Gal(Q(E[9])/Q). Then
we compare the size of GL2(Z/NZ) with its corresponding Galois group. However, the 8th
and 9th division polynomials, whose roots give x-coordinates for E[8] and E[9] respectively,
are the minimal polynomials Q(E[8])/Q, and Q(E[9])/Q. Therefore,

We use the Galois group function in Magma [2] to compute the size of Gal(Q(E[n])/Q)
for n = 8, 9.

Now we consider the curve E2. E2 does not have complex multiplication and has con-
ductor NE = 140, according to the Antwerp tables [1]. Similar to E1, [8, Theorem 3.2] gives
ρE,p(GQ) is GL2(Fp), for all prime numbers p > 13, meaning E2 has no exceptional primes
greater than 13. In the same manner as E1, we use parts (iii)-(vi) of the theorem to confirm
that E2 has no exceptional primes.
Again, we use the Galois group function in Magma [2] to compute the size of Gal(Q(E[n])/Q)
for n = 8, 9.

Proposition 2. Curves 4− 22 of table A.1 are Serre curves.

Proof. The Antwerp tables [1] give the conductor NE for each of these elliptic curves. One
can verify that the conductor for each of these curves is square-free. Recall from Theorem 1
that these curves are semistable. Then we can apply Theorem 2 to prove that an elliptic
curve E has no exceptional primes greater than or equal to 11. Therefore, we need only
compute the sizes of GL2Z/NZ and Gal(Q(E[N ])/Q), for N = 2, 3, 5, 7, 8, 9.

5 The Serre Subgroup HMW

In this section, we give a more explicit characterization of the Serre subgroup HMW
. Serre [9]

has shown that for each elliptic curve E, there is an index two subgroup HE ⊆ GL2(Ẑ) so
that φE(GQ) ⊆ HE. The image of the projection of HE onto GL2(Z/MWZ) is a subgroup
of HMW

, while the image of the projection πN(HE) onto GL2(Z/NZ) is the entire group
GL2(Z/NZ) for (MW , N) = 1.
As a result, we need to characterize the subgroup HMW

in order to understand the φN,E map.

To describe HMW
, we must first recall the definition of the Kronecker symbol, a general-

ization of the Legendre symbol.
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Let p be an odd prime and a an integer. The Legendre symbol is defined by:

(
a

p

)
:=


−1, if x2 ≡ a (mod p) has no solutions

0, if a ≡ 0 (mod p)

1, if x2 ≡ a (mod p) has two solutions.

The Kronecker symbol is an extension of the preceeding definition, where we write
(
a
b

)
for every a, b ∈ Z as follows,

(i) If b = 0, then (a
0

)
:=

{
1, if a = ±1

0, otherwise.

(ii) For b 6= 0, write b = up1 · · · pk, where pi is prime and not necessarily distinct and
u ∈ {±1}. Then the Kronecker symbol is defined as(a

b

)
=
(a
u

)∏(
a

p

)
,

where
(
a
p

)
is the Legendre symbol defined above for p > 2, and define

(a
2

)
=

{
0, if a is even

(−1)(a
2−1)/8, if a is odd

and (
a

−1

)
=

{
1, if a ≥ 0

−1, if a < 0.

From Jones’ paper [5, p. 13], we see that there exists a map

ε : GL2(Z/2mZ) −→ GL2(Z/2Z)
∼−→ S3

sgn−→ {±1},

where S3 is the group of permutations on 3 letters and sgn is the signature character mapping
even permutations to 1 and odd permutations to -1.

