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Abstract. In this paper, we use the Sprague-Grundy theorem to
analyze modified versions of Nim played on various graphs. We also
describe the periodic behavior of the Sprague-Grundy numbers for
games played on paths, triangle paths, and caterpillars. A brief
hueristic analysis of the distribution of Sprauge-Grundy numbers
for Nim played on trees and graphs of order n are discussed. This
research was completed during the Clemson University Math REU
which was funded by the NSF1.

1. Introduction

A game in which both players have the same set of possible move-
ments in game play is called impartial. On the other hand, a partizan
game is whose players are limited to movements that their opponents
cannot take. The game of checkers is partizan because the players are
restricted to moving a single color piece. Nim is a simple two player
game in which players take turns removing rocks from disjoint piles
until there are no rocks remaining. The player to pick up the last rock
(or group of rocks) is the winner. The game of Nim is impartial.

Nim played on graphs has previously been analyzed by Fukuyama
[5], who adapted a graphical representation of the traditional Nim game
played with piles of rocks. The piles of rocks in Fukuyama’s Nim on
Graphs are represented with vertices and the edges of the graphs are
labelled with the number of rocks in each pile. An example of Nim on
piles is shown below.
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The corresponding graph would be:
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∆

A player’s move begins at the vertex labelled ∆. The players alter-
nate travelling vertex to vertex, decreasing the number on the label of
each edge they pass along the way. The significance of decreasing the
label on the edge is equivalent to removing rocks in a pile. A player
loses when he is at a vertex that is connected to all edges labeled with
zeroes (as demonstrated below).

0

0

1

2

∆

We will discuss the new version created by Michael Albert (and com-
municated to us by Neil Calkin) where players take turns removing
edges from vertices in graphs instead of rocks from piles.

The object of Graph Nim is to be the person to remove the last set
of edges from a given graph. Instead of removing rocks from disjoint
piles, a player can remove edges that are incident to a given vertex. The
number of edges incident to a given vertex is said to be the degree of the
vertex; hence, the maximum number of edges that can be removed in
a player’s turn is equal to the degree of a specific vertex. For example,
if a vertex has degree 4, a player can remove 1, 2, 3, or all 4 edges from
that vertex.

When analyzing Graph Nim, it is not long before we notice that
certain graphs are winning (or losing) graphs for Player 1. An impartial
game consists of N-positions and P-positions. An N-position is defined
to be a position where the Next player to move will win the game.
Similarly, a P-position is a winning position for the Previous player.
When a game has reached a point where no player is able to move,
the game is said to be in terminal position. In the case with Nim, the
terminal position is the position in which there are no rocks left to pick
up. A terminal position is a P-position.

One method for determining who wins an impartial game is analyzing
N-positions and P-positions, but another method involves utilizing the
Sprague-Grundy Theorem. A winning strategy for traditional Nim has

2



already been discovered [1] and we hope to expand the concept with
the new versions of the game we introduced.

2. Graph Theory Background

Here we provide a few definitions of some of the basic concepts of
graph theory. In the sections that discuss Graph-Nim played on spe-
cific types of graphs, we will provide some more specific definitions.

Definition. A graph G is an order pair (V,E) comprising of a set V of
vertices and a set E of edges between the vertices, with E ⊆ V × V . A
simple graph is a graph in which an edge may only connect two distinct
vertices and in which two vertices may only be connected by a single
edge. A multi-graph is a graph which allows multiple edges between
(not necessarily distinct) vertices. Unless otherwise stated, we will be
working with simple graphs.

Definition. We call the number of vertices of a graph G, the order of
G. We typically use the letter n to denote the order of a graph.

Definition. We call the number of edges of a graph G, the size of G.
We typically use the letter m to denote the size of a graph. We also
write e(G) to denote the size of G.

Definition. A labeled graph is a graph in which each vertex is assigned
with a label, typically the integers 1 through n. An unlabeled graph is a
graph whose vertices have no identifications except through their inter-
connectivity. Unless otherwise stated, we will be working with unlabeled
graphs.

Definition. A graph isomorphism between two graphs G = (VG, EG)
and H = (VH , EH) is a function φ : VG → VH s.t. (φ(vi), φ(vj)) ∈
EH ⇐⇒ (vi, vj) ∈ EG. More intuitively, two labeled graphs G and H
are isomorphic if they have the same “graph structure.”

Definition. An isomorphism class of of a labeled graph G is the col-
lection of all labeled graphs which are isomorphic to G.

3. Sprague-Grundy

3.1. Sprague-Grundy Function.

Definition. A follower is a position a player can obtain in one move
in a game.

Definition. Given a finite set of integers S, x is the minimum excluded
value if it is the smallest non-negative integer such that x /∈ S.
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For example, for the set K = {0, 1, 3, 5, 6, 7} the mex is 2.
Let F (x) denote the followers of a given position x. The Sprague-

Grundy function, g(x), is defined as

g(x) = mex {g(y) : y ∈ F (x)} [4].

For the traditional game of Nim, the winning strategy is to finish
every move leaving the game’s Sprague-Grundy value at zero because
of the following theorem.

Theorem. A position in Nim is a P-position if and only if the nim-sum
of its components is zero.

It follows from the definition of the Sprague-Grundy function that
once a player is given a position in a game with a Sprague-Grundy
number equal to zero, then any move that player makes will change
the value of the game to some non-zero Sprague-Grundy number. It is
also known that a player can force a Sprague-Grundy value of zero onto
the next player only if the player was not handed a Sprague-Grundy
value of zero at the beginning of their turn.

Sprague-Grundy function values are helpful when analyzing Nim
played on graphs. The Sprague-Grundy theorem explains the reason
why we take interest in computing Sprague-Grundy numbers.

3.2. Sprague-Grundy Theorem.

Theorem. The Sprague-Grundy value of a game consisting of many
disjoint games is the nim-sum of the Sprague-Grundy values of those
components.

Note that Sprague-Grundy will now be denoted by S-G. In the case
of traditional Nim, the S-G number of the entire game is the addition
of each pile’s S-G number. In other words, we can consider each pile as
a distinct game with its own S-G number. To calculate a nim-sum with
traditional Nim, we first must realize that the S-G number for a pile of
rocks is simply the number of rocks in the pile (this is trivial). We then
take the S-G numbers from all piles and convert them to binary. The
nim-sum is then found by the addition of all converted S-G numbers
mod 2.

For example, in a game with two piles below,
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we take the number of rocks in each pile, 5 and 3, and convert to bi-
nary. We then have the nim-sum below.

1 0 1 = 5
+ 1 1 = 3

1 1 0 = 6

Thus, since the S-G number for this game is greater than zero, player
one has a winning strategy.

With the nim sum calculated for a given game, it is possible for a
player to determine whether a game win is achievable. We know that
a game with a nim-sum of zero is in P-position. Otherwise, if the nim-
sum is non-zero, the game is in N-position. So in order for a player to
win a game of Nim from an N-position, he should remove enough rocks
to force the nim-sum to zero.

The strategy for forcing a nim-sum to zero is as follows:

(1) Find the left most 1 in the calculated sum. Let’s call the column
you find this 1 in k.

(2) From that 1, trace up the column until you find a 1. Note that
the row you found this 1 in will be the only row to be modified,
let’s call it r.

(3) Change the 1 is row r column k to a 0.
(4) We then manipulate the 1’s and 0’s in the same row we changed

in the last step so that each column’s nim-sum is zero.
(5) We continue this process until all 1’s in the original nim-sum

are 0’s.
(6) Subtract the value of the altered form of row r from the orginial

value of row r to determine the winning move. The difference in
the rows will be the number of rocks you need to remove from
the pile represented by row r.

Let’s denomstrate how this strategy works. Take into consideration
the game played on two piles mentioned earlier. The nim-sum we
calculated was:

1 0 1
+ 1 1

1 1 0
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Step 1:

1 0 1
+ 1 1

1 1 0

Step 2:

1 0 1
+ 1 1

1 1 0

Step 3:

0 0 1
+ 1 1

0 1 0

Step 4:

0 1 1
+ 1 1

0 0 0

Since 5 − 3 = 2, we remove 2 rocks from the pile represented in the
first row. Since the next player will have no choice but to change the
nim-sum to a non-zero value, we know that we are able to force the
nim-sum to zero again. We continue this pattern until the game is
won.

4. Graph Nim on Paths

4.1. Simple Paths.

Definition. A path with n edges, denoted Pn, is a tree with two ver-
tices of degree one and all other vertices of degree two.

An example of P5 is shown below.

When playing Path Nim, we consider disjoint paths instead of dis-
joint piles of rocks. A move is made by by removing either one edge,
or two edges connected to the same vertex. The illustrations below
should clarify the movements allowable on a path.

From P5, we take away one edge to create two disjoint paths P1 and P3.
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Also from P5, we can take away two edges creating disjoint paths P1

and P2.

We can also take away one edge, therefore creating two paths of equal
length. Creating two paths of equal length turns out to be the winning
strategy for Player 1.

By creating two paths of equal length, we force each path to have
the same Sprauge-Grundy number. It is easy to see that when we nim-
sum two equal numbers, we get zero. Therefore, if we are faced with
P2c, where c ∈ Z+, we know we need to remove the two inner edges
incident with the center vertex. Similarly, if we are faced with P2c+1,
we only need to remove the center edge. Therefore, since we know that
Player 1 can always force the nim-sum to zero at the end of their turn,
paths can always be won by Player 1. Since graph circuits are simply
paths where the begining vertex is also the terminating vertex, the first
movement would result in a path; hence, Player 2 wins Nim played on
graph circuits.

With paths, the Sprague-Grundy numbers are as follows:

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 1 4 3 2 1 4 2 6
12 4 1 2 7 1 4 3 2 1 4 6 7
24 4 1 2 8 5 4 7 2 1 8 6 7
36 4 1 2 3 1 4 7 2 1 8 2 7
48 4 1 2 8 1 4 7 2 1 4 2 7
60 4 1 2 8 1 4 7 2 1 8 6 7
72 4 1 2 8 1 4 7 2 1 8 2 7

The column labels 0−11 represent the least residues of the congruence
l(mod12). The row labels represent the length of path in intervals of
12.
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We notice that, due to the periodic behavior that occurs, a path of
length greater than 72 has an easily computable S-G number. Say that
we have a path of length l, where l ≥ 72, we can use modular arith-
metic to calculate its S-G number. For example, for l = 87, we have

87 ≡ 3 mod 12⇒ g(87) = 8.

The difficulty with computing S-G numbers for paths of length less
than 72 is that there are multiple exceptions before the S-G numbers
become settle down and become periodic. Luckily, we were able to
verify our S-G numbers because our game on path is similar to the
game of Kayles [4]. Kayles is a game in which expert bowlers are
capable of removing one or two adjacent pins in a line of pins. It does
not require much convincing to see that Kayles requires the same S-G
function as Path Nim and therefore their S-G values are the same.

4.2. Multi-edge Paths.

Definition. A multi-edge path is a path in which there can be multiple
edges between two adjacent vertices. More specifically, the multi-edge
that we refer to, the maximum number of edges between those vertices
is two.

An illustration of the definition is below.

Specifically, we examined multi-edge paths where the greatest degree
of a given vertex is three. Understandably, calculating S-G numbers
became very complex and as we added edges the computation times
grew at a tremendous rate. For the sake of our sanity and progress,
this part of our research was put on hold indefinitely. However, from
the data that we collected, it appears that the S-G numbers for simple
cases were periodic.

5. Caterpillar Nim

Definition. A caterpillar, Cn, is defined as a path consisting of n edges
with one or more edges appended to k vertices of the path, k ≥ 1. Any
vertex not in the path has degree one and distance one from the main
path.
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Definition. A caterpillar, Cn,k is defined as a caterpillar of length n,
where n is the number of edges, and consisting of one extra edge (or a
leg) on index k, where the leftmost vertex is index zero.

Note that Cn,0 and Cn,n are equivalent to Pn+1.
The gameplay of nim on caterpillars is similar to that on paths. Since

there are legs attached to the main path, there are more possible moves
available to a player. For example, consider C5,2 shown below:

All moves available to a player on a path of length five are also avail-
able on this caterpillar (though with different results). In addition, the
following four moves are also available for each extra edge:

Removing all three edges connected at index 2, we get P2 and P1:

Removing the left edge and the appended edge connected to index
2, we get P1 and P3:

Removing the right edge and the appended edge connected to index
2, we get two copies of P2:
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Removing only the appended edge from index 2, we get P5:

We want to compute the S-G number for a caterpillar with one ap-
pended edge. Consider the simplest caterpillar C2,1:

We can obtain the following graphs in one move:

g(P2) = 2 g(P2) = 2 g(P1) = 2

g(P1) = 1 g(P1) = 1 g(P2) = 2

g(P0) = 0

We see that the set of S-G values is {0, 1, 2} because the resulting
moves consists only of the empty graph and paths of lengths one and
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two. Taking the mex of this set, we conclude that the S-G number of
C2,1 is 3.

We can continue to analyze caterpillars in this way, obtaining the
following S-G numbers for caterpillars of length three:

g(C3,0) = 1 g(C3,1) = 4

g(C3,2) = 4 gC3,3) = 1

To further understand this process, we can look at a few followers of
C4,1:

By removing the left most edge from this caterpillar, we obtain the
following graph and corresponding S-G number:

g(C3,0) = g(P4) = 1

Another interesting follower results when we remove the 3rd edge
from the caterpillar:

g(C2,1) = 3 P1 = 1

To get the S-G number of this, we must nim-sum 3 and 1. From this
nim-sum we obtain 2, which is the S-G number of this follower.

It will be left to the reader to show that the set of the followers’ S-G
numbers for C4,1 is {0, 1, 2, 3, 4}. With this set, the reader can see that
the minimal excluded value is 5, thus the S-G number of C4,1 is 5.
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We can see that a natural algorithm forms for computing the S-G
numbers of caterpillars.

We first developed an algorithm specifically for caterpillars with only
one extra edge.

Given a caterpillar of length n, we begin with the extra edge ap-
pended to index zero. We first compile a list of the S-G numbers of
all possible graphs obtainable in one move, as in the example above.
From this list, we find the minimal excluded value (mex), which is the
S-G number of Cn,0. We then move the extra edge to the next index
and compute the S-G number of Cn,1 using the same algorithm. This
process is repeated to find the S-G numbers for all caterpillars Cn,k up
to Cn,n. See Appendix B, 14.1 for more details.

This algorithm allowed the S-G numbers to be computed for much
longer caterpillars. S-G numbers were computed for these caterpillars
up to length 4000.

As with the case of paths, if we fix the index of the extra edge, as we
increase the length of the main path the S-G numbers of caterpillars
become perodic. Thus far, the S-G numbers of caterpillars with one
leg eventually have a period of 12 or 60.

The following charts show the periods for two caterpillars that are
mod 12. Each table is for a caterpillar Cn,k where k remains constant as
n changes. For each given position, n is the sum of the corresponding
numbers in the first row and first column. The *’s denote a length n,
such that the index k is out of range.
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Table for Cn,1

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ 2 3 4 5 6 2 1 0 8 6 0
12 1 2 3 8 5 12 7 1 0 8 9 14
24 1 2 3 11 4 7 12 14 0 16 2 4
36 12 2 3 10 4 7 15 1 16 9 18 16
48 12 2 3 10 16 7 12 1 16 18 11 16
60 12 2 22 11 16 7 12 1 20 24 16 26
72 12 13 22 11 16 24 15 14 16 22 19 16
84 12 13 19 11 16 24 15 14 16 25 11 16
96 12 13 22 11 16 7 15 1 20 25 19 11
108 12 13 22 11 32 19 22 14 20 22 19 11
120 12 13 22 11 25 19 22 14 16 22 19 11
132 21 13 22 11 25 19 22 14 21 25 19 11
144 21 13 22 11 25 19 22 14 20 22 19 11
156 21 13 22 11 25 19 22 14 21 22 19 11

Table for Cn,15

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ 1 5 7 6 8 15 13 8 4
24 1 8 7 13 1 7 2 1 4 14 7 4
36 1 11 8 13 4 21 2 8 18 19 7 4
48 1 8 21 1 4 7 6 8 1 2 7 4
60 5 8 2 1 4 7 8 16 1 14 7 4
72 1 16 2 13 4 7 22 8 1 2 7 4
84 1 24 2 1 4 7 8 19 1 2 7 4
96 1 24 2 1 4 7 8 24 1 2 7 4
108 1 16 2 1 4 7 2 8 1 2 7 4

While both of these periods start at lengths less than 200, it is im-
portant to note that this is not always the case. For example, when
the edge is appended at index 8 the S-G numbers of the caterpillars
also have a period of 12, but this period does not begin until length 444.