For an elliptic curve E, Jones defines the subgroup

HMW
:= ker

((
W

det(·)

)
ε(·)
)
⊂ GL2(Z/MWZ), (4)

where W = ∆sf (E) is the square-free part of the discriminant of an elliptic curve E and MW

is the Serre number of E, as defined in Section 3 [5, p. 13]. HMW
is known as the “Serre

subgroup of E.”
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6 Computing the Rational Constant

Recall the constant

CE,r =
2

π
· mE ·#(φmE ,E(Gal(Q/Q))r)

#(φmE ,E(Gal(Q/Q)))

∏
p-mE
p-r

p(p2 − p− 1)

(p+ 1)(p− 1)2

∏
p-mE
p|r

p2

p2 − 1
. (5)

For the case r = 0, we break CE,0 into two parts:
an infinite product:

C0 =
∏
p

(
p2

p2 − 1

)
, (6)

and a finite product:

C = me ·
∏
p|mE

(
p2 − 1

p2

)
· #(φmE ,E(Gal(Q/Q))0)

#(φmE ,E(Gal(Q/Q)))
. (7)

We see that

C0 =
∏
p

(
p2

p2 − 1

)
=
∏
p

(
1

1− 1
p2

)
= ζ(2) =

π2

6
.

So, when r = 0, CE,r reduces to

CE,r =
π2

6
· C.

When r 6= 0, we break CE,r into three parts. Define the products C1, C2, and C3 by

C1 =
∏
p

p(p2 − p− 1)

(p2 − 1)(p− 1)
, (8)

C2 =
2

π
·mE

∏
p|mE

(p+ 1)(p− 1)2

p(p2 − p− 1)

∏
p-mE
p|r

(
p2

p2−1

)
(

p(p2−p−1)
(p+1)(p−1)2

) , (9)

C3 =
#(φmE ,E(Gal(Q/Q))r)

#(φmE ,E(Gal(Q/Q)))
. (10)

Observe that CE,r = C1 · C2 · C3.
One can see that Serre curves simplify the computation of C3 because counting the

elements in φmE ,E(GQ) is equivalent to counting the elements in HMW
. Recall the definition

of HMW
from equation 4. We can verify that HMW

is the kernel of a homomorphism, so it
forms a normal subgroup of GL2(Z/MWZ). When we mod out GL2(Z/MWZ) by HMW

, we
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obtain a group of order 2. This implies that that HMW
is one-half the size of GL2(Z/MWZ).

Therefore,

HMW
=

1

2

∏
p|MW

((p2 − 1)(p− 1)p4(ordMW (p)−1)). (11)

7 Computing the Number of Trace r Elements in HMW

In this section, we discuss the computation of the number of trace r elements in HMW
.

In order to calculate the rational factor in the constant, we need the cardinality of the
set of trace r elements in the Serre subgroup. We can find this for any r using the followng
procedure.
Recall that W is equal to the square-free discriminant of the curve ∆sf . Consider W as a
product of distinct primes pi:

W = ±p1 . . . pk

For the square-free dicriminant W , we recall that the Serre number MW is equal to either
4|W | or 2|W |, depending on W ’s reduction modulo 4.

Our notation is such that the group Eq is a subgroup of
∏

p prime

GL2Zp such that Eq is the

kernel of the map that takes an element from
∏

p prime

GL2(Zp) to the set {±1} by a composition

of the projection homomorphism and the Kronecker symbol.

∏
p prime

GL2(Zp)
πq−→ GL2(Z/qZ)

(det(·)
W )
−→ {±1}

We can think of Eq as the subgroup of ‘even’ elements of
∏

p prime

GL2Zp and the coset Oq = −Eq

as the set of ‘odd’ elements. We define the group HE as the group whose projection onto
GL2(Z/NZ) yields the image of φN,E,

HE =

{
[(E2 × Eq) ∪ (O2 ×Oq)]×

∏
`-2q GL2(Z`), MW = 2|W |

[(E4 × Eq) ∪ (O4 ×Oq)]×
∏

`-4q GL2(Z`), MW = 4|W |,

where q = |W |. For a Serre curve, we notice that the projection of HE onto GL2(Z/NZ)
gives the image of φE,N .
When we project HE from a direct product of GL2(Zp) into GL2(Z/qZ), we define the
subgroup E(q) to be the image of this projection from Eq. For a prime p = q we can see
that this subgroup is equal to the kernel of the homomorphism