Caterpillars with periods of 60 include:

Index 7 with period: 5, 12, 18, 27, 17, 24, 6, 15, 10, 37, 41, 29, 5, 12,
18, 27, 17, 29, 6, 15, 10, 27, 41, 30, 5, 12, 18, 27, 17, 29, 6, 15, 10, 37,
41, 30, 5, 12, 18, 27, 17, 29, 6, 15, 10, 37, 41, 29, 5, 12, 18, 27, 17, 24,
6, 15, 10, 37, 41, 29
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Index 12 with period: 22, 14, 28, 1, 4, 11, 25, 12, 28, 21, 7, 8, 22, 14, 28,
1, 4, 11, 25, 12, 28, 21, 7, 8, 22, 14, 25, 1, 4, 11, 25, 12, 28, 21, 7, 8, 22,
14, 28, 1, 4, 11, 25, 12, 28, 21, 7, 8, 22, 14, 28, 1, 4, 11, 25, 12, 31, 21, 7, 8

See Appendix C for more periods of Cn,k.
Another interesting period of 12 appears in caterpillars C2k,k. By

increasing k, we see the following period:

Table for C2k,k

0 1 2 3 4 5 6 7 8 9 10 11
0 0 3 5 2 3 3 4 3 4 2 4 3
12 4 2 4 2 5 3 4 3 4 2 4 4
24 5 2 4 2 4 7 4 7 4 2 18 3
36 5 2 10 16 4 3 5 7 5 13 13 3
48 5 2 4 7 13 7 5 13 4 2 11 3
60 5 2 11 7 13 3 16 19 4 8 25 3
72 4 2 11 7 18 11 5 7 19 13 14 7
84 29 13 10 7 8 11 5 9 18 13 11 7
96 16 2 11 8 8 11 5 18 19 13 5 7
108 19 2 11 7 19 7 11 13 19 13 5 7
120 16 2 11 7 19 7 5 13 29 13 5 7
132 31 2 11 7 8 7 5 13 19 13 5 7
144 28 2 11 7 21 7 5 13 22 13 5 7
156 21 2 11 7 21 7 5 13 35 13 5 7
168 22 2 11 7 21 7 5 13 29 13 5 7
180 28 2 11 7 21 7 5 13 22 13 5 7
192 28 2 11 7 21 7 5 13 22 13 5 7
204 22 2 11 7 21 7 5 13 29 13 5 7
216 22 2 11 7 21 7 5 13 22 13 5 7

This period is particularly interesting due to the fact that the ex-
tra leg is not remaing at the same index for each caterpillar, rather it
changes as the length of the caterpillar changes.

This code for caterpillars with one extra leg was expanded to cater-
pillars with two extra legs. The following is an example of a two-legged
caterpillar, denoted Cn,(x,y) where n is the length of the caterpillar and
x and y are the indices where the extra edges are appended:
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C2,(1,3)

The algorithm for finding these S-G numbers can be generalized to
any caterpillar of length n with extra edges appended to indices k0, k2,
..., km, 0 ≤ m ≤ n.

6. Tri-Paths

Definition. A triangle-path (which we will refer to as “tri-path”) can
be defined as a path with two verticies exactly one vertex apart connected
to one another by an edge. Alternatively, we can define a tri-path as a
path in which two adjacent vertices on a path are connected to a single
point off of the path.

For example on P11 with verticies labeled 0-12 a tri-path could be
made by connecting vertices 6 and 8 with an additional line.

c

a

b

de
f

The above graphs both represent the same tri-path. The name “tri-
path” stems from the second drawing, where all edges are the same
length.

On a tri-path, a player can use one move to create

(1) A single path, by removing edge ‘c’
(2) Two paths, by removing ‘b’ and ‘c’
(3) A path and a one-legged caterpillar, by removing ‘c’ and ‘d’
(4) A path and a tri-path, by removing ‘e’
(5) A one-legged caterpillar by removing ‘a’
(6) a tri-path by removing ‘f’

Other moves can be made resulting in different one-legged caterpil-
lars, paths, and tri-paths, but no other types of follower graphs may be
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produced. A tri-path will be denoted as T(m,n). m is the total length of
the upper and lower paths when the tri-path is drawn as in the second
graph above (this includes all edges except those that form the trian-
gle), and n is the length of the upper path. We fix the upper path to
be shorter than the lower path, to avoid isomorphism. For example,
a simple triangle would be T(0,0),the graph above would be T(10,4), and
T(10,6) would represent the same tri-path, so it would not be considered.

If a move is made on a tri-path and another tri-path is formed, m
must decrease, because for the triangle to remain we must remove edges
from either the upper or the lower path. Because of this, our program
(with data for paths and one-legged caterpillars already present) begins
at m = 0 and calculates S-G values for any m based on data for tri-
paths with smaller m.

A limitation encountered in calculating these values is the amount of
data that can be stored and processed. In the calculation of S-G values
for a set of tri-paths length m, every tri-path, one-legged caterpillar,
and path of length m and lower is accessed at least once. Because
of memory limitations, a maximum of 12 megabytes was accessable
resulting in a limit of roughly length 1000. Fortunately, this is long
enough to reach some interesting conclusions

For the data we have analyzed, tri-paths of a fixed n tend to have
patterns of period 12, 36, or 60, keeping consistent to the periods of
12k we saw in one-legged caterpillars. A pattern was also noted in ”A
graphs”, graphs where n = m/2 (i.e. graphs that look like a capital
A).

Unlike one-legged caterpillars, some of these patterns include losing
graphs (a S-G value of 0). This ensures an infinite amount of losing
graphs, which represent 3.285% of the first 250,500 graphs (all graphs
from m = 0 to m = 999). Larger S-G values are also found in tri-paths
compared to one-legged caterpillars, the largest being 80. Because the
S-G value 80 is first detected at m = 397 and no larger value is found
through 1000, it is possible that 80 is the upper bound on S-G values
for tri-paths.

7. Distribution of S-G numbers for one-legged
caterpillars

Regarding one-legged caterpillars, not all S-G numbers are distributed
equally. In fact, while the overall trend is that higher numbers are less
common, the chart in Appendix D, 16.1 seems to indicate a very un-
predictable distribution.
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However, there is a remarkably easy way to classify S-G numbers.
We can place all S-G numbers into two categories.

Definition. If a number has an odd amount of 1’s in its binary expan-
sion, we call the number odious. Conversely, if a number has an even
amount of 1’s in its expansion, we call the number evil.

While odious numbers are no more common than evil numbers, the
odious S-G numbers represent slightly more than 93 percent of all one-
legged caterpillars (see Appendix D, 16.2). We hypothesize that the
dominance of odious numbers is due to two key phenomena:

Firstly, in early graphs, moves that split the graph into two paths
make up a significant proportion of all moves (up to 8). Because paths
(with only 10 exceptions, because the mod-12 pattern contains only
odious numbers) are odious, and two odious numbers always nim-sum
to an evil number (this can be proven easily), more evil follower graphs
are produced in this way than odious. Assume for the time being that
dividing the one-legged caterpillar into a shorter one-legged caterpillar
and a path produces no more odious follower graphs than evil follower
graphs (this can be proven true given that evil one-legged caterpillars
are no more common than odious ones). If the set from which we
select the mex thus has a majority of evil numbers in (most) one-
legged caterpillars, the mex is likely to be odious. Because of this,
even if odious numbers have no immediate majority, one is sure to
develop. Note that because the largest nim-sum of two paths is 15,
this argument is only valid for lower S-G numbers.

Secondly, the vast majority of moves, especially on large one-legged
caterpillar, result in two separate graphs, where one is a path and the
other is another one-legged caterpillar. Note that when the S-G val-
ues of these graphs are added, two odious numbers nim-sum to an
evil number, while odious and evil nim-sums to odious. If we note
an early majority in odious one-legged caterpillars as the former argu-
ment would suggest, then we know that we should have more cases of
odious (path) plus odious (one-legged caterpillar) than odious (path)
plus evil (one-legged caterpillar) in our follower graphs. Because odi-
ous+odious=evil, while odious+evil=odious this further increases the
majority of evil S-G numbers in our follower set, and thus further in-
creases the proportion of odious one-legged caterpillars. Note that this
argument is only valid given an initial majority of odious one-legged
caterpillars.

An easy way to visualize argument 2 is to take an odious number
we know to be common, 14 for instance. We can nim-sum 14 with the
odious path S-G numbers to reach 6, 9, 10, 12, and 15. Because 14 is
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common in one-legged caterpillars, the odious path numbers are very
common, a graph consisting of one of each is a common (evil) follower
graph. Because these follower graphs have evil S-G numbers, we expect
these evil S-G numbers to be uncommon in one-legged caterpillars (if
they appear in the follower set often, they will rarely be the mex).
The numbers that are not steamrolled by this argument are the odious
numbers, which logically “pick up the slack” for their odious bretheren.
Their ubiquity is reinforced by the fact that follower graphs with their
S-G number are almost always evil one-legged caterpillar+odious path,
and we know that evil one-legged caterpillars are rare.

The 5 odious path S-G numbers can nim-sum with exactly 5 other
numbers to reach any given value n. We hypothesize that the rarity
or ubiquity of an S-G number is inversely proportional to the rarity or
ubiquity of these 5 numbers. Because for odious n, these 5 numbers
are always evil and vice versa, we expect that a majority in a single
odious number (or rarity in an evil number) will translate to a rarity
in those 5 evil number (or ubiquity in those 5 odious numbers). In
many cases, however, these 5 evil numbers nim-sum (with the 5 paths)
to fewer odious numbers than the 5 × 5 = 25 one might expect. For
example, nim-summing the evil numbers of 4 digits and fewer with
odious paths can only produce the odious numbers of 4 digits and
fewer. For this reason a proof of the ubiquity of odious S-G numbers
1-14 does not translate convincingly to odious numbers 16-31. Looking
back to our two previous arguments, the former clearly only applies
to 1-15 and the latter is dependant on the majority generated by the
former! Prooving that odious numbers 16-31 too are more common
than their evil brethren is a subject of active research.

Because our second argument requires only that one odious number
be proven common, we can show that a single odious number is common
and thereby explain a trend in many following numbers. We can prove
32 is common by the argument that because it is the lowest 6 digit
number, no combination of lesser S-G numbers can nim-sum to it.
Furthermore, the 5 evil numbers that nim-sum to 32 can be proven
to be rare because 32 is reached before them (it must, because for a
higher S-G number to be present it must have a follower graph of S-G
32 which must involve 32 itself or yet another > 32 S-G one-legged
caterpillar and a path). If 32 is common (at least early on, because
it is reached first) and can nim-sum with a common odious path to
form these evil S-G numbers, then they must be rare. From the rarity
of these evil numbers, we can show that other odious numbers below
48 should be common (they are) and from these that the other evil
numbers below 48 should be rare (they are).
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Unusually, but perhaps predictably, we can show that 48 is common
in the same way. The two 1’s in 48 are unreachable by paths (paths can
have 1’s in up to the ’8’ position, these are in the 16 and 32 positions),
and our one-legged caterpillars so far have only had a 1 in one of these
two positions. Like 32, 48 is unreachable by nim-summing a path and
a lower S-G one-legged caterpillar. Unlike 32, 48 is an evil number!
Using the same arguments we used with 32 we can show that the next
5 odious numbers above 48 are rare, and other evil numbers in this
range are more common. We would predict that this trend reverses
again at S-G 64, but the highest number in our one-legged caterpillar
data is 62, so this cannot be confirmed.

Tri-path data includes S-G data up to 80, and it seems to confirm the
same trends we would expect based on this reasoning. Further analysis
of this data is a subject of active research.

8. Graph Nim on G-paths

After witnessing the eventual periodicity of the S-G numbers for
caterpillars, certain multi-edge paths, and tri-paths, a natural question
to pose is: Will the S-G numbers of any similarly “shaped” graph
eventually become periodic? We do not yet not know the answer to
this question. In this section, we present the progress we have made in
this area. We start by defining a couple terms.

Definition. We call path appended to one vertex of a graph G, a G-
path. We say that a G-path has length L if the appended path has L
edges, and write GL.

If we make a move on a G-path that deletes any of the edges of the
original graph G, we say that we have made a move on G. Conversely,
if we make a move that deletes only edges from the appended path PL,
we say that we have made a move on PL.

We note that caterpillars, loop-paths, and triangle-paths are all uni-
fied under the definition of a G-path. And so we now provide sufficient
conditions for the S-G numbers of a G-path of growing length to stay
periodic once an initial period has developed.

Theorem 1. Suppose we have a G-path whose S-G numbers have
started exhibiting a period of p some time before the G-path has reached
length L. Suppose also that all G′-paths have become periodic for every
follower graph G′ by the time they reach length L. Let d := lcd{p′|p′
is the period of the S-G numbers of a G′-path}, and let E := lcd{p, d}.
Then if the G-path’s S-G numbers stay periodic past length L+ 72 +E,
they will stay periodic forever.
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Proof. We seek to show that g(GL+72+k) = g(GL+72+k+nE) ∀ n ∈ N, 0 ≤
k < E. To do this, we will show that any S-G number obtainable by
a move on GL+72+k is obtainable by a move on GL+72+k+nE, and vice
versa. Consider three positions of where the moves can be made:

Case 1: Moves made on G yield identical S-G numbers for GL+72+k

and GL+72+k+nE, since L+ 72 + k ≡ L+ 72 + k + nE (mod d), and all
G′-paths have already become periodic by the time they reach length L.

Case 2: If we make a move on PL+72+k, leaving Gs and Pt where
s+ t = L+ 72 + k− 1 or s+ t = L+ 72 + k− 2 and 0 ≤ s < L, make a
move on PL+72+k+nE that leaves Gs and Pt+nE. Since g(Pt) = g(Pt+nE),
the two disjoint components resulting from each move nimsum to the
same number.

Conversely, if we make a move on PL+72+k+nE, leaving Gs and Pt,
where s + t = L + 72 + k + nE − 1 or s + t = L + 72 + k + nE − 2
and 0 ≤ s < L, make a move on PL+72+k that leaves Gs and Pt−nE.
Since g(Pt) = g(Pt−nE), the two disjoint components resulting from
each move nimsum to the same number.

Case 3: If we make a move on PL+72+k, leaving Gs and Pt where
s+ t = L+72+k−1 or s+ t = L+72+k−2 and L ≤ s, make a move
on PL+72+k+nE that leaves Gs+nE and Pt. Since g(Gs) = g(Gs+nE), the
two disjoint components resulting from each move nimsum to the same
number.

Conversely, if we make a move on PL+72+k+nE, leaving Gs and Pt,
where s + t = L + 72 + k + nE − 1 or s + t = L + 72 + k + nE − 2
and L ≤ s, make a move on PL+72+k that leaves Gs−nE and Pt. Since
g(Gs) = g(Gs−nE), the two disjoint components resulting from each
move nimsum to the same number.

Since these three cases cover all the possible moves we can make on
the two G-paths, we conclude that g(GL+72+k) = g(GL+72+k+nE) ∀ n ∈
N, 0 ≤ k < E. And since p|E, the G-path retains its period p.

�

We still hope to be able to show that any G-path’s S-G numbers will
become periodic. However, so far we have only been able to establish
a condition that will ensure eventual periodicity.
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Theorem 2. The S-G numbers of a G-path become periodic if and only
if they are bounded.

Proof. (⇒) Immediate.

(⇐) Suppose the S-G numbers for a G-path are bounded above by
N . Suppose also that e(G) = m, and that all G′-paths with G′ ≤ G
and e(G′) < m, are eventually periodic. Since we know that the empty
graph Go (with e(Go) = 0) is a subgraph of G, and that a Go-path is
simply a path, we have a valid base case for our inductive assumption
on e(G). Lastly, let d = lcd{p : p is the period of a G′-path}. Note
that since Go ≤ G, and a Go-path has eventual period 12, 12|d. And
so g(Pm) = g(Pm+dt) ∀t ∈ N.

Consider any 72 consecutive G-paths, Gq, Gq+1, ..., Gq+71; call these
G-paths a 72-block. Since there are at most N72 ways for the 72 S-G
numbers to be distributed over the 72-block, and since there are infin-
itely many disjoint 72-blocks, there must exist a 72-long sequence of
consecutive S-G numbers that is repeated infinitely many times. Call
this sequence a1, a2, ..., a72.

Now consider G-paths (both on the same graph G) of length r and
s, with r + 72 ≤ s and s ≡ r (mod d), such that g(Gr) = a72 =
g(Gs), g(Gr−1) = a71 = f(Gs−1), ..., g(Gr−71) = a1 = g(Gs−71). In
other words, we have two sequences of S-G numbers, one of length r
and one of length s, that both terminate with “tails” of 72 identical
numbers. Choose these G-paths such that all G′-paths have already
become periodic by the time they reach length r. Also choose these
two G-paths such that for every G-path Gk, with r < k < s − 71, ∃
Gj with 0 ≤ j < r − 71 and j ≡ k (mod d), such that g(Gk) = g(Gj).
Note that we are guaranteed to have two G-paths that meet these re-
quirements.

We argue that the S-G number computed for the G-paths of length
r + 1 and s + 1 must be identical to each other, by showing that any
S-G number obtained by a move on Gr+1 can be obtained by a move
on Gs+1, and vice versa. Consider three cases of where the moves can
be made:

Case 1: Moves made on G yield identical S-G numbers for Gr+1 and
Gs+1, since r+1 ≡ s+1 (mod d), and all G′-paths have already become
periodic by the time they reach length r.
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Case 2: If we make a move on Pr+1, leaving Gk and Pv where k + v =
r−1 or k+v = r and 0 ≤ k < r−71, make a move on Ps+1 that leaves
Gk and Pv+dt for some t ∈ N. Since g(Pv) = g(Pv+dt), the two disjoint
components resulting from each move nimsum to the same number.

Conversely, if we make a move on Ps+1, leaving Gk and Pv, where
k + v = s − 1 or k + v = s and r < k < s − 71, by our choice of
Gr+1 and Gs+1 ∃ Gj with 0 ≤ j ≤ r and j ≡ k (mod p), such that
g(Gj) = g(Gk). So, consider the move on Gr+1 that leaves Gj and Pv+dt

for some t ∈ N. Since g(Pv) = g(Pv+dt), the two disjoint components
resulting from each move nimsum to the same number.

Case 3: If we make a move on Pr+1, leaving Gr−i and Pv with 0 ≤
i ≤ 71, make a move on Gs+1 that leaves Gs−i and Pv. Since g(Gs−i) =
g(Gr−i), the two disjoint components resulting from each move nimsum
to the same number.

Conversely, if we make a move on Ps+1, leaving Gs−i and Pv with
0 ≤ i ≤ 71, make a move on Gr+1 that leaves Gr−i and Pv. Since
g(Gr−i) = g(Gs−i), the two disjoint components resulting from each
move nimsum to the same number.

Since these three cases cover all of the available moves that we can
make on Gr+1 and Gs+1, we conclude that g(Gr+1) = g(Gs+1). By
inductively extending this argument, we see that g(Gr+t) = g(Gs+t)
∀t ∈ N. And so the G-path’s S-G numbers become periodic. �

We now present a result about the periodicity of S-G numbers of
what we call a GH-path. We start, of course, by defining a GH-path.

Definition. Let a GH-path be two graphs, G and H, joined together
by a path that meets each graph at exactly one vertex. We write GHL

to be a GH-path where the path has length L.

Theorem 3. If the S-G numbers of a G-path and an H-path become
periodic, then the SG-numbers of the GH-path (where the path is ap-
pended to the same vertices of G and H is it is for the G-path and
H-path) will also become periodic.

Proof. We proceed by induction on the total number of edges in G and
H, mG and mH . For mG + mH = 0, the statement is trivial, as the
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GH-path is just a path.

So assume for all G-paths and H-paths with periodic S-G numbers and
with mG + mH < M , the S-G numbers of the GH-path become peri-
odic, and consider a GH-path with mG +mH = M . Let d = lcd{p′ : p′
is the period of the S-G numbers of a HG′-path or a GH ′-path}. Let
E = d · pH · pG, where pH is the periodicity of the S-G numbers of the
H-path and likewise for pG. Lastly, let Hs and Gr be the shortest H-
path and G-path whose S-G numbers have become periodic. Without
loss of generality assume s > r.

Now consider GH2s+E+x and GH2s+2E+k for any k ∈ N. By a sim-
ilar argument as was made in proving the preceding two theorems,
we can show that any S-G number obtained by a move on GH2s+E+k

can be obtained by a move on GH2s+2E+k, and vice versa. Thus,
g(GH2s+E+k) = g(GH2s+2E+k) ∀ k ∈ N. And so the GH-path’s S-G
numbers become periodic. �

9. Nim on Trees

Definition. A tree is a connected graph that contains no cycles. A tree
with n vertices can be denoted Tn

We can define a caterpillar as a tree such that when all leaves and
incident edges are removed the remaining graph is a path. Thus the
game of nim played on a tree is similar to that played on a caterpillar.
However, the number of trees expands greatly, as does the number of
possible moves.

Consider the following tree:

T10

One follower of this tree simply results in another tree:
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T7

However, sometimes the follwers of tree are actually forests (i.e. a
set of trees):

T5

T5

When this situation occurs, we must nim sum the S-G numbers of the
trees in the forest to obtain the actual S-G number of this follower.

Because our trees can become increasingly complex as the number of
vertices grow, our algorithm for finding the S-G numbers of caterpillars
must evolve so that it can calculate the S-G numbers of these more
complex trees. To do this we implemented Sage-specific tools.

A built-in Sage function was used to generate a list of all trees with
a given number of vertices.

This function generates unlabled trees. Suppose for a given number
of vertices n, we are given all isomorphism classes of trees of n vertices
(i.e. all labeled trees that are isomorphic to each other). Our set of
unlabled trees consists of only one tree from each isomorphism class.
This has a significant effect on decreasing the runtime of our program
for calculating the S-G numbers of trees. With this set of trees, we can
calculate the S-G number of each non-isomorphic tree.

Iterating through each tree on n vertices, we obtain all possible moves
for each tree. This is done by analyzing each vertex of the tree indi-
vidually and obtaining the set of moves for the specific vertex. We
iterate through this set of moves to obtain all followers. Again, note
that these followers may actually be forests containing multiple trees.
The S-G numbers are then calculated for these followers, nim-summing
when appropriate, and added to a set of all S-G numbers for the tree
being analyzed. We find the minimal excluded value of this set, which
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is the S-G number of the original tree. We calculate this value for all
trees with k edges and then we then repeat the process for trees with
k+1 edges.

Because the number of trees for a given number of vertices increases
at an expoential rate as the number of vertices increases, this code
was parallelized. To run the parallelized code, we used the Condor
System (or Palmetto Cluster) which is a High-Throughput Comput-
ing envirnonment. If certain segments of code do not depend on other
segments involved, Condor can be used to significantly decrease the
runtime of the code. The Palmetto Cluster was vital in this part of
the research. To parallelize the code we divided the set of trees for a
given number of vertices into smaller subsets. This was possible be-
cause while the S-G number for a tree of n vertices depends on S-G
numbers of trees with vertices less than n, it does not depend on the
S-G numbers of other trees with n vertices. Thus, we were able to run
these subsets of trees on multiple machines. Separate code was then
written to combine these subsets and add the complete set to the orig-
inal set of S-G numbers. See Appendix A, 13.2 for more details.

In our code, we generated each set of trees with n vertices for each
separate subset of trees. Upon reaching trees with 19 vertices, we began
generating 317,955 trees per subset. This caused the memory of each
machine in the Palmetto Cluster to overload. Due to this, we have not
been able to completely analyze the S-G numbers of trees.

Thus far, we have noticed that the first player 1 loss occurs at 10
vertices. Of the 106 trees of 10 vertices, 16 are player 1 losses. We have
also noticed that there are player 1 losses after 10 vertices, but more
computation will be required to extend our analysis.

10. Graph Nim on Graphs

In this section, we discuss the most general form of Graph Nim, the
game played on any n-vertex graph. We first discuss the question: For
which n ∈ N is the complete graph on n vertices, Kn, losing. We next
discuss the distribution of the S-G numbers of all unlabeled graphs of
order n. Finally, we present a heuristic analysis of the S-G number
distributions for labeled graphs of order n.

10.1. Winning and Losing Complete Graphs.

Definition. A complete graph on n vertices, denoted Kn, is the simple
graph in which every pair of distinct vertices is connected by an edge.
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Note that

e(Kn) =

(
n

2

)
At the outset of this project, it was known that K1 (trivially), K3,

and K5 were losing graphs; one of our goals was to determine if this
losing pattern continued for all K2n+1. Note that since K1, K3, and
K5 are losing graphs, K2, K4, and K6 are winning. For instance, if it
is Player 1’s turn to move on K6, he can delete the 5 edges incident
to a single vertex. Then it will be Player 2’s turn to move on K5, a
losing graph. And so Player 1 wins. We can extend this argument to
show that there are infinitely many winning complete graphs. Remark-
ably, we know of no way to prove that there are infinitely many losing
complete graphs.

Proposition 1. There are infinitely many winning complete graphs.

Proof. If Kn is losing then Kn+1 will be winning, since on Kn+1 Player 1
can delete the n edges incident to one vertex, leaving the Player 2 with
Kn. Thus at least half of the complete graphs must be winning. �

We give the following definitions to allow us to talk about the rela-
tionship between two graphs.

Definition. We call an addition of edges that are all incident to the
same vertex an anti-move. This name comes from the fact that these
edges may be deleted in a single move.

Definition. We say that a graph G′ is a child of the graph G if G′ may
be obtained from G in a single move (equivalently, if G may be obtained
from G′ in a single anti-move). Likewise, we call G the parent of G′.

Since the number of unlabeled graphs on n vertices grows very quickly,
it soon becomes impractical to investigate by hand whether Kn is win-
ning or losing. For instance, in order to compute whether K7 is a win
or loss, we need to know the status of all 1043 subgraphs of K7. This
task is best left to a computer. Below we describe the program we
wrote to find all n-vertex losing graphs, which we were able to run for
1 ≤ n ≤ 9. For a more detailed description of the code, see Appendix
A, 13.4.

Program 1. Our program operates on the fact that every parent of a
losing graph is a winning graph. We start by creating a list of losing
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graphs; initially this list consists only of the empty graph on n vertices.
We then iterate through the possible edge-numbers of n-vertex graphs,
generating lists of all nonisomorphic graphs with 1, 2, 3, ...,

(
n
2

)
edges,

which we will call L1, L2, L3, ..., L(n
2)

.

After Lm has been generated, we make anti-moves on each of the
losing graphs (all of which have fewer than m edges) in every way pos-
sible that leaves an m-edge graph. Since all m-edge graphs obtained in
this manner are the parents of losing graphs, they must be winning; we
delete them from Lm. After performing all possible anti-moves on the
losing graphs and deleting the resulting graphs from Lm, we will have
eliminated all of the winning graphs from Lm. Thus, we add any graphs
remaining in Lm to our list of losing graphs, generate Lm+1, and repeat
the above process. In this fashion, we determine whether every graph
on n vertices is winning or losing.

This program computed that K7 and K9 are losing graphs (and,
by implication, that K8 and K10 are winning graphs). Thus, we have
extended the pattern of complete graphs alternating between winning
and losing from n = 6 to n = 10. The results from this program also
suggested a pattern to Player 2’s strategy when the game is started
on K2n+1. However, we were unable to prove that Player 2 always has
a winning strategy. We hope to look into this matter further in the
future.

10.2. The Sprague-Grundy Approach. Rather than directly com-
puting a list of the losing graphs on n vertices, we now discuss the more
refined approach of computing the S-G numbers of all n-vertex graphs.
Since those graphs with S-G number 0 are the losing graphs, this ap-
proach encompasses the approach of the previous section. However,
what is gained in information is lost in efficiency; computing the S-G
numbers of every n-vertex graph is a more demanding computational
task than determining which graphs are losing. The program that finds
the S-G numbers of n-vertex graphs operates similarly to the program
that finds the S-G numbers for trees, and so we will provide just a brief
description of how it works.

Program 2. Assuming we have calculated the S-G numbers for all
graphs with fewer than m edges, we describe how we will calculate the
S-G numbers of the m-edge graphs. For each graph G with m edges,
we generate all the children of G. We then find the minimal excluded
number of the set of the S-G numbers of these child graphs; this will be
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the S-G number of G. After computing the S-G numbers of all m-edge
graphs in this manner, we move up to (m + 1)-edge graphs, and con-
tinue likewise until the S-G number of every graph on n vertices has
been computed.

See Figure 1 below for a chart of the distribution of the S-G num-
bers for 7-vertex graphs (for the complete data, see Appendix E). The
number in column m and row s indicates the percentage of 7-vertex
graphs of size m whose S-G number is s. For instance, 50% of size-2
graphs have S-G number 2, 0% have S-G number 1, and 50% have S-G
number 0.
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A few observations regarding the S-G number distributions can be
made immediately. For instance, as was true with trees, graphs have
the maximum possible S-G number (i.e., e(G) = g(G)) roughly half of
the time. Also, for graphs of size m, the percentage of S-G numbers
tends to peak at s ≈ 0.6m, before bottoming out to nearly zero for
0.6m < s < m. In order to understand these and other patterns in the
S-G number distribution, we conducted a heuristic analysis of the data.

10.3. Heuristic Analysis of S-G Number Distribution. Given
the distribution of the S-G numbers for n-vertex graphs of size 0, 1, . . . ,m−
1, it would be ideal if we could predict what the distribution should be
for graphs of size m. This would mean that we understand why the
S-G numbers are distributed as they are. Here we present a heuristic
method for making this prediction.

Throughout this section, we will be trying trying to predict the per-
centage distribution of the S-G numbers for labeled graphs of order n
and size m, given that we know the distributions for graphs of order
n and size < m. Working with labeled graphs has the advantage of
allowing us to consider the deletion of any two distinct subsets of edges
to be distinct moves, regardless of graph isomorphism. This is not the
case when working with unlabeled graphs.

In order to predict the S-G number distribution for labeled graphs,
we ask ourselves the question: For the “typical” n-vertex, m-edge la-
beled graph, Gn,m, what is the probability that the S-G number will
be 0, 1, . . . ,m? Let us make the notion of a “typical” labeled graph
somewhat more precise.

Definition. We define a typical labeled graph on n vertices with m
edges, Gn,m, to be a graph whose degree sequence is the average of the
degree sequences of all n-vertex, m-edge labeled graphs when the degrees
are ordered from least to greatest. We write the degree sequence of Gn,m

as (d1, d2, . . . , dn), where d1 ≤ d2 ≤ . . . ≤ dn.

Once we have calculated the degree sequence of Gn,m (for details
about how this is done, see Appendix A, 13.5), we will know how
many children of size (m−1), (m−2), . . . , (m−dn) the typical m-edge
graph has. We make the (admittedly flawed) assumption that each
of these children of size (m − k) for 1 ≤ k ≤ dn will be a random
labeled graph of size (m − k). I.e., a child graph of size (m − k) will
have the S-G number 0, 1, . . . , (m − k) with probability equal to the
percentage of labeled (m − k)-edge graphs whose S-G numbers are
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0, 1, . . . ,m − k. Since we know the number of children, we can can
calculate the probability that Gn,m will have S-G number 0, 1, . . . ,m.

In order to run this heuristic, we need the distribution of S-G num-
bers for labeled graphs of size m − k. We find this by counting each
graph’s S-G number N times, where N is the number of unique rela-
belings of the graph (i.e., the size of the graph’s isomorphism class).
See Figure 2 below for a chart of the distribution of S-G numbers for
labeled 7-vertex graphs:
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Now we will define a few new terms, and describe in more detail our
heuristic method. For a more complete description of the code, see
Appendix A, 13.6.

Definition. We write Pe(s) to be the probability that a random labeled
graph with e edges will have S-G number s. Similarly, we write PGn,m(s)
to be the probability that our typical graph Gn,m has S-G number s.

Definition. Let ck to be the number of children of Gn,m with m − k
edges.

Definition. We write Ne(s, te) to be the probability that given te ran-
dom labeled graphs with e edges, none of them will have S-G number
s. Note that Ne(s, te) = (1 − Pe(s))

t. Also note that Ne(s, te) = 0 if
s > e, since g(H) ≤ e(H) for all graphs H.