E(p) = ker

((
det(·)
p

))
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and the set O(p) is its respective coset. There are two special cases of the subgroup for which
we must consider. First, E(2) is the kernel of the composite map that takes GL2(Z/2qZ) to
GL2(Z/2Z) ' S3 which is then mapped to {±1} by the sign of the permutation

ε : GL2(Z/2qZ) −→ GL2(Z/2Z) −→ {±1}.

and the subgroup O(2) is its respective coset. Second, E(4) is the kernel of the homomor-
phism

E(4) = ker

((
−1

det(·)

)
ε(·)
)

and the subgroup O(4) is its respective coset.
We generalize Lang and Trotter’s Serre number to the one defined by Jones and we can

show that Lang and Trotter’s characterization of the Serre subgroup is equivalent to Jones’
description of HMW

[6] [5], i.e.

HMW
= ker

((
W

det(·)

)
ε(·)
)

=

{
[(E(2)× E(q)) ∪ (O(2)×O(q))], MW = 2|W |
[(E(4)× E(q)) ∪ (O(4)×O(q))], MW = 4|W |

.

Proof.
Case 1: For W ≡ 1 (mod 4)
Since we are working in GL2(Z/MWZ), we can always that the determinant of its elements
is positive by reducing (mod MW ). Using the properties of the Kronecker symbol we know
that for W ≡ 1 (mod 4) the following properties hold:(

W

det(·)

)
=

(
det(·)
W

)
,

(
det(·)
W

)
=

(
det(·)
|W |

)
.

Jones defines the Serre subgroup HMW
as the kernel of the following homomorphism [5],

HMW
= ker

((
W

det(·)

)
ε(·)
)
.

Notice that the preceeding identity implies that

HMW
= ker

((
det(·)
W

)
ε(·)
)
.

Observe that Kronecker symbol can be broken up into a product of Legendre symbols,(
det(·)
W

)
=
∏
p|W

(
det(·)
p

)
.

We now provide a proof by induction on the prime factors of W .
For W = ±p,

HMW
= ker

((
det(·)
p

)
ε(·)
)
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This implies that either
(

det(·)
p

)
= 1 and ε(·) = 1, or

(
det(·)
p

)
= −1 and ε(·) = −1.

Recall that E(2) is the kernel of ε(·) and E(p) is the kernel of
(

det(·)
p

)
, and the sets O(2) and

O(p) to be the respective cosets. We can express the Serre subgroup as the union of direct
products [6],

HMW
= (E(2)× E(p)) ∪ (O(2)×O(p)).

Similarly, the coset of HMW
is representable as

−HMW
= (E(2)×O(p)) ∪ (O(2)× E(p)).

Assume that this is possible for W ′. We now want to show this for W = pW ′.

HMW
= ker

((
det(·)
W

)
ε(·)
)

(
det(·)
W

)
=

(
det(·)
p

)(
det(·)
W ′

)
This implies that either

(
det(·)
p

)
= 1 and

(
det(·)
W ′

)
ε(·) = 1, or

(
det(·)
p

)
= −1 and

(
det(·)
W ′

)
ε(·) =

−1.
Observe that EW ′ = HMW ′

and OW ′ = −HMW ′
and that (p,W ′) = 1, which implies that

HMW
has the form

HMW
= (E(p)× E(W ′)) ∪ (O(p)×O(W ′)).

The case for W ≡ 1 (mod 4) is proved by induction.

Case 2: For W 6≡ 1 (mod 4)
We cannot use the same properties as for W ≡ 1 (mod 4), but we can use the following
properties: (

W

det(·)

)
=

(
−1

det(·)

)(
det(·)
W

)
,

(
det(·)
W

)
=

(
det(·)
|W |

)
.

Using the preceeding identity, we obtain

HMW
= ker

((
−1

det(·)

)(
det(·)
W

)
ε(·)
)
.

Again we can break up the Kronecker symbol into a product of Legendre symbols,(
det(·)
W

)
=
∏
p|W

(
det(·)
p

)
.

We now provide a proof by induction on the prime factors of W .
For W = ±p,

HMW
= ker

((
−1

det(·)

)(
det(·)
p

)
ε(·)
)
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This implies that either
(

det(·)
p

)
= 1 and

(
−1

det(·)

)
ε(·) = 1, or

(
det(·)
p

)
= −1 and

(
−1

det(·)

)
ε(·) =

−1.

Recall that the kernel of
(
−1

det(·)

)
ε(·) is the subgroup E(4), and we again define E(p) to be

the kernel of
(

det(·)
p

)
, and the sets O(4) and O(p) to be the respective cosets. We can express

the Serre subgroup as the union of direct products [6],

HMW
= (E(4)× E(p)) ∪ (O(4)×O(p)).

Similarly, the coset of HMW
is representable as

−HMW
= (E(4)×O(p)) ∪ (O(4)× E(p)).

Again, we assume that this is possible for W ′. We now want to show this for W = pW ′.

HMW
= ker

((
det(·)
W

)(
−1

det(·)

)
ε(·)
)

(
det(·)
W

)
=

(
det(·)
p

)(
det(·)
W ′

)
This implies that either

(
det(·)
p

)
= 1 and

(
det(·)
W ′

)(
−1

det(·)

)
ε(·) = 1, or

(
det(·)
p

)
= −1 and(

det(·)
W ′

)(
−1

det(·)

)
ε(·) = −1.

Observe that E(W ′) = HMW ′
and O(W ′) = −HMW ′

and that (p,W ′) = 1, which implies
that HMW

has the form

HMW
= (E(p)× E(W ′)) ∪ (O(p)×O(W ′)).

Hence, the case for W 6≡ 1 (mod 4) is proved by induction.

We introduce the notation (Eq)r, which means the subset of Eq of elements of trace r.
Similarly, we define E(q)r.
Using the Chinese remainder theorem, we see that the following identities hold for (s, t) = 1:

(Est)r = ((Es)r × (Et)r) ∪ ((Os)r × (Ot)r)

(Ost)r = ((Es)r × (Ot)r) ∪ ((Os)r × (Et)r)

E(st)r = (E(s)r × E(t)r) ∪ (O(s)r ×O(t)r)

O(st)r = (E(s)r ×O(t)r) ∪ (O(s)r × E(t)r)

We can see from these identites that the Serre subgroup can be expressed as union of
direct products of subgroups of even E(p) and odd O(p) trace r elements.
The cardinality of set of trace r elements in the Serre subgroup can then be expressed as

|(HMW
)r| =

{
|E(2)r||E(q)r|+ |O(2)r||O(q)r|, M = 2|W |
|E(4)r||E(q)r|+ |O(4)r||O(q)r|, M = 4|W |

.
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Observe that each |E(q)r| and |O(q)r| can be broken into a sum of products of its prime
counterparts |E(p)r| and |O(p)r| for each p|q by the previous identities.
The values of |E(p)r| and |O(p)r| for each prime p and trace r are given by the following
table [6]:

r ≡ 0 mod p r 6≡ 0 mod p(
−1
p

)
W > 0

|E(p)r| =
(

1
2

)
p(p2 − 2p+ 1)

|O(p)r| =
(

1
2

)
p(p2 − 1)

|E(p)r| =
(

1
2

)
p(p2 − p)

|O(p)r| =
(

1
2

)
p(p2 − p− 2)(

−1
p

)
W < 0

|E(p)r| =
(

1
2

)
p(p2 − 1)

|O(p)r| =
(

1
2

)
p(p2 − 2p+ 1)

|E(p)r| =
(

1
2

)
p(p2 − p− 2)

|O(p)r| =
(

1
2

)
p(p2 − p)

For the values of |E(4)r| and |O(4)r|, we refer to the following table:

r ≡ 0 mod 4 r ≡ 1 mod 4 r ≡ 2 mod 4 r ≡ 3 mod 4
|E(4)r| 12 8 20 8
|O(4)r| 20 8 12 8

The values in this table were found by inspection of the 96 elements of GL2(Z/4Z).