Definition. Lastly, we write NGn,m(s) to be the probability that Gn,m

has no children with S-G number s.

Program 3. For the purposes of this heuristic, we assume that the
probability that a child of Gn,m with (m− k) edges has S-G number s,
is equal to P(m−k)(s). Take 1 ≤ j ≤ n to be the maximum index s.t.
m− dj ≥ s. Then note that

NGn,m(s) = Nm−1(s, c1)× . . .×Nm−dj
(s, cdj

)

We know that PGn,m(s) is equal to the probability that Gn,m has children
with S-G numbers 0, 1, . . . , (s− 1) and no children with S-G number s.
Thus, we have

PGn,m(s) = {1−NGn,m(0)} × . . .× {1−NGn,m(s− 1)} ×NGn,m(s)

From the above equations, we see that if we can find the number of
children of Gn,m, c1, . . . , cdn, we will know the probability that Gn,m

has S-G number 1 through m. But since Gn,m is labeled, computing
c1, . . . , cdn is a simple task.

We admit that some of the assumptions on which we base our heuris-
tic are naive. We are currently working to refine our heuristic method.
And yet, this method yields reasonably accurate predictions of the S-G
number distributions. See Figure 3 below for a table of our heuristic
predictions of the S-G number distributions compared to the actual
distributions for n = 7 and m = 4, 5, . . . , 18. Because of our method’s
ineffectiveness for values of m near 0 and

(
7
2

)
, we omit these data. For

the complete results of our heuristic analysis for graphs of order 5, 6,
7, and 8, see Appendix E.
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11. Conclusion

There are a number of areas where we would like to continue work.
First, we feel that many additional results are readily available through
computation. We would like to continue computing the S-G numbers
of trees and graphs. We would also like to know whether K11 is winning
or losing. Lastly, in order to support or disprove our conjecture about
their eventual periodicity, we plan on computing the S-G numbers of
more complicated types of G-paths.

Second, we feel that we can extend several of the results we present
in this paper. For instance, we would like to conduct a more formal
analysis of the frequency of evil and odious numbers of one-legged
caterpillars. In addition, we would like to see if this evil/odious pattern
continues for tri-paths, multi-legged caterpillars, and other types of G-
paths. And we would like to improve our heuristic analysis of the S-G
numbers of graphs and extend this analysis to trees.

Despite all of our hard work this summer, there are a few questions
left unanswered. Do the S-G numbers of all G-paths eventually become
periodic? What about graphs with multiple appended paths? If so, will
the periods always be of the form 12k? Will K2n+1 always be losing
for Player 1? Can much be said about Graph Nim played on complete
bipartite graphs? On multigraphs?

This game has spawned a number interesting observations, conjec-
tures, and theorems; hopefully more are soon to come.

12. Acknowledgements

Our group would like to give special thanks to the following:
Neil Calkin and Kevin James for the opportunity to do this research
over the summer.
Janine Janoski for being inspirational and having so much patience.
Edward Duffy for help with Sage on the Cluster.
Benoit Larose for advice and helpful suggestions.
All of the other REU participants for support.

13. Appendix A: Program Descriptions

See Appendix B for corresponding code.

13.1. One-Legged Caterpillar Program. Below are the important
functions of our Python program that computes the S-G numbers for
caterpillars with one extra edge.
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• f(x) - Given an upper bound, computes the S-G numbers of all
paths up to the upper bound + 3. This function returns the
list of S-G numbers. (This is the program used in our initial
research to calculate the S-G numbers of paths.

• c(x, gArray, pArray) - Where x is the length of the Cn,k to be
computed, gArray is the list of S-G numbers for the caterpil-
lars from the from 0 up to the lower bound, and pArray is the
S-G numbers of all paths from 0 to the upper bound + 3. This
function returns an array consisting of the S-G numbers for all
caterpillars of length x.

• h(x) - Takes in an upper bound, computes the path S-G num-
bers, and gets the array of caterpillar S-G number from a file.
Computes S-G numbers for caterpillars up to the upper bound
and writes the entire list of S-G numbers for all caterpillars of
length 0 to the upper bound to the file that was originally read
in.

13.2. Tree Program. Below are the important functions of our Sage
program that computes the S-G numbers of all trees with a given num-
ber of vertices.

• getmoves(lis, k) - Takes in a list of 1’s and 0’s and a number of
vertices k. Returns all possible representations of moves in the
form of 0’s and 1’s.

• getverts(o2, lis) - Given the vertex from which edges are to be
deleted and the a list of 1’s and 0’s from the getmoves function,
converts the list of moves to a vertex specific list of moves.

• g(myTree) - Calculates the S-G number of a given tree.

The remainder of the code forms a list of trees for a given number
of vertices and generates the list of S-G numbers for that list of trees.
The output separated similar degree sequences and then specific trees.

13.3. Tri-Path Program. Below are the important functions of our
C++ program that computes the S-G numbers tri-paths.
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• The main function reads in S-G numbers for one-legged cater-
pillars and paths. It uses nested loops to check every case and
every length up to 1000. It uses a switch statement to find the
follower graphs, then locates S-G numbers for these stored in
arrays and uses the sum function to nim-sum these when appli-
cable. The resulting S-G numbers are sorted and the mex can
then be easily calculated. This is then printed to an output file.

• The sum function reads in two S-G values and nim-sums them,
outputting to S-G value of the total graph.

13.4. Losing Graphs Program. Below are the important functions
of our Sage program that computes a list of losing graphs of order n.

• getGraphs(path) - As input, this function takes the location of
a text file of graphs that are stored in graph6 format. It returns
a list of graphs as Sage objects. We use this function to retrieve
a list of graphs with a specific number of edges and to retrieve
the list of losing graphs with < m edges.

• getAntiMoves(list L, int k) - As input, this function takes a
list of 1’s, L, which represent the number of vertices not ad-
jacent to a vertex, and a number, k, which is the number of
edges we want to add to our vertex in an anti-move. This func-
tion returns a list of all the possible ways to add these k edges.
For instance, getAntiMoves([1,1,1,1], 2) would return [ [1,1,0,0].
[1,0,1,0], [1,0,0,1], [0,1,1,0], [0,1,0,1], [0,0,1,1] ].

• getVerts(list vertices, list getM) - As input, this function takes
a list of vertices that are not adjacent to a vertex and the list
that was returned by getAntiMoves. This function returns a list
of all the possible anti-moves we can make on the vertex. For
instance, getVerts([2,4,6], [[1,1,0], [1,0,1], [0,1,1]]) would return
[ [2,4], [2,6], [4,6] ].

• findLosses(int vertices, int edges, int loss) - This is the main
function of the program. Assuming we have already computed
all losing graphs of order ’vertices’ and size ≤ ’loss’, this pro-
gram will compute the losing graphs up to size ’edges’. If no
losing graphs have already been computed, one should enter 0
for the value of ’loss’. This function stores the list of losing
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graphs of size (1 + ’loss’) ≤ m ≤ ’edges’ in text files.

13.5. Graph S-G Number Program. Below are the important func-
tions of our Sage program that computes the S-G numbers of graphs
of order n.

• getMoves(list L, int k) - As input, this function takes a list of
1’s, L, which represent the number of vertices adjacent to a ver-
tex, and a number, k, which is the number of edges we want
to remove from our vertex in a move. This function returns a
list of all the possible ways to remove these k edges. For in-
stance, getMoves([1,1,1,1], 2) would return [ [1,1,0,0]. [1,0,1,0],
[1,0,0,1], [0,1,1,0], [0,1,0,1], [0,0,1,1] ].

• getVerts(list vertices, list getM) - As input, this function takes
a list of vertices that are adjacent to a vertex and the list
that was returned by getMoves. This function returns a list
of all the possible moves we can make on the vertex. For in-
stance, getVerts([2,4,6], [[1,1,0], [1,0,1], [0,1,1]]) would return
[[2,4], [2,6], [4,6]].

• makeNeat(list graphs, list grunds, int vertices) - As input, this
function takes a list of graphs, a list of S-G numbers of those
graphs, and the number of vertices. It then chops up the list of
graphs by the degrees of three of each graph’s vertices, storing
the graphs in a list of lists (and the S-G numbers in a corre-
sponding list of lists). It then returns these two chopped up lists
of graphs and their S-G numbers. This function’s purpose is to
make the program run quicker by allowing us to quickly find a
graph (with m edges) and its S-G number simply by accessing
the degrees of three of its vertices (instead of having to search
through the entire list of m-edge graphs).

• findMex(list gruns) - As input, this function takes a list of S-G
numbers. It computes and returns the minimal excluded ele-
ment of this list.

• getSG(vertices): This is the main function of the program. As
input, it takes a number of vertices. It returns a list of the
graphs of order ‘vertices’ (separated into sublists by the number
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of edges) and the corresponding S-G numbers of these graphs.

13.6. Graph S-G Heuristic Program. Below are the important
functions of our Sage program that predicts the S-G number distri-
bution for labeled n-vertex, m-edge graphs.

• typicalDegree(int m, list grafs) - As input, this function takes
a list of unlabeled graphs with n vertices and a number, m,
of edges. It returns the “typical” degree sequence (see Section
10.3) of all labeled n-vertex, m-edge graphs.

• adjust(list graphs, list gruns) - As input, this function takes a
list of unlabeled graphs of order n (separated into

(
n
2

)
+ 1 sub-

lists by the number of edges) and their S-G numbers. It returns
a list of

(
n
2

)
+ 1 lists, each which indicates the of the number of

labeled graphs of size (0 ≤ m ≤
(

n
2

)
) which have S-G number s

(0 ≤ s ≤ m).

• percentage(list distr) - As input, this function takes the list
of the S-G number frequencies that the adjust(graphs, gruns)
function returns. It returns a percentage distribution of these
S-G numbers. For instance percentage( [[1], [3,5], [2, 4, 10]] )
would return [[100], [37.5, 62.5], [12.5, 25, 62.5]].

• probCant(list perc, list deg, int m, int s) - As input, this func-
tion takes the calculated list of the percentage distributions of
the S-G numbers for labeled graphs of order n, a list which is
the degree sequence of Gn,m, the size of Gn,m, and an S-G num-
ber s. It returns the probability that no child of Gn,m will have
S-G number s, assuming that all children of Gn,m are random
labeled graphs.

• predictG(list perc, list deg, int m) - As input, this function
takes the calculated list of the percentage distributions of the
S-G numbers for labeled graphs of order n, a list which is the
degree sequence of Gn,m, and the size of Gn,m. It returns the
predicted percentage distribution of the S-G numbers of labeled
graphs of order n and size m.

• generateH(int n): This function is the main function of the pro-
gram. Using all of the above functions, it generates a list of the
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expected S-G number distributions for graphs of order n and
size 1, 2, . . . ,

(
n
2

)
.

14. Appendix B: Code

14.1. One-Legged Caterpillar Code. Before running the caterpillar code, we
must run the following:

startArray = [[0], [2, 2], [3, 3, 3], [1, 4, 4, 1]]
pickle.dump(startArray, open("catOutput.txt", "w"))

This code creates a the first pickled file of S-G numbers for paths up to length 3.
Once this file is created, one can begin using the following code with lowerBound
equal to 4.

import pickle
import sys

lowerBound = int(sys.argv[1])
upperBound = int(sys.argv[2])

def f(x):
grund=[0,1]
#grund is the ordered list of all the grundy numbers for paths
#of lengths shorter than x. so 0 is f(0), 1 is f(1), and the program starts
#computing grundy numbers for paths of length 2 and higher’
prev=[0]
#prev is the list of grundy numbers for all positions attainable in one move
#from a path of length x
while x<upperBound+3:

prev.append(grund[x-1])
prev.append(grund[x-2])
#clearly the path of length x-1 and length x-2 are attainable in one move
#from path of length x, so right away we add the grundy numbers of these
#two shorter paths into prev
y=1
while x-1-y>=0:

#Adds the nimsum of the f-g values after removing 1 vertex to prev
binsum=(grund[y])^(grund[x-1-y])
prev.append(binsum)
y+=1

y=1
while x-2-y>=0:

#Adds the nimsum of the f-g values after removing 2 vertices to prev
s=(grund[y])^(grund[x-2-y])
prev.append(s)
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y=y+2
y=0
while y<len(prev):

#this while loop finds the minimal excluded element of prev

if prev.count(y)>0:
y+=1

else:
grund.append(y)
y=y+len(prev)

prev=[0]
x+=1

return grund

def c(x, gArray, pArray):
#takes in a given number of vertices x, the list of all grundy numbers of
#caterpillars of length small than x, and the grundy numbers of paths.

grundyNumbers = gArray
pathNumbers = pArray
grundyNumbers.append([])
grundyNumbers[x].append(pathNumbers[x+1])
#iterates through each vertex in the caterpillar as to examine
#each possible case of an extra edge
for i in range(1, x):

temp = []
temp.append((pathNumbers[x-1]))
#for loops that simulate each possible move to be made on the
#given caterpillar with an extra edge on index i
for j in range(1, i+1):

temp.append((pathNumbers[j-1])^(grundyNumbers[x-j][i-j]))
for j in range(1, x-i+1):

temp.append((pathNumbers[j-1])^(grundyNumbers[x-j][i]))
for j in range(2, i+1):

temp.append((pathNumbers[j-2])^(grundyNumbers[x-j][i-j]))
for j in range(i+2, x+1):

temp.append((pathNumbers[x-j])^(grundyNumbers[j-2][i]))
for j in range(i, i+1):

temp.append((pathNumbers[i-1])^(pathNumbers[x-i-1])^1)
for j in range(i, i+1):

temp.append((pathNumbers[j-1])^(pathNumbers[x-j+1]))
temp.append((pathNumbers[j+1])^(pathNumbers[x-j-1]))
temp.append((pathNumbers[j-1])^(pathNumbers[x-j-1]))
temp.append((pathNumbers[j-1])^(pathNumbers[x-j]))
temp.append((pathNumbers[j])^(pathNumbers[x-j-1]))

mex=0
z=0
#finds the minimal excluded value of the set of all grundy numbers
while z<len(temp):
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if temp.count(mex)>0:
mex+=1
z+=1

else:
z=len(temp)+1

grundyNumbers[x].append(mex)
temp = []

grundyNumbers[x].append(pathNumbers[x+1])
#returns all grundy numbers for a given x
return grundyNumbers[x]

def h(x):
#takes in a given x to calculate the sprague-grundy numbers
#up to that x (inclusive)
pathNums = f(2)
#loads grundy numbers that have been computed
#up to the lower bound (inclusive)
gnums = pickle.load(open("catOutput.txt"))
q = lowerBound+1
sortedGr = []
#appends next array for grundy numbers
for i in range(x+1):

sortedGr.append([])
#iterates through the possible lengths of caterpillars
#starting with lowerBound+1 and ending at upperBound
while q < (x+1):

temp = c(q, gnums, pathNums)
q+=1
#appends new grundy numbers to list
for i in range((len(temp))):

sortedGr[i].append(temp[i])
#writes new list of grundy numbers to file
pickle.dump(gnums, open("catOutput.txt", "w"))

h(upperBound)

14.2. Tree Code.
def getmoves(lis, k):
#returns a list representing the unique ways to delete k
#edges from an inputed number of edges

remain=0
temp = []
shorter = []
ret = []
if k == 0:

for i in range(len(lis)):
temp.append(0)
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return [temp]
current = 0
if len(lis) == 0:

return [[]]
if len(lis) == 1:

return[[k]]
if lis[0]<=k:

mini=lis[0]
else:

mini=k
shorter = lis[:]
del shorter[0]
for d in shorter:

remain+=d
for j in range(mini+1):

if remain>=k-mini+j:
temp = getmoves(shorter,k-mini+j)
for t in temp:

ret.append([mini-j] + t)
return ret

def getverts(o2, lis):
#given the list from getmoves, returns the specific moves
#for a given graph

ret = []
for l in lis:

temp = []
for ll in range(len(l)):

if l[ll]==1:
temp.append(o2[ll])

ret.append(temp)
return ret

def g(myTree):
#given a tree, return the Sprague-Grundy number

myTreeDeg=myTree.degree()
myTreeDeg.sort()
GrundyList = []
#returns 0 if the tree is empty
if myTree.degree() == [0]:

return 0
#returns 1 if the tree is a simple path of length 1
elif myTree.degree() == [1, 1]:

return 1
#returns 2 if the tree is a simple path of length 2
elif myTreeDeg == [1, 1, 2]:

return 2
else:

44



#iterates through the vertices of the tree
#to determine all possible moves on each vertex

for v in myTree:
moves=[]
#gets the neighbors (or connected vertices) of v
t = myTree.neighbors(v)
lengthNeigh = len(t)
tempOnes = []
for i in range(lengthNeigh):

tempOnes.append(1)
y=0
#creates list of possible moves for v
for i in range(1, myTree.degree(v)+1):

temp = getmoves(tempOnes, i)
possMoves = getverts(t, temp)
for m in possMoves:

movesTemp=[]
for num in m:

movesTemp.append([v,num])
moves.append(movesTemp)

#for each move in moves, finds the resultant
#followers and grundy number
for y in range(len(moves)):

treeM=myTree.copy()
for M in moves[y]:

treeM.delete_edge(M)
graphMoves = treeM.connected_components_subgraphs()
tempGrund = []
#creates the list of all sprague-grundy numbers
#obtainable from one move
for g in graphMoves:

g=g.canonical_label()
tempDegree = g.degree()
vLen = len(tempDegree)
tempDegree.sort()
for i in range(0, len(treeSG[vLen])):

if (vLen==0):
tempGrund.append(0)

else:
if tempDegree == (treeSG[vLen][i][0]):

for j in range(1, len(treeSG[vLen][i])):
if treeSG[vLen][i][j][0] == g:

tempGrund.append(treeSG[vLen][i][j][1])
grundSum=0
for gr in tempGrund:

grundSum=grundSum^^gr
GrundyList.append(grundSum)

mex=0
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z=0
#from the list of obtainable grundy numbers,
#finds the minimum excluded value (the grundy
#number of the original tree)
while z<len(GrundyList):

if GrundyList.count(mex)>0:
mex+=1
z+=1

else:
z=len(GrundyList)+1

GrundyList=[]
return mex

#Given some number of vertices k and an list of sprague-grundy
#number for all trees of vertices smaller than k, breaks
#the job into several smaller jobs depdending on the number of
#trees for that number of vertices. Then runs each job on a separate
#machine in the Condor cluster.
jobNum=os.environ[’CONDOR_PROCESS’]
vertices =18
trees = []
u=’treeSG17.sobj’
treeSG=load(u)
subTreeSG=[]
start=int(jobNum)*1000
stop=(int(jobNum)+1)*1000
if stop > 123867:

stop=123867
treeDegrees = []
for v in range(vertices,vertices+1):
#gets the list of all trees for a given number
#of vertices, then calculates the grundy number
#for the given range.

T=list(graphs.trees(v))
for q in range(start, stop):

t=T[q]
t=t.canonical_label()
x = t.degree()
x.sort()
grundyNum =g(t)
#appends tree and grundy number if SG list is empty
if len(subTreeSG)<1:

subTreeSG.append([x])
subTreeSG[0].append([t, grundyNum])

else:
aCounter=0
#determines if the degree sequence is already
#in the SG list
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for d in range(len(subTreeSG)):
if subTreeSG[d][0] == x:

aCounter=1
appendV=d

#if degree sequence is in list, appends tree and
#SG number to array with that degree sequence
if aCounter==1:

subTreeSG[appendV].append([t,grundyNum])
#appends degree sequence, tree, and SG number
#if degree sequence does not already appear
#in list
else:

subTreeSG.append([x])
s = len(subTreeSG)
subTreeSG[s-1].append([t, grundyNum])

#creates filename depending on job number and saves
#the SG list to that file
filename=’subTreeSG’+str(jobNum)
save(subTreeSG, filename)

The following gives an example of a class ad used to run this program on Condor:

universe = vanilla
executable = condor-env.sh
requirements = Arch=="X86_64" && OpSys=="LINUX"
should_transfer_files = YES
transfer_executable = TRUE
arguments = /opt/sage/4.0.1/sage
input = treesBroken.sage
environment = CONDOR_PROCESS=$(Process)

transfer_input_files = treeSG18.sobj, testOutput.txt

when_to_transfer_output = ALWAYS
notification = NEVER

queue 287

Because the code is parrallelized, resulting in multiple output files, the following
code is required to combine all output (this specific example is for combining the
output after the program has been run for 18 vertices):

x = ’treeSG17.sobj’
trees = load(x)

treeSG=load(’subTreeSG0.sobj’)
#loads original S-G numbers
file=’subTreeSG1.sobj’
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subTreeSG=load(file)
for i in range (2,125):

if (i==54 or i==97):
for k in range (20):

file=’subTreeSG’+str(i)+’.’+str(k)+’.sobj’
temp=load(file)
subTreeSG.append(temp)

else:
file=’subTreeSG’+str(i)+’.sobj’

temp=load(file)
subTreeSG.append(temp)

#for loops to append to base array of n vertices
for i in range(len(subTreeSG)):

counter = 0
for j in range(len(treeSG)):

if subTreeSG[i][0] == treeSG[j][0]:
for k in range(1, len(subTreeSG[i])):

treeSG[j].append(subTreeSG[i][k])
counter = 1

if counter == 0:
treeSG.append(subTreeSG[i])

#appending the completed base array to all SG numbers
trees.append(treeSG)

print trees
save (trees, ’treeSG18’)

14.3. Tri-Path Code.
#include <vcl.h>
#include <math.h>
#include <iostream.h>
#include <iomanip.h>
#include <stdlib.h>
#include <stdio.h>
#include <fstream.h>
using std::ifstream;
#include <string>
#pragma hdrstop
using namespace std;

//---------------------------------------------------------------------------

#pragma argsused

//---------------------------------------------------------------------------
#include <iostream.h>
int cat[999][499]= {
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{3,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{4,0,0,0,0,0,0,0,0,0,0,0,0,0,0}};
int tri[1000][501];
int sum (int a,int b);
int wait;
void main()
{
//
cout<<"Loading...\n\n";
cat[0][0]=3;
/*int cat[999][500]= {
{3,0,0,0,0,0,0,0,0,0,0,0,0,0,0},
{4,0,0,0,0,0,0,0,0,0,0,0,0,0,0}};*/
int path[1001]={1,2,3,1};
int countcat=0;
int row=-1;
int col=0;
int incount=0;
int align=0;
int countcount;
int realign=0;
int yetanotherarray[101];
for (wait=0; wait <= 100; wait++) {yetanotherarray[wait]=0;}
int anothercounta;
int anothercountb;
int anothercountc;
int finalcount;
int justanothertemparray[100];
ofstream grundytriangle;
grundytriangle.open("grundy.txt");
ifstream dudley;
dudley.open("caterpillarold.txt", ios::in);
if (!dudley) {cout<<"Error: Cannot open file"; exit(1);}
string data;
//The following set of loops reads in S-G data for one-legged caterpillars.
while(( !dudley.eof())&&(incount<=2000)){
incount+=1;
getline(dudley,data);
if ((incount%2==1)) {
/*cout<<data.substr(1)<<endl;
cout<<data<<endl;*/
/*cout<<data[0]<<endl;
cout<<data[1]<<endl;
cout<<path[row+3]<<endl;*/
row=0;
if (col==0) {
while (row<1001)
{path[row+4]=(data[(4*(row))]-48);
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row+=1;}
col+=1;}
else
{//cout<<(col-1)<<"\n\n";
countcat=0;
if ((col>=2)&&(col<=4)) align=2;
if (col>4) align=(col-2);
if (col!=1) realign=1;
for (countcount=0; countcount<=(incount/2); countcount+=1)
if (data[4*countcount+countcat+1]!=’ ’) countcat+=1;
for (row=(2*col);(row<(999+(2*realign)));row+=1)
{if (data[4*row+countcat-7-(4*align)]!=’ ’) {
cat[row-(2*realign)][col-1]=((10*(data[4*row+countcat-8-(4*align)]-48))+
...(data[4*row+countcat-7-(4*align)]-48));
//cout<<cat[row-(2*realign)][col-1]<<" ";
countcat+=1; yetanotherarray[cat[row-(2*realign)][col-1]]+=1;
}
else {
cat[row-(2*realign)][col-1]=(data[4*row+countcat-8-(4*align)]-48);
yetanotherarray[cat[row-(2*realign)][col-1]]+=1;
}}
//cout<<(data[4*row+countcat-8-(4*align)]-48)<<" ";
col+=1;
align=0;
//cout<<"\n\n";
}}}
//These loops print S-G distribution for one-legged caterpillars.
for (anothercounta=0; anothercounta <= 998; anothercounta+=1) {
for (anothercountc = 0; anothercountc <= 99; anothercountc++)
... justanothertemparray[anothercountc]=0;
for (anothercountb=0; anothercountb <= (anothercounta/2); anothercountb+=1) {
yetanotherarray[cat[anothercounta][anothercountb]]+=1;
... justanothertemparray[cat[anothercounta][anothercountb]]+=1; yetanotherarray[100]+=1;
}
grundytriangle<<anothercounta<<"\n";
for (finalcount=0; finalcount<=99; finalcount+=1)
... grundytriangle<<yetanotherarray[finalcount]<<"graphs had grundy value
... "<<finalcount<<", this represents "<<(100*
... ((double (yetanotherarray[finalcount]))/(double (yetanotherarray[100]))))
... <<"% of all graphs. +"<<justanothertemparray[finalcount]<<"\n\n";
}
//cout<<cat[998][498];
//cin>>row;
//grundytriangle<<data<<endl;
/*
while (!dudley.eof()){
}
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{{5,5,0,0,0,0,0,0,0,0,0,0,0,0,0},
{6,6,0,0,0,0,0,0,0,0,0,0,0,0,0},
{2,7,2,0,0,0,0,0,0,0,0,0,0,0,0},
{1,8,8,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,5,3,0,0,0,0,0,0,0,0,0,0,0},
{8,10,2,10,0,0,0,0,0,0,0,0,0,0,0},
{6,6,6,8,3,0,0,0,0,0,0,0,0,0,0},
{0,8,12,5,6,0,0,0,0,0,0,0,0,0,0},
{1,1,1,4,1,4,0,0,0,0,0,0,0,0,0},
{2,6,2,11,14,2,0,0,0,0,0,0,0,0,0},
{3,3,8,3,6,8,3,0,0,0,0,0,0,0,0},
{8,8,9,4,8,1,10,0,0,0,0,0,0,0,0},
{5,5,11,8,0,4,5,4,0,0,0,0,0,0,0},
{12,7,14,10,3,3,3,14,0,0,0,0,0,0,0},
{7,3,6,23,6,6,2,2,2,0,0,0,0,0,0},
{1,8,0,8,8,8,1,13,1,0,0,0,0,0,0},
{0,0,5,16,15,10,0,0,4,4,0,0,0,0,0},
{8,10,14,13,10,13,16,15,10,8,0,0,0,0,0},
{9,13,12,8,3,7,8,6,7,6,3,0,0,0,0},
{14,4,16,4,9,15,12,4,9,4,13,0,0,0,0},
{1,0,14,17,1,4,4,0,1,1,1,4,0,0,0},
{2,2,3,16,18,16,2,16,10,8,15,11,0,0,0},
{3,3,8,18,3,8,3,3,6,7,7,3,2,0,0},
{11,8,16,1,8,18,10,18,8,15,13,8,0,0},
{4,13,4,11,4,4,11,4,4,4,19,4,1,4,0},
{7,10,14,10,10,13,17,7,15,3,3,10,11,7,0},
{12,16,6,18,6,6,2,3,2,2,2,6,2,3,2}};*/

// int tri[1000][501];
int hold[2100],temp1,temp2,countnum,countshft,cases,lcount,ucount,grundy,
... count,i,j,temp,count2,count3,clear,upperbound1,upperbound2,count4,
... holdcount,count12,anotherarray[101];
ucount=0;
for (i = 0; i <= 100; i++) {anotherarray[i]=0;}
count12=0;
for (i = 0; i <= 999; i+=1) {for (j=0; j<=500; j+=1) tri[i][j]=999;}
tri[0][0]=0;
tri[1][0]=4;
tri[2][0]=2;
tri[2][1]=0;
grundytriangle<<"0\n0\n\n1\n4\n\n2\n2,0\n\n3\n";
anotherarray[0]=2;
anotherarray[2]=1;
anotherarray[4]=1;
//these loops form the actual algorithm that calculates S-G values for tri-paths.
for (countnum=3;countnum<=999;countnum+=1)

51



{for (countshft=0;countshft<=(countnum/2);countshft+=1)
{for (clear = 0; clear<=2099; clear+=1) {hold[clear]=999;}
{holdcount=0;
for (cases=1;cases<=16;cases+=1)
switch (cases)
{
//these are the possible moves in tri-paths.
case 1: if (countshft==0) hold[1]=path[countnum+1];
... else hold[1]=cat[countnum-1][countshft-1]; break; //*

case 2: hold[2]=path[countnum+1]; break; //*

case 3: if ((countnum/2)!=countshft) hold[3]=cat[countnum-1][countshft];
... else hold[3]=cat[countnum-1][countshft-1]; break; //*

case 4: temp1=path[countshft];temp2=path[countnum-countshft-1];
... hold[4]=sum(temp1,temp2); break; //*

case 5: if (countshft==0) hold[5]=path[countnum];
... else hold[5]=sum(path[countnum-countshft],path[countshft-1]); break; //*

case 6: hold[6]=path[countnum]; break; //*

case 7: if (countshft==0) hold[7]=sum(path[countnum-2],2);
... else hold[7]=sum(path[countnum-countshft-2],cat[countshft-1][0]); break; //*

case 8: hold[8]=sum(path[countnum-countshft-2],path[countshft+1]); break; //*

case 9: if (countshft==0) hold[9]=(999); else {if (countshft==1)
... hold[9]=cat[countnum-2][0]; //*
else hold[9]=sum(cat[countnum-countshft-1][0],path[countshft-2]);} break; //*

case 10: if (countshft==0) hold[10]=(999); else {if (countshft==1) hold[10]=path[countnum];
else hold[10]=sum(path[countnum-countshft+1],path[countshft-2]);} break;

case 11: for (lcount=0;lcount<(countnum-countshft-2);lcount+=1)
{if (countshft>lcount) {hold[11+holdcount]=sum(path[countnum-countshft-lcount-3],
... tri[lcount+countshft][lcount]); holdcount+=1;}
else {hold[11+holdcount]=sum(tri[lcount+countshft][countshft],
... path[countnum-countshft-lcount-3]); holdcount+=1;}}
... if ((countshft)>((countnum-countshft)-2))
... {hold[11+holdcount]=tri[countnum-2][(countnum-countshft)-2]; holdcount+=1;} //(+)
else {hold[11+holdcount]=tri[countnum-2][countshft]; holdcount+=1;} break;

case 12: if (countshft<2) {hold[11+holdcount]=(999); holdcount+=1;}
... else {if (countshft<3) {hold[11+holdcount]=tri[countnum-2][0]; holdcount+=1;}
else {for (ucount=0;ucount<(countshft-2);ucount+=1)
... {hold[11+holdcount]=sum(tri[countnum-countshft+ucount][ucount],
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... path[countshft-3-ucount]); holdcount+=1;}
{hold[11+holdcount]=tri[countnum-2][countshft-2]; holdcount+=1;}}} break;

case 13: for (lcount=0;lcount<(countnum-countshft-1);lcount+=1) {if (lcount>countshft)
... {hold[11+holdcount]=sum(path[countnum-countshft-lcount-2],
... tri[countshft+lcount][countshft]); holdcount+=1;}
else {hold[11+holdcount]=sum(path[countnum-countshft-lcount-2],
... tri[countshft+lcount][lcount]); holdcount+=1;}}
if ((countshft!=(countnum/2))||((countnum%2)==1))
... {hold[11+holdcount]=tri[countnum-1][countshft]; holdcount+=1;}
... else hold[11+holdcount]=tri[countnum-1][countshft-1]; holdcount+=1; break;

case 14: if (countshft>0) {for (ucount=0;ucount<(countshft-1);ucount+=1)
... {hold[11+holdcount]=sum(path[countshft-ucount-2],
... tri[countnum-countshft+ucount][ucount]); holdcount+=1;}
... {hold[11+holdcount]=tri[countnum-1][countshft-1]; holdcount+=1;}} break;

case 15: hold[11+holdcount]=sum(path[countnum-countshft-2],path[countshft]);
... holdcount+=1; break; //*