For the values of |E(2)r| and |O(2)r|, we refer to the following table:

r ≡ 0 mod 2 r ≡ 1 mod 2
|E(2)r| 1 2
|O(2)r| 3 0

The values in this table were found by inspection of the 6 elements of GL2(Z/2Z).
For a demonstation on how we use these tables to calculate the values of the trace r elements
in the Serre subgroup, consider the following example:

Example 1.
W = 15 = (5) · (3)

MW = 4|W | = 60

We now use the table and the identities to construct the number of elements in HMW
with

trace 0:

|E(5)0| = (1/2)5(52 − 2(5) + 1)

|O(5)0| = (1/2)5(52 − 1)

|E(3)0| = (1/2)3(32 − 1)

|O(3)0| = (1/2)3(32 − 2(3) + 1)

|E(4)0| = 20

|O(4)0| = 12
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|(HMW
)0| = |E(4)0|(|E(3)0||E(5)0|+|O(3)0||O(5)0|)+|O(4)0|(|E(3)0||O(5)0|+|O(3)0||E(5)0|)

Substituting in the correct values for 3 and 5, we obtain:

|(HMW
)0| = 29280

For example, when we consider the case where W = ±p, where p is an odd prime, we
write out the explicit values of the trace r elements as functions of p:

For W ≡ 1 (mod 4)
2|r 2 - r

W > 0 p|r p(2p2 − 3p+ 1) p(p2 − p)
p - r p(2p2 − 2p− 1) p(p2 − p− 2)

W < 0 p|r p(2p2 − p− 1) p(p2 − 2p+ 1)
p - r p(2p2 − 2p− 3) p(p2 − p)

For W ≡ 3 (mod 4)
r ≡ 0 mod 4 r ≡ 2 mod 4 2 - r

W > 0 p|r 4p(4p2 − 3p− 1) 4p(4p2 − 5p+ 1) 4p(2p2 − 2p)
p - r 4p(4p2 − 4p− 5) 4p(4p2 − 4p− 3) 4p(2p2 − 2p− 2)

W < 0 p|r 4p(4p2 − 5p+ 1) 4p(4p2 − 3p− 1) 4p(2p2 − 2p)
p - r 4p(4p2 − 4p− 3) 4p(4p2 − 4p− 5) 4p(2p2 − 2p− 2)

8 Calculation of the Irrational Constant

The Lang-Trotter conjecture deals with an infinite product:

C1 =
∏
p

p3 − p2 − p
(p2 − 1)(p− 1)

To evaluate this product, we must consider a more general form Cs and take limits as
s −→ 1+ at the appropriate time.

Cs =
∏
p

p3s − p2s − ps

(p2s − 1)(ps − 1)

We recall that the Riemann zeta function has the Euler product expansion ζ(s) =
∏

p (1− 1/ps)−1.
We factor out a ζ(s)ζ(2s) and rewrite to obtain:

Cs = ζ(s)ζ(2s)
∏
p

p−2s(p2s − ps + 1) = ζ(s)ζ(2s)
∏
p

p−2s(ps − α)(ps − ᾱ) =
∏
p

(
1− α

ps

)(
1− ᾱ

ps

)
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where α = 1+
√

5
2

and ᾱ = 1−
√

5
2

.
This implies that we can now focus on the product

S(s) =
∏

p prime

(
1− α

ps

)−1

for α ∈ C. Multiplying by ζ(s)α

ζ(s)α
, we obtain the identity:

S(s) = ζ(s)α
∏
p

(1− 1
ps

)α

(1− α
ps

)

S(s) = ζ(s)α exp
∑
p

(
α log

(
1− 1

ps

)
− log

(
1− α

ps

))

= ζ(s)α exp

(∑
p

∑
k≥2

αk

kpsk
− α

kpsk

)

(the term in k = 1 vanishing). Thus, the inner sum is absolutely convergent even for s = 1.
Since α + ᾱ = 1 it follows that

lim
s→1+

S(s)S̄(s)