case 16: if (countshft>0) {if (countshft>1)
... hold[11+holdcount]=sum(path[countnum-countshft],path[countshft-2]);
... else hold[11+holdcount]=path[countnum-1];} break; //*
}}
grundy=0;
count4=0;
upperbound1=(12+(countnum+lcount+ucount+1));
upperbound2 = (12+(countnum+lcount+ucount));
//this sorts the follower S-G’s.
for (count2=0; count2<2100; count2+=1)
{for (count=0;count<2099;count+=1)
if (hold[count]>hold[count+1]) {temp=hold[count];
hold[count]=hold[count+1];
hold[count+1]=temp;}}
//this finds the mex.
while (hold[count4]==grundy)
{if (hold[count4]<hold[count4+1]) grundy+=1;
count4+=1;}
tri[countnum][countshft]=grundy;
grundytriangle<</*"The grundy value of ("<<countnum<<",
... "<<countshft<<") is "<<*/grundy<<", ";
anotherarray[grundy]+=1;
anotherarray[100]+=1;}
count12+=1;
//this prints the raw data for tri-paths
grundytriangle<<"\n\n\n"<<countnum+1<<"\n";
cout<<countnum<<"\n\n";}
grundytriangle<<"\n\n\n";
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//this prints S-G distribution for tri-paths.
for (anothercountc=0; anothercountc<=100; anothercountc+=1)
,,, yetanotherarray[anothercountc]=0;
for (anothercounta=0; anothercounta <= 999; anothercounta+=1) {
for (anothercountc = 0; anothercountc <= 99; anothercountc++)
... justanothertemparray[anothercountc]=0;
for (anothercountb=0; anothercountb <= (anothercounta/2); anothercountb+=1) {
yetanotherarray[tri[anothercounta][anothercountb]]+=1;
... justanothertemparray[tri[anothercounta][anothercountb]]+=1;
... yetanotherarray[100]+=1;
}
grundytriangle<<anothercounta<<"\n";
for (finalcount=0; finalcount<=99; finalcount+=1)
... grundytriangle<<yetanotherarray[finalcount]<<"graphs had grundy value
... "<<finalcount<<", this represents "<<(100*((double (yetanotherarray[finalcount]))
... /(double (yetanotherarray[100]))))<<"%
... of all graphs. +"<<justanothertemparray[finalcount]<<"\n\n";
grundytriangle<<yetanotherarray[100]<<" graphs were checked.";
}
grundytriangle.close();
}
//this function nim-sums.
int sum(int a,int b)
{
int binarray[10],bincount,tot;
for (bincount=0;bincount<=9;bincount+=1)
{if ((int (b)%2)==(int((a)%2))) binarray[bincount]=0;
else binarray[bincount]=1;
b-=(b%2);
b=(b/2);
a-=(a%2);
a=(a/2);
}
tot=0;
for (bincount=0;bincount<=9;bincount+=1)
{if (binarray[bincount]==1) tot+=pow(2,bincount);}
return (tot);
}

14.4. Losing Graphs Code.
import networkx
from sage.graphs.graph_isom import perm_group_elt, orbit_partition
from sage.groups.perm_gps.partn_ref.refinement_graphs import search_tree
__all__ = [’read_graph6’, ’parse_graph6’, ’read_graph6_list’,

’read_sparse6’, ’parse_sparse6’, ’read_sparse6_list’]
from networkx.exception import NetworkXException, NetworkXError
from networkx.utils import _get_fh
def read_graph6_list(path):

"""Read simple undirected graphs in graph6 format from path.
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Returns a list of Graphs, one for each line in file."""
fh=_get_fh(path,mode=’r’)
glist=[]
for line in fh:

line = line.strip()
if not len(line): continue
glist.append(parse_graph6(line))

return glist
def graph6data(str):

"""Convert graph6 character sequence to 6-bit integers."""
v = [ord(c)-63 for c in str]
if min(v) < 0 or max(v) > 63:

return None
return v

def graph6n(data):
"""Read initial one or four-unit value from graph6 sequence.
Return value, rest of seq."""
if data[0] <= 62:

return data[0], data[1:]
return (data[1]<<12) + (data[2]<<6) + data[3], data[4:]

def parse_graph6(str):
"""Read undirected graph in graph6 format."""
if str.startswith(’>>graph6<<’):

str = str[10:]
data = graph6data(str)
n, data = graph6n(data)
nd = (n*(n-1)//2 + 5) // 6
if len(data) != nd:

raise NetworkXError, ’Expected %d bits but got %d in graph6’ %
... (n*(n-1)//2, len(data)*6)

def bits():
"""Return sequence of individual bits from 6-bit-per-value
list of data values."""
for d in data:

for i in [5,4,3,2,1,0]:
yield (d>>i)&1

G=networkx.Graph()
G.add_nodes_from(range(n))
for (i,j),b in zip([(i,j) for j in range(1,n) for i in range(j)], bits()):

if b: G.add_edge(i,j)
return G

# All of the above functions are used to convert textfiles of graphs saved in
#graph6 format into lists of graphs as Sage object.

def getGraphs(path):
ret = []
temp = read_graph6_list(path)
for t in temp:
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ret.append(Graph(t))
return ret
def getAntiMoves(lis, k):
remain=0
temp = []
shorter = []
ret = []
if k == 0:
for i in range(len(lis)):
temp.append(0)
return [temp]
current = 0
if len(lis) == 0:
return [[]]
if len(lis) == 1:
return[[k]]
if lis[0]<=k:
mini=lis[0]
else:
mini=k
shorter = lis[:]
del shorter[0]
for d in shorter:
remain+=d
for j in range(mini+1):
if remain>=k-mini+j:
temp = getAntiMoves(shorter,k-mini+j)
# This function works in a recursive manner, which is why it calls itself.

for t in temp:
ret.append([mini-j] + t)
return ret
def getVerts(o2, lis):
ret = []
for l in lis:
temp = []
for ll in range(len(l)):
if l[ll]==1:
temp.append(o2[ll])
ret.append(temp)
return ret
def findLosses(vertices, edges, los):
lose=[]
# ’lose’ will be the list of losing graphs

group=[]
path2 = ’/Users/brice/Desktop/sage/textfiles/losing/’ + str(los)
lose = getGraphs(path2)
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for r in range(los+1,edges+1):
path = ’/Users/brice/Desktop/sage/textfiles/ninegraphs/errors/’ + str(r)
Ltemp = getGraphs(path)
# ’Ltemp’ is the list of graphs with ’r’ edges and ’vertices’ vertices

L = []
for i in range(vertices):
L.append([])
for j in range(vertices):
L[i].append([])
for k in range(vertices):
L[i][j].append([])
for z in range(vertices):
L[i][j][k].append([])
for y in range(vertices):
L[i][j][k][z].append([])
for l in Ltemp:
ll = l.canonical_label()
L[ll.degree(0)][ll.degree(1)][ll.degree(2)][ll.degree(3)][ll.degree(4)].append(ll)
# Here we store the graphs in ’Ltemp’ in a more organized
#fashion in the list (of lists) we call ’L’

for t in range(len(lose)):
if (lose[t].num_edges()+vertices-1)>=r:
# The above if statement ensures that the losing graph has
#enough edges to have a parent with ’r’ edges

checked = []
group = lose[t].automorphism_group()
orb = group.orbits()
group=[]
verts = []
for i in range(vertices):
verts.append(i)
for g in orb:
for gg in g:
if gg in verts:
verts.remove(gg)
if len(verts)>0:
for l in verts:
orb.append([l])
for g in orb:
#We only want to make antimoves to one vertex from each orbit;
#this cuts down on redundancy.

a = g[0]%vertices
# ’a’ is the vertex to which we will be adding edges (i.e., making an anti-move)
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tempo = lose[t].degree(a)
if (lose[t].num_edges()+vertices-(tempo+1))>=r:
# The above if statement ensures that the degree of the vertex
#is small enough to allow us to make an anti-move that gets a
#parent graph with ’r’ edges

orb2=[]
for ggg in range(vertices):
orb2.append(ggg)
orb2.remove(a)
for j in lose[t].neighbor_iterator(a):
orb2.remove(j)
moves1=[]
for o in orb2:
moves1.append(1)
moves = getVerts(orb2, getAntiMoves(moves1, r-lose[t].num_edges()))
for o in range(len(moves)):
for oo in moves[o]:
lose[t].add_edge(a,oo)
# Here we make the anti-move by adding edges

tempgraph = lose[t].canonical_label()
# Above we canonically label the parent graph, which we call ’tempgraph’

deg0 = tempgraph.degree(0)
deg1 = tempgraph.degree(1)
deg2 = tempgraph.degree(2)
deg3 = tempgraph.degree(3)
deg4 = tempgraph.degree(4)
if tempgraph not in checked:
checked.append(tempgraph.copy())
if tempgraph in L[deg0][deg1][deg2][deg3][deg4]:
L[deg0][deg1][deg2][deg3][deg4].remove(tempgraph)
# Above we remove ’tempgraph’ from ’L’, since we know ’tempgraph’ is winning

for oo in moves[o]:
lose[t].delete_edge(a,oo)
# Here we undo the anti-move by removing the edges we added

for i in range(vertices):
for j in range(vertices):
for k in range(vertices):
for z in range(vertices):
for y in range(vertices):
lose = lose + L[i][j][k][z][y]
# Above we add any graphs left over in ’L’ to ’lose’
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makenew = str(r)
filename = ’losing’ + makenew + ’.txt’
f = open(filename, ’w’)
for l in lose:
f.write(l.graph6_string())
f.write(’\n’)
return lose

14.5. Graph S-G Number Code.
def getMoves(lis, k):
remain=0
temp = []
shorter = []
ret = []
if k == 0:
for i in range(len(lis)):
temp.append(0)
return [temp]
current = 0
if len(lis) == 0:
return [[]]
if len(lis) == 1:
return[[k]]
if lis[0]<=k:
mini=lis[0]
else:
mini=k
shorter = lis[:]
del shorter[0]
for d in shorter:
remain+=d
for j in range(mini+1):
if remain>=k-mini+j:
temp = getMoves(shorter,k-mini+j)
for t in temp:
ret.append([mini-j] + t)
return ret
def getVerts(o2, lis):
ret = []
for l in lis:
temp = []
for ll in range(len(l)):
if l[ll]==1:
temp.append(o2[ll])
ret.append(temp)
return ret
def makeNeat(graphs, grunds, vertices):
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ret = []
retg = []
for i in range(vertices):
ret.append([])
retg.append([])
for j in range(vertices):
retg[i].append([])
ret[i].append([])
for k in range(vertices):
retg[i][j].append([])
ret[i][j].append([])
for t in range(len(graphs)):
tt = graphs[t].canonical_label()
deg0 = tt.degree(0)
deg1 = tt.degree(1)
deg2 = tt.degree(2)
ret[deg0][deg1][deg2].append(tt)
retg[deg0][deg1][deg2].append(grunds[t])

return ret, retg
def findMex(gruns):
sett = set(gruns)
for j in range(len(sett)+1):
if j not in sett:
return j
def getSG(vertices):
u = (vertices*(vertices-1)/2) + 1
$ u equals ’vertices’ choose 2

unord = []
#’unord’ will be the unordered list of graphs,
#separated into sub-lists by the number of edges

unordG = []
# ’unordG’ will be the list of S-G numbers of the graphs
#in unord, stored in the same order

master = []
# ’master’ will be the list of graphs once they
#have been organized by the makeNeat function

masterG = []
# ’masterG’ will be the list of S-G numbers of
#the graphs in ’master’, stored in the same order

empty_graph = Graph()
for i in range(vertices):
empty_graph.add_vertex(i)
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gees = [empty_graph]
grees = [0]
unord.append(gees)
unordG.append(grees)
gs, grs = makeNeat(gees, grees, vertices)
master.append(gs)
masterG.append(grs)
for e in range(1, u):
G= GraphQuery(display_cols=[’graph6’],num_vertices=vertices, num_edges=e)
C = G.get_graphs_list()
# ’C’ is the list of graphs with ’e’ edges

unord.append(C)
grundies = []
for g in C:
grunds = []
for i in range(vertices):
verts = []
movelen = []
move1 = []
moves = []
for j in g.neighbor_iterator(i):
verts.append(j)
for kk in range(len(verts)):
movelen.append(1)
for k in range(1, len(verts)+1):
tried = []
move1 = getMoves(movelen, k)
moves = getVerts(verts, move1)
LL = master[e-k]
GG = masterG[e-k]
for m in moves:
for mm in m:
g.delete_edge(i, mm)
# Here we make a move on ’g’ by deleting edges

tempgraph = g.canonical_label()
deg0 = tempgraph.degree(0)
deg1 = tempgraph.degree(1)
deg2 = tempgraph.degree(2)
if tempgraph not in tried:
tried.append(tempgraph.copy())
index = LL[deg0][deg1][deg2].index(tempgraph)
grunds.append(GG[deg0][deg1][deg2][index])
for mm in m:
g.add_edge(i, mm)
# Here we undo the move we had made on ’g’, by adding back the edges
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grundies.append(findMex(grunds))
# Here we find the mex of the S-G numbers of all child graphs of ’g’

unordG.append(grundies)
newG, newGr = makeNeat(C, grundies, vertices)
master.append(newG)
masterG.append(newGr)
return unord, unordG

14.6. Graph S-G Heuristic Code.
def adjust(graphs, gruns):
ret = []
t = graphs[0][0].num_verts()
m = (t*(t-1)/2) + 1
for i in range(m):
temp=[]
for j in range(i+1):
temp.append(0)
for dd in range(len(gruns[i])):
temp[gruns[i][dd]] = temp[gruns[i][dd]] + factorial(t)/
... graphs[i][dd].automorphism_group(return_group=False, order=True)
ret.append(temp)
return ret

def percentage(distr):
ret = []
for i in range(len(distr)):
temp = []
total = 0
for h in distr[i]:
total+=h
for j in range(i+1):
tot = distr[i][j]
a = tot/total*100.
if a == 0:
temp.append(0)
elif a == 100:
temp.append(100)
else:
temp.append(round(a,1))
ret.append(temp)
return ret

def typicalDegree(m,grafs):
degre = []
vertices = grafs[0][0].num_verts()
M = (vertices*(vertices-1)/2)
x = factorial(M)/(factorial(m)*factorial(M-m))
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tot = 2**x
for i in range(vertices):
degre.append(0)
for g in grafs[m]:
se = g.degree()
se.sort()
for i in range(vertices):
degre[i] = degre[i] + se[i]*(factorial(vertices)/
... g.automorphism_group(return_group=False, order=True))
for i in range(vertices):
degre[i] = degre[i]/(1.*x)
degre[i] = round(degre[i],0)

return degre

def predictG(pers,deg,m):
prob = []
for i in range(m+1):
prob.append(1)
for i in range(m+1):
for k in range(i):
prob[i] *= (1-probCant(pers,deg,m,k))
prob[i] *= probCant(pers,deg,m,i)
prob[i] *= 100
prob[i] = round(prob[i],1)
if prob[i] == 0:
prob[i] = 0
return prob

def n_k(n,k):
#This function returns n choose k

return factorial(n)/(factorial(k)*factorial(n-k))

def probCant(pers, deg, m, s):
prob = 1
if s <= m-1:
prob *= ((1-(pers[m-1][s]/100))^m)
for d in deg:
for k in range(2,d+1):
if s<=m-k:
num = n_k(d,k)
prob *= ((1-(pers[m-k][s]/100))^num)
return prob

def generateH(n):
top = n*(n-1)/2 + 1
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graphs, grundy = getSG(n)
pats = adjust(graphs,grundy)
perc = percentage(pats)
ret = []
for j in range(4):
ret.append(perc[j])
for j in range(4, top):
degr = typicalDegree(j,graphs)
ret.append(predictG(perc, degr, j))
return ret, perc

15. Appendix C: Cn,k periods

The following are the periods for one-legged caterpillars Cn,k. For
each period, a leg has been fixed on the index denoted and the length of
the caterpillar is increased. Exceptions before the period begins have
been listed for caterpillars with periods of twelve up to index 25. “*””s
denote lengths on on which the index is out of range.

Table for Cn,1

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ 2 3 4 5 6 2 1 0 8 6 0
12 1 2 3 8 5 12 7 1 0 8 9 14
24 1 2 3 11 4 7 12 14 0 16 2 4
36 12 2 3 10 4 7 15 1 16 9 18 16
48 12 2 3 10 16 7 12 1 16 18 11 16
60 12 2 22 11 16 7 12 1 20 24 16 26
72 12 13 22 11 16 24 15 14 16 22 19 16
84 12 13 19 11 16 24 15 14 16 25 11 16
96 12 13 22 11 16 7 15 1 20 25 19 11
108 12 13 22 11 32 19 22 14 20 22 19 11
120 12 13 22 11 25 19 22 14 16 22 19 11
132 21 13 22 11 25 19 22 14 21 25 19 11
144 21 13 22 11 25 19 22 14 20 22 19 11
156 21 13 22 11 25 19 22 14 21 22 19 11
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Table for Cn,2

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ 3 4 5 6 7 8 0 10 6 8
12 1 6 3 8 5 7 3 8 0 10 13 4
24 0 2 3 8 13 10 16 1 0 10 17 8
36 18 10 3 8 18 6 13 9 18 20 6 5
48 18 10 3 20 5 6 16 13 18 10 17 4
60 18 10 3 8 19 6 16 13 22 10 17 4
72 18 14 3 8 18 6 16 13 19 10 17 8
84 4 14 3 8 18 6 16 13 18 10 17 4
96 18 14 3 8 18 7 16 13 18 10 17 4
108 18 14 3 8 18 7 16 13 18 10 17 4
120 18 14 3 8 18 27 16 13 18 10 17 4
132 18 14 3 8 18 7 16 13 18 10 17 4

Table for Cn,3

0 1 2 3 4 5 6 7 8 9 10 11
0 0 0 0 1 5 6 2 8 5 2 6 12
12 1 2 8 9 11 14 6 0 5 14 12 16
24 14 3 8 16 4 14 6 8 11 16 7 13
36 5 3 2 9 11 14 16 8 11 16 12 5
48 14 15 2 16 11 22 7 8 1 11 8 13
60 14 11 2 16 11 21 7 8 10 11 12 16
72 14 15 2 8 11 21 24 12 16 11 21 5
84 14 15 2 8 11 21 7 8 16 11 25 5
96 14 21 2 8 11 16 21 8 16 11 25 5
108 14 15 2 8 11 21 16 12 19 11 25 5
120 14 15 2 8 11 21 28 12 16 11 19 5
132 14 15 2 8 11 21 28 8 16 11 25 5
144 14 15 2 8 11 21 28 12 16 11 25 5
156 14 15 2 8 11 21 16 12 19 11 25 5
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Table for Cn,4

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ 4 6 7 8 3 10 8 5
12 4 11 3 4 8 10 13 8 16 13 8 4
24 17 16 18 1 11 10 18 8 1 2 19 13
36 4 19 13 1 11 4 22 8 17 21 22 13
48 4 25 13 26 11 14 7 4 13 24 8 13
60 4 24 13 8 11 14 28 4 13 24 19 13
72 4 19 13 1 11 14 7 4 1 24 22 13
84 4 7 13 8 11 14 7 4 14 24 22 13
96 4 7 13 8 11 14 7 4 13 11 22 13
108 4 7 13 8 11 14 7 4 14 24 22 13
120 4 7 13 8 11 14 7 4 14 11 22 13

Table for Cn,5

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ 3 2 8 5 10 3 6
12 1 14 6 8 0 3 6 8 15 10 3 9
24 1 18 3 8 4 10 6 16 0 6 7 8
36 5 10 3 17 0 15 17 12 5 10 3 8
48 5 15 6 17 0 15 6 12 5 6 3 12
60 5 10 16 9 4 10 25 12 5 6 3 8
72 5 10 3 5 4 19 17 12 5 6 3 8
84 5 10 6 17 26 22 25 12 5 6 3 8
96 5 10 16 5 4 22 17 12 26 6 3 8
108 5 10 24 5 23 22 25 12 19 6 3 8
120 5 10 24 5 23 22 25 12 5 6 3 8
132 5 10 24 5 26 22 25 12 19 6 3 8

Table for Cn,6

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ 2 1 0 2 8 6
12 4 2 8 1 4 3 6 8 10 13 7 15
24 4 16 8 18 4 13 6 18 11 10 7 4
36 5 16 3 21 4 7 6 18 24 2 13 18
48 5 16 18 1 4 21 6 24 8 2 23 18
60 5 24 8 1 4 21 6 18 11 8 23 22
72 5 17 8 1 4 21 6 18 11 2 7 22
84 5 16 8 1 4 21 6 24 25 2 23 22
96 5 29 8 1 4 21 6 18 11 2 23 22
108 5 17 8 1 4 21 6 18 11 2 23 22
120 5 30 8 1 4 30 6 18 11 2 23 22
132 5 32 8 1 4 21 6 18 11 2 23 22
144 5 30 8 1 4 30 6 18 11 2 23 29
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Table for Cn,8

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 8 6 12
12 4 14 8 10 4 14 2 13 0 15 6 4
24 0 16 3 18 4 7 3 1 0 10 7 13
36 1 2 3 8 23 24 18 19 16 11 7 21
48 15 16 3 8 5 21 2 13 24 27 6 22
60 1 14 3 22 25 7 2 13 16 32 7 22
72 1 16 19 22 20 21 2 13 1 17 23 22
84 1 15 3 8 25 21 2 13 1 32 27 22
96 1 14 27 32 24 27 2 13 1 32 7 4
108 1 14 18 22 24 32 2 13 1 32 23 4
120 1 14 27 32 24 21 2 13 1 32 27 22
132 1 14 27 35 25 21 2 13 1 32 33 4
144 1 14 18 35 24 21 2 13 1 32 27 4
156 1 14 18 35 24 21 2 13 1 32 27 4
168 1 14 27 32 24 21 2 13 1 32 27 4
180 1 14 18 35 24 21 2 13 1 32 27 4
192 1 14 18 35 24 21 2 13 1 32 34 4
204 1 14 18 42 24 21 2 13 1 35 27 4
216 1 14 18 38 24 21 2 13 1 32 27 4
228 1 14 18 35 24 21 2 13 1 32 27 4
240 1 14 18 42 24 21 2 13 1 44 27 4
252 1 14 18 38 24 21 2 13 1 37 43 4
264 1 14 18 38 24 21 2 13 1 32 27 4
276 1 14 18 37 24 21 2 13 1 44 27 4
288 1 14 18 37 24 21 2 13 1 37 27 4
300 1 14 18 38 24 21 2 13 1 37 27 4
312 1 14 18 37 24 21 2 13 1 37 42 4
324 1 14 18 37 24 21 2 13 1 37 27 4
336 1 14 18 37 24 21 2 13 1 37 27 4
348 1 14 18 37 24 21 2 13 1 37 27 4
360 1 14 18 37 24 21 2 13 1 37 27 4
372 1 14 18 37 24 21 2 13 1 37 42 4
384 1 14 18 37 24 21 2 13 1 37 27 4
396 1 14 18 37 24 21 2 13 1 37 27 4
408 1 14 18 37 24 21 2 13 1 37 27 4
420 1 14 18 37 24 21 2 13 1 37 27 4
432 1 14 18 37 24 21 2 13 1 37 42 4
444 1 14 18 37 24 21 2 13 1 37 27 4
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Table for Cn,9

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 2 6 8
12 1 11 6 1 5 14 2 1 4 10 7 9
24 1 10 6 8 4 15 2 8 16 11 7 12
36 1 11 16 8 1 11 2 13 1 11 2 12
48 1 10 21 8 4 14 19 1 4 11 2 12
60 1 2 7 8 1 11 2 1 4 11 2 12
72 1 11 7 8 21 11 6 1 19 11 2 12
84 1 11 16 8 21 11 25 1 4 11 2 12
96 1 11 7 8 21 11 16 13 1 11 2 12
108 1 11 7 8 21 11 19 13 1 11 2 12
120 1 11 7 8 16 11 25 13 1 11 2 12
132 1 11 7 8 16 11 19 13 1 11 2 12

Table for Cn,10

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 6 0
12 1 2 3 8 4 3 2 1 4 8 6 4
24 1 8 7 15 4 3 2 1 4 6 7 4
36 1 16 3 5 4 7 2 14 15 16 7 4
48 1 2 3 1 4 7 2 1 21 2 7 4
60 1 2 8 1 4 7 2 1 4 16 7 4
72 1 2 8 1 4 7 2 1 21 16 7 4
84 1 2 24 1 4 7 2 1 21 2 7 4
96 1 2 8 1 4 7 2 1 11 2 7 4
108 1 2 8 1 4 7 2 1 21 2 7 4
120 1 2 22 1 4 7 2 1 21 2 7 4
132 1 2 22 1 4 7 2 1 21 2 7 4
144 1 2 8 1 4 7 2 1 21 2 7 4
156 1 2 22 1 4 7 2 1 21 2 7 4
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Table for Cn,11

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4
12 1 6 8 4 0 3 2 13 4 8 3 13
24 1 15 7 16 19 3 2 10 0 21 22
36 0 1 16 3 13 19 3 2 24 0 2 21
48 0 1 15 16 19 24 3 2 21 25 2 21
60 0 1 16 19 1 16 3 13 28 21 24 27
72 0 1 16 19 1 24 3 13 32 25 2 21
84 16 1 30 19 1 24 3 2 30 21 2 32
96 21 1 32 33 1 16 3 13 30 21 2 27
108 21 1 30 19 1 35 3 13 21 38 2 21
120 37 1 30 32 1 24 3 13 21 22 2 27
132 21 1 30 32 1 35 3 13 21 34 2 16
144 21 1 30 32 1 35 3 13 21 22 2 16
156 21 1 32 33 1 35 3 13 21 22 2 16
168 21 1 30 32 1 19 3 13 21 22 2 16
180 21 1 32 37 1 19 3 13 21 22 2 16
192 21 1 37 21 1 19 3 13 21 22 2 16
204 21 1 37 21 1 19 3 13 21 22 2 16
216 21 1 32 21 1 19 3 13 21 22 2 16
228 21 1 37 21 1 19 3 13 21 22 2 16
240 21 1 32 21 1 19 3 13 21 22 2 16

Table for Cn,13

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ 2 3 8 11 10 6 8 0 15 7 4
24 1 11 2 8 1 11 2 8 0 18 7 9
36 1 11 2 1 4 11 2 16 1 10 6 4
48 1 14 2 1 19 10 2 12 1 19 26 4
60 1 14 2 20 24 7 2 12 1 14 7 4
72 1 11 3 1 24 7 2 12 1 18 7 8
84 1 19 2 24 27 7 2 16 1 22 7 8
96 1 19 13 8 24 7 2 21 1 23 7 8
108 1 19 29 21 4 7 2 21 1 22 7 8
120 1 19 13 24 4 7 2 16 1 22 7 8
132 1 19 13 21 4 7 2 33 1 22 7 8
144 1 19 13 21 4 7 2 21 1 22 7 8
156 1 19 13 21 4 7 2 31 1 22 7 8
168 1 19 13 21 4 7 2 32 1 22 7 8
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Table for Cn,15

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ 1 5 7 6 8 15 13 8 4
24 1 8 7 13 1 7 2 1 4 14 7 4
36 1 11 8 13 4 21 2 8 18 19 7 4
48 1 8 21 1 4 7 6 8 1 2 7 4
60 5 8 2 1 4 7 8 16 1 14 7 4
72 1 16 2 13 4 7 22 8 1 2 7 4
84 1 24 2 1 4 7 8 19 1 2 7 4
96 1 24 2 1 4 7 8 24 1 2 7 4
108 1 16 2 1 4 7 2 8 1 2 7 4

Table for Cn,17

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ 3 7 8 5 13 3 15
24 4 16 6 15 19 10 2 16 4 10 3 8
36 1 19 3 15 1 10 2 16 0 15 2 22
48 1 10 3 22 0 21 6 9 18 19 3 22
60 1 10 6 24 4 21 2 19 21 24 3 22
72 1 30 21 24 0 21 6 16 5 24 3 22
84 5 29 32 27 4 22 6 4 32 15 3 21
96 1 37 6 16 4 29 30 24 35 32 3 21
108 10 37 21 24 4 22 6 4 22 24 3 29
120 10 22 21 24 4 29 37 4 19 24 3 29
132 10 22 32 24 4 29 37 4 35 24 3 21
144 10 22 37 24 4 29 32 4 22 16 3 29
156 10 32 21 24 4 29 32 4 22 24 3 37
168 10 22 32 24 4 29 32 4 41 24 3 29
180 10 22 29 24 4 29 32 4 37 16 3 29
192 10 22 32 24 4 29 32 4 22 16 3 29
204 10 22 32 24 4 29 32 4 38 24 3 29
216 10 22 29 24 4 29 32 4 38 16 3 29
228 10 22 29 24 4 29 32 4 41 16 3 29
240 10 22 32 24 4 29 32 4 37 16 3 29
252 10 22 29 24 4 29 32 4 37 16 3 29
264 10 22 29 24 4 29 32 4 38 16 3 29
276 10 22 29 24 4 29 32 4 37 16 3 29
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Table for Cn,18

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ ∗ 1 0 14 8 9 4
24 2 3 8 4 3 6 8 0 14 6 8 4
36 11 3 1 4 14 6 8 17 10 7 4 5
48 11 18 8 4 7 6 12 17 10 18 13 5
60 15 3 1 4 18 6 12 17 2 7 8 5
72 15 17 8 4 21 6 12 18 2 7 18 5
84 15 13 8 4 24 6 13 17 28 7 24 5
96 14 13 8 4 17 6 13 17 2 7 23 5
108 29 13 8 4 17 6 13 27 2 7 23 27
120 29 13 8 4 20 24 13 18 2 7 8 24
132 32 13 8 4 32 6 13 18 2 7 8 20
144 24 13 8 4 11 20 13 17 2 7 8 32
156 29 13 8 4 11 20 13 17 2 7 8 20
168 29 13 8 4 11 23 13 18 2 7 8 20
180 29 13 8 4 11 20 13 18 2 7 8 20
192 29 13 8 4 11 20 13 17 2 7 8 20
204 29 13 8 4 11 20 13 17 2 7 8 20
216 29 13 8 4 11 20 13 18 2 7 8 20
228 29 13 8 4 11 20 13 17 2 7 8 20

Table for Cn,19

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 0 10 12 4
24 1 16 3 18 4 3 2 1 0 10 7 9
36 1 11 3 21 4 11 2 8 0 14 7 4
48 1 11 3 8 4 7 6 12 0 16 20 4
60 1 15 3 9 25 7 2 12 0 10 19 4
72 1 15 3 8 4 14 2 12 4 21 26 13
84 1 15 3 8 4 28 6 25 0 14 25 12
96 1 25 3 8 4 28 2 25 16 32 26 13
108 1 28 3 8 4 14 2 19 32 25 7 13
120 1 15 3 8 31 28 2 19 16 32 7 22
132 1 16 3 8 4 31 2 19 16 32 7 22
144 1 33 3 8 31 28 2 19 16 32 7 13
156 1 25 3 8 31 28 2 19 16 32 7 22
168 1 25 3 8 31 28 2 19 16 32 7 22
180 1 32 3 8 31 28 2 19 16 32 7 22
192 1 25 3 8 31 28 2 19 16 32 7 22
204 1 25 3 8 31 28 2 19 16 37 7 22
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Table for Cn,20

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 8 13 16
24 17 18 8 10 4 15 2 10 0 18 7 4
36 13 19 3 21 4 7 3 1 0 10 7 4
48 1 2 3 21 4 13 6 16 11 18 26 21
60 5 28 27 24 25 13 6 16 28 8 7 21
72 1 23 3 17 4 7 13 32 0 8 26 31
84 1 32 31 36 4 7 2 31 1 25 23 21
96 1 28 31 21 23 22 6 31 1 39 36 15
108 1 28 33 32 38 7 6 28 1 8 20 4
120 1 40 33 32 39 7 6 31 1 35 26 4
132 1 28 33 40 43 7 6 35 1 23 26 17
144 1 28 41 40 38 7 6 28 1 35 26 4
156 1 28 37 40 43 7 6 28 1 26 27 4
168 1 43 33 40 38 7 6 28 1 43 26 4
180 1 31 33 40 38 7 6 28 1 26 27 4
192 1 48 33 40 38 7 6 28 1 26 27 4
204 1 46 33 40 38 7 6 28 1 26 40 4
216 1 45 33 48 38 7 6 28 1 26 27 4
228 1 46 33 40 38 7 6 28 1 26 27 4