ζ(s)
= exp

(∑
p

∑
k≥2

αk − α
kpk

)
exp

(∑
p

∑
k≥2

ᾱk − ᾱ
kpk

)

= exp

(∑
k≥2

αk − α
k

∑
p

1

pk

)
exp

(∑
k≥2

ᾱk − ᾱ
k

∑
p

1

pk

)

For a fixed k, we can now compute
∑

p 1/pk to high accuracy via the identity

∑
p

1

pk
=
∑
l

(
µ(l)

l

)
log(ζ(kl))

For large k, ∑
p

1

pk
' 1

2k

9 Error Analysis

gα =
∞∑
k≥2

αk − α
k

∞∑
n≥1

(
µ(n)

n

)
log ζ(kn)
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We will first find the truncation error of the series when the series is evaluated for terms up
to K − 1. To do this, consider the following:

{Error} =
∞∑
k≥K

αk − α
k

∞∑
n≥1

(
µ(n)

n

)
log ζ(kn)

For large K,
∞∑
n≥1

(
µ(n)

n

)
log ζ(kn) ∼ 2−k

Using this identity, we can say that:

{Error} ∼
∞∑
k≥K

αk − α
k

2−k

This series can be split into two sums:

{Error} ∼
∞∑
k≥K

(α
2

)k 1

k
− α

∞∑
k≥K

(
1

2

)k
1

k

Recall the Taylor series for − log(1− x):

− log(1− x) =
∞∑
i=1

xk

k

Since these two series can be identified as Taylor series, we can use the integral form for the
remainder of a Talyor polynomial to find a bound on the error:

Rn =

∫ α/2

0

f (K+1)(t)

K!

(α
2
− t
)K

dt

We can find the K + 1-th derivative and substitute it into the integral:

Rn =

∫ α/2

0

(1− t)−K−1
(α

2
− t
)K

dt

This function is concave up on the interval, so we can approximate the integral with a
trapezoid. For the integrand g:

Rn ≤
g(0) + g(α/2)

2

(α
2

)
=

(α/2)K + 0

2

(α
2

)
=

1

2

(α
2

)K+1

Similarly, for the other series found in the error term:

R′n ≤
(

1

2

)K+2

15



From these bounds on the truncated terms in the Taylor polynomial, we can use these to
find a bound on the error of the truncation.

{Error} ∼
∞∑
k≥K

(α
2

)k 1

k
− α

∞∑
k≥K

(
1

2

)k
1

k
≤ 1

2

(α
2

)K+1

− α

2

(
1

2

)K+1

Therefore, for a partial sum of K terms, the truncation error is bounded by:

{Error}K ≤
1

2

(α
2

)K+1

− α

2

(
1

2

)K+1

The round-off error can be measured by observing that we lose one significant digit per
computated addition, and the constant was calculated using about log2(K) additions.
We observe that for K = 214:

1

2

(α
2

)214+1

− α

2

(
1

2

)214+1

∼ 10−1508

which implies that the partial sum should be accurate for about 1508 digits. Combined with
the round-off error:

1508− log2(214) = 1494

The value obtained for gα calculated using this method for K = 214 is accurate to about 1494
digits. gᾱ has the same number of significant digits. This error propagates to the constant
C1 as follows:

e(gα+ε) ' egα(1 + ε)

egα(1 + εα)egᾱ(1 + εᾱ) ' egαegᾱ(1 + εα + εᾱ)

since εαεᾱ is insignificant.

C1 + εC1 =
ζ(2)

egαegᾱ(1 + εα + εᾱ)
' ζ(2)

egαegᾱ
(1− εα − εᾱ)

since (1 + ε)−1 ' (1 − ε) for small ε. Therefore, the error in the constant C1 is on the
order of:

{Error}C1
∼ C1(εα + εᾱ)

The value of εα + εᾱ is about 2× 10−1494.
We have computed C1 = 0.61513265731817180255072..., so the error of the constant is:
∼ 1.230 × 10−1494 < 10−1493 This implies the evaluation of the the constant C1 is accurate
to at least 1493 digits.
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10 Calculation of the Error Terms aq(E)

Recall, the error term
aq(E) = q + 1−#E(F).

After calculating the constants for known Serre curves, we calculate aq(E) for each curve to
observe the asymptotic behavior conjectured by Lang and Trotter. For each calculation, we
vary r from -100 to 100 and record

#{q < X : aq(E) = r}
√
X

logX

.

We check to see if the data appear to be converging to CE,r at X = 179, 424, 673, X =
573, 259, 392, and X = 1, 086, 218, 491.
To compute the terms, we use the Pari/GP computer algebra system [10], which has a specific
function for such computations. Depending on the size of q, this function implements either
a sum of Legendre symbols (recommended q < 457) or the Mestre-Shanks algorithm (useful
for larger q).
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A Appendix

A.1 Table of Serre Curves

In the following table, each curve is in the form

E : y2 = x3 + Ax+B

and we use the following notation:

• ∆sf is the square free part of the discriminant

• M∆sf
is the Serre number as defined by Jones [5, p. 13]

• N is the conductor of E

A B ∆sf M∆sf
N

6 -2 -3 6 5184
-4 4 -11 22 16
32 212 35 140 140
32 16 -11 22 77

-16 16 37 74 37
-1971 64206 -593 2372 593
-3024 70416 -19 38 57
-1539 33534 -29 116 58
-2619 54486 -61 244 61

-15984 -778032 -67 134 67
-2619 47574 79 316 79
1269 -10746 -83 166 83
1296 11664 -91 182 91

-1323 28134 -89 356 89
-1728 -15984 101 202 101

-10611 -421362 -109 436 109
-10395 31158 -57 228 114

3213 1998 -61 244 122
864 -22896 -123 246 123
864 23760 -131 262 131

-4563 -121554 -139 278 139
-1728 -7344 141 282 141
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A.2 Irrational Constant to 1497 digits

The following is the first 1497 digits of the irrational constant C1:

.6151326573 1817180255 0725664929 1924616780 1694045261 2777657497
0417137754 9363232728 8665159438 7019482560 5683292134 4487523490
9443054903 2861278864 2253427305 7811388828 3278554499 8368417981
7773333532 5517905266 0096208354 5685190641 8746757760 1330439071
5958784234 7191508537 0461632051 4833584473 9834454169 1397668436
2554288109 6111873990 8932045465 9513426971 6408031796 4050480479
3069354324 2137846053 2405104623 7835141036 4216245597 5855110892
7369688274 0130080179 9177798856 1918105047 8419738048 6241890023
3543598671 8894134152 1595784508 3476232304 1554376423 3659562835
7683634224 3755876233 1110566365 3444037845 7993200373 0003108773
7539978354 3304848332 0269075097 1880853418 6553312086 8801927623
2962571989 9403602645 7732803456 2597037562 1316140512 8450158164
6456186163 5336741652 5484465777 6001963817 0231859609 7788784521
6087904638 8273252166 5143157813 3376502412 5390779805 2758122660
7251855404 5330883029 4632588162 8514307855 3051482611 0156025144
2837298559 0950600888 0758151177 0309664301 5722122532 4263865388
5929727109 5885416080 9617695293 8182645368 3308819512 3935743476
8240483500 0703029897 2435666442 7384733290 6310841559 5609990290
0611162667 7878846952 9911520184 9109349129 5727107847 6607579240
9335728804 5445811125 3179804023 5080615706 8540846101 1823134335
4566830845 1847518255 0374546226 3168345527 2016817554 8277372520
1584930757 2660033170 6579655667 9018235057 0829977915 5891114089
3931124171 3638605739 7019088093 4363418995 9076895211 2696524424
0999123168 2313342366 6087798970 4685007221 1769425869 0703975059
0891037261 1678494990 4673236254 7083824470 4047874762 154(5178)
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