Table for Cn,21

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 6 9 4
24 14 16 3 18 11 7 2 1 0 14 7 4
36 1 2 3 1 4 7 2 1 11 2 7 4
48 1 2 8 9 4 7 2 0 4 2 7 4
60 18 20 8 1 4 7 18 25 21 14 7 4
72 14 15 2 13 4 7 2 24 21 2 7 4
84 1 3 2 24 4 7 13 18 24 2 7 4
96 14 17 2 9 4 16 13 27 32 2 7 4
108 14 2 27 32 4 7 13 32 24 2 7 4
120 14 2 27 32 4 35 13 18 32 2 7 4
132 14 2 13 22 4 16 13 18 32 2 7 4
144 14 2 13 37 4 27 13 18 27 2 7 4
156 14 2 24 29 4 32 13 18 27 2 7 4
168 14 2 13 32 4 27 13 18 27 2 7 4
180 14 2 13 37 4 27 13 18 27 2 7 4
192 14 2 13 29 4 27 13 18 27 2 7 4
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Table for Cn,22

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 7 14
24 0 3 18 8 4 17 3 8 4 21 6 9
36 0 11 6 15 4 11 3 1 4 6 7 18
48 1 16 3 5 4 15 2 19 1 10 7 23
60 1 16 3 18 4 20 26 8 1 20 7 24
72 0 27 2 19 4 20 3 8 32 16 6 18
84 32 20 28 18 4 20 32 1 36 10 7 12
96 1 3 27 9 4 31 35 8 1 10 29 22
108 32 20 38 23 4 21 34 8 1 10 35 32
120 40 3 35 9 5 20 42 8 32 10 29 22
132 32 3 35 9 4 17 38 1 32 10 35 41
144 32 3 35 9 5 21 35 8 32 10 29 22
156 41 3 35 9 5 21 47 8 32 10 35 22
168 32 3 35 9 5 17 35 8 32 10 35 22
180 32 3 35 9 5 21 35 8 32 10 35 22

Table for Cn,23

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4
24 1 2 8 1 4 13 2 1 16 6 22 4
36 1 2 8 4 1 14 2 1 11 6 4 13
48 1 2 18 1 4 13 2 1 17 2 21 4
60 1 2 13 1 4 20 2 1 10 8 7 4
72 1 2 8 13 4 7 2 1 16 6 7 4
84 1 2 8 1 4 7 2 1 25 2 7 4
96 1 27 8 1 4 7 21 1 16 2 7 4
108 1 2 8 1 4 7 13 1 16 8 7 4
120 1 30 8 1 4 7 2 1 16 2 7 4
132 1 30 8 1 4 7 13 1 8 2 7 4
144 1 29 8 1 4 7 13 1 16 2 7 4
156 1 29 8 1 4 7 13 1 24 2 7 4
168 1 21 8 1 4 7 13 1 24 2 7 4
180 1 29 8 1 4 7 13 1 24 2 7 4
192 1 21 8 1 4 7 13 1 24 2 7 4
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Table for Cn,25

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
24 ∗ 2 3 8 4 10 6 18 0 10 7 4
36 1 11 2 8 4 15 2 8 0 10 7 18
48 1 11 2 1 4 11 2 24 1 10 6 4
60 5 14 7 1 4 10 2 9 1 10 23 4
72 1 14 17 9 4 7 2 12 1 10 7 4
84 1 11 3 1 4 7 2 12 1 10 21 4
96 5 26 20 1 4 7 2 12 4 10 28 8
108 1 18 24 1 4 7 2 12 1 10 29 28
120 5 15 25 1 4 7 2 12 26 10 28 8
132 5 16 25 1 4 7 2 19 17 10 28 8
144 5 26 18 1 4 11 2 18 26 10 28 8
156 5 32 18 1 4 7 2 12 17 10 28 8
168 5 32 24 1 4 11 2 37 17 10 28 8
180 5 32 18 1 4 11 2 40 17 10 28 8
192 5 32 18 1 4 11 2 39 17 10 28 8
204 5 36 18 1 4 11 2 39 17 10 28 8
216 5 32 18 1 4 11 2 35 17 10 28 8
228 5 32 18 1 4 11 2 35 17 10 28 8
240 5 32 18 1 4 11 2 39 17 10 28 8
252 5 32 18 1 4 11 2 35 17 10 28 8

The following sets of caterpillars have the given periods of twelve start-
ing at the listed index: Cn,26 (Period beginning at Index 240):

1, 14, 2, 1, 16, 7, 2, 13, 16, 2, 7, 4

Cn,27 (Period beginning at Index 252):
30, 7, 25, 1, 26, 32, 28, 4, 26, 11, 24, 8

Cn,28 (Period beginning at Index 264):
42, 15, 16, 1, 4, 14, 2, 29, 32, 2, 7, 4

Cn,29 (Period beginning at Index 252):
1, 35, 26, 1, 19, 28, 2, 37, 14, 2, 7, 21

Cn,30 (Period beginning at Index 252):
13, 38, 47, 1, 4, 11, 14, 22, 21, 2, 7, 8
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Cn,31 (Period beginning at Index 156):
1, 14, 18, 1, 34, 11, 2, 12, 1, 2, 19, 8

Cn,37 (Period beginning at Index 168):
1, 24, 2, 1, 4, 11, 2, 12, 1, 2, 7, 8

Cn,45 (Period beginning at Index 276):
25, 7, 32, 25, 11, 32, 13, 4, 32, 25, 22, 32

Cn,46 (Period beginning at Index 276):
14, 3, 2, 1, 4, 37, 13, 4, 14, 2, 7, 4

Cn,47 (Period beginning at Index 204):
16, 7, 2, 1, 22, 11, 19, 4, 1, 2, 7, 8

The following sets of caterpillars have periods of 60 starting at the
given indices:

Cn,7 (Period beginning at Index 360):
5, 12, 18, 27, 17, 24, 6, 15, 10, 37, 41, 29
5, 12, 18, 27, 17, 29, 6, 15, 10, 27, 41, 30
5, 12, 18, 27, 17, 29, 6, 15, 10, 37, 41, 30
5, 12, 18, 27, 17, 29, 6, 15, 10, 37, 41, 29
5, 12, 18, 27, 17, 24, 6, 15, 10, 37, 41, 29

Cn,12 (Period beginning at Index 300):
22, 14, 28, 1, 4, 11, 25, 12, 28, 21, 7, 8
22, 14, 28, 1, 4, 11, 25, 12, 28, 21, 7, 8
22, 14, 25, 1, 4, 11, 25, 12, 28, 21, 7, 8
22, 14, 28, 1, 4, 11, 25, 12, 28, 21, 7, 8
22, 14, 28, 1, 4, 11, 25, 12, 31, 21, 7, 8

Cn,14 (Period beginning at Index 240):
33, 14, 26, 8, 25, 22, 12, 13, 21, 10, 26, 32
33, 14, 26, 8, 25, 22, 12, 13, 21, 10, 26, 32
28, 14, 26, 8, 28, 22, 12, 13, 21, 10, 26, 32
28, 14, 26, 8, 25, 22, 12, 13, 21, 10, 26, 32
28, 14, 26, 8, 25, 22, 12, 13, 21, 10, 26, 32

Cn,16 (Period beginning at Index 240):
31, 3, 28, 8, 32, 21, 28, 16, 21, 10, 25, 21
32, 3, 28, 8, 31, 21, 28, 16, 21, 10, 25, 21
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32, 3, 25, 8, 31, 21, 32, 16, 21, 10, 25, 21
32, 3, 25, 8, 31, 21, 28, 16, 21, 10, 25, 21
32, 3, 25, 8, 31, 21, 28, 16, 21, 10, 25, 21

Cn,24 (Period beginning at Index 240):
5, 14, 37, 1, 4, 11, 23, 12, 38, 11, 7, 8
5, 14, 37, 1, 4, 11, 23, 12, 29, 11, 7, 8
5, 14, 37, 1, 4, 11, 23, 12, 29, 11, 7, 8
5, 14, 30, 1, 4, 11, 23, 12, 29, 11, 7, 8
5 14, 37, 1, 4, 11, 23, 12, 29, 11, 7, 8

Cn,32 (Period beginning at Index 180):
24, 14, 18, 1, 4, 17, 32, 8, 1, 2, 7, 8
24, 14, 18, 1, 4, 17, 35, 8, 1, 2, 7, 8
24, 14, 18, 1, 4, 17, 35, 8, 1, 2, 7, 8
24, 14, 18, 1, 4, 17, 32, 8, 1, 2, 7, 8
24, 14, 18, 1, 4, 17, 32, 8, 1, 2, 7, 8

Cn,33 (Period beginning at Index 300):
7, 32, 14, 27, 8, 41, 4, 7, 13, 27, 1, 2
7, 32, 14, 27, 8, 41, 4, 7, 13, 30, 1, 2
7, 32, 14, 27, 8, 41, 4, 7, 13, 32, 1, 2
7, 32, 14, 27, 8, 41, 4, 7, 13, 27, 1, 2
7, 29, 14, 30, 8, 41, 4, 7, 13, 27, 1, 2

Cn,34 (Period beginning at Index 240):
14, 3, 2, 1, 4, 38, 13, 4, 37, 2, 3, 29
14, 3, 2, 1, 4, 38, 13, 4, 27, 2, 3, 29
14, 3, 2, 1, 4, 38, 13, 4, 27, 2, 3, 29
14, 3, 2, 1, 4, 38, 13, 4, 37, 2, 3, 29
14, 3, 2, 1, 4, 38, 13, 4, 37, 2, 3, 29

Cn,35 (Period beginning at Index 360):
5, 15, 27, 1, 37, 38, 31, 32, 1, 35, 21, 8
5, 15, 27, 1, 37, 38, 31, 32, 1, 21, 38, 8
5, 15, 27, 1, 37, 38, 31, 32, 1, 21, 38, 8
5, 15, 27, 1, 37, 38, 31, 32, 1, 35, 21, 8
5, 15, 27, 1, 37, 38, 31, 32, 1, 35, 21, 8

Cn,36 (Period beginning at Index 360):
14, 42, 22, 1, 4, 22, 23, 12, 37, 2, 11, 32
14, 42, 22, 1, 4, 22, 23, 12, 42, 2, 11, 21
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14, 42, 22, 1, 4, 22, 23, 12, 37, 2, 11, 21
14, 42, 22, 1, 4, 22, 23, 12, 37, 2, 11, 32
14, 42, 22, 1, 4, 22, 23, 12, 37, 2, 11, 32

Cn,38 (Period beginning at Index 240):
32, 7, 37, 1, 28, 32, 27, 13, 38, 10, 7, 18
32, 7, 37, 1, 28, 32, 27, 13, 38, 10, 7, 18
32, 7, 37, 1, 28, 32, 27, 13, 38, 10, 7, 18
32, 7, 37, 1, 28, 32, 27, 13, 38, 10, 7, 18
32, 7, 37, 1, 32, 41, 27, 13, 38, 10, 7, 18

Cn,39 (Period beginning at Index 300):
5, 48, 3, 21, 41, 35, 32, 21, 35, 22, 42, 25
5, 48, 3, 21, 41, 35, 32, 21, 35, 22, 42, 25
5, 48, 3, 21, 41, 35, 32, 21, 35, 22, 42, 25
5, 48, 3, 21, 41, 35, 32, 21, 35, 22, 42, 25
5, 48, 3, 21, 41, 35, 50, 21, 35, 22, 42, 25

Cn,40 (Period beginning at Index 300):
41, 7, 37, 44, 48, 27, 42, 4, 37, 10, 18, 24
41, 7, 37, 44, 48, 27, 42, 4, 37, 10, 18, 24
41, 7, 38, 44, 48, 27, 42, 4, 37, 10, 18, 24
41, 7, 38, 44, 48, 27, 42, 4, 37, 10, 18, 24
41, 7, 37, 44, 48, 27, 42, 4, 37, 10, 18, 24

Cn,42 (Period beginning at Index 300):
5, 15, 38, 1, 41, 11, 42, 28, 37, 16, 7, 8
5, 15, 38, 1, 41, 11, 42, 28, 37, 16, 7, 8
5, 15, 38, 1, 32, 11, 41, 28, 37, 16, 7, 8
5, 15, 38, 1, 32, 11, 41, 28, 37, 16, 7, 8
5, 15, 38, 1, 41, 11, 42, 28, 37, 16, 7, 8

Cn,44 (Period beginning at Index 360):
37, 16, 14, 44, 9, 25, 38, 37, 12, 38, 31, 26
37, 16, 14, 44, 9, 25, 38, 37, 12, 38, 31, 26
37, 16, 14, 44, 9, 25, 38, 44, 12, 38, 31, 26
37, 16, 14, 44, 9, 25, 38, 44, 12, 38, 31, 26
37, 16, 14, 44, 9, 25, 38, 37, 12, 38, 31, 26

Cn,48 (Period beginning at Index 360):
32, 48, 7, 35, 1, 11, 47, 44, 4, 21, 2, 11
32, 48, 7, 31, 1, 11, 47, 44, 4, 21, 2, 11
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32, 48, 7, 31, 1, 11, 47, 44, 4, 21, 2, 11
44, 32, 7, 31, 1, 11, 47, 44, 4, 21, 2, 11
44, 32, 7, 31, 1, 11, 47, 44, 4, 21, 2, 11

Cn,49 (Period beginning at Index 360):
1, 32, 2, 1, 4, 7, 2, 32, 1, 2, 7, 8
1, 32, 2, 1, 4, 7, 2, 32, 1, 2, 7, 8
1, 32, 2, 1, 4, 7, 2, 32, 1, 2, 7, 8
1, 35, 2, 1, 4, 7, 2, 32, 1, 2, 7, 8
1, 35, 2, 1, 4, 7, 2, 32, 1, 2, 7, 8

Cn,50 (Period beginning at Index 360):
31, 14, 51, 32, 25, 22, 35, 12, 25, 32, 26, 37
31, 14, 51, 32, 25, 22, 31, 12, 25, 32, 26, 37
31, 14, 51, 32, 25, 22, 31, 12, 25, 32, 26, 37
42, 14, 48, 32, 25, 22, 31, 12, 25, 32, 26, 37
42, 14, 48, 32, 25, 22, 31, 12, 25, 32, 26, 37
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16. Appendix D: Tri-Path Charts

16.1.

Series 1 indicates the frequency of S-G numbers. The x-axis represents
the S-G numbers and the y-axis is the number of times a given number
occurs.

16.2.

This chart shows the frequency of evil and odious numbers. Series 1 is
the evil numbers and series 2 is the odious numbers. Again, the x-axis
represents the S-G numbers and the y-axis represents their frequency.
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17. Appendix E: Supplemental Heursitics Charts

Below are some charts comparing the predicted vs. actual distribu-
tions of the S-G numbers for labeled graphs of order 5, 6, and 7. The
numbers in the top row are the S-G numbers, while the numbers in the
leftmost column indicate the number of edges.

5 vertices:

Figure 4.

edges type 0 1 2 3 4 5 6 7 8 9 10
4 heuristic 9.3 0 0.4 0 90.3 ∗ ∗ ∗ ∗ ∗ ∗
4 computed 7.1 33.3 0 0 59.5 ∗ ∗ ∗ ∗ ∗ ∗
5 heuristic 27.4 9.6 21.0 0 0.5 41.5 ∗ ∗ ∗ ∗ ∗
5 computed 28.6 11.9 23.8 0 0 35.7 ∗ ∗ ∗ ∗ ∗
6 heuristic 6.2 1.7 18.0 0.5 0.1 5.2 68.3 ∗ ∗ ∗ ∗
6 computed 0 4.8 2.4 0 0 0 92.9 ∗ ∗ ∗ ∗
7 heuristic 0.5 1.1 1.8 8.0 0.4 0.2 0 88.0 ∗ ∗ ∗
7 computed 8.3 0 0 41.7 0 0 0 50.0 ∗ ∗ ∗
8 heuristic 1.5 4.8 3.9 1.2 14.5 0.9 0 0.3 72.9 ∗ ∗
8 computed 0 0 33.3 0 0 0 0 0 66.7 ∗ ∗
9 heuristic 4.5 32.8 0.5 0 62.2 0 0 0 0 0 ∗
9 computed 0 0 0 0 100 0 0 0 0 0 ∗
10 heuristic 17.7 64.4 0 0 0 17.9 0 0 0 0 0
10 computed 100 0 0 0 0 0 0 0 0 0 0

See following pages for charts of 6 and 7 vertices (Figure 5 and Figure
6, respectively).
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