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Abstract. In this paper, we use the Sprague-Grundy theorem to

analyze modified versions of Nim played on various graphs. We also
describe the periodic behavior of the Sprague-Grundy numbers for

games played on paths, and caterpillars. A brief hueristic analysis

of the distribution of Sprauge-Grundy numbers for Nim played on
graphs of order n is discussed. This research was completed during

the Clemson University Math REU which was funded by the NSF
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1. Introduction

Nim is a simple impartial two player game in which players take turns
removing rocks from disjoint piles until there are no rocks remaining. The
player to pick up the last rock (or group of rocks) is the winner. We
introduce and analyze the version of Graph Nim where players take turns
removing edges from vertices in graphs instead of rocks from piles.

In Graph Nim, the players take turns removing edges that are incident
to a given vertex. The number of edges incident to a given vertex is said
to be the degree of the vertex; hence, the maximum number of edges that
can be removed in a player’s turn is equal to the degree of a specific vertex.
For example, if a vertex has degree 4, a player can remove 1, 2, 3, or all 4
edges from that vertex. The object of Graph Nim is to be the person to
remove the last set of edges from a given vertex.

2. Sprague-Grundy

2.1. Sprague-Grundy Function.

Definition. A follower is a position a player can obtain in one move in a
game.

Definition. Given a finite set of integers S, x is the minimum excluded
value if it is the smallest non-negative integer such that x /∈ S.

For example, for the set K = {0, 1, 3, 5, 6, 7} the mex is 2.
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Let F (x) denote the followers of a given position x. The Sprague-Grundy
function, g(x), is defined as

g(x) = mex {g(y) : y ∈ F (x)} .

Positions in impartial games, such as Nim, are either N-positions or
P-positions. An P-position is winning for the Previous player, while the
N-position is winning for the Next player. For the traditional game of Nim,
the winning strategy is to finish every move leaving the game’s Sprague-
Grundy value at zero because of the following theorem.

Theorem. A position in Nim is a P-position if and only if the nim-sum
of its components is zero.

It follows from the definition of the Sprague-Grundy function that once
a player is given a position in a game with a Sprague-Grundy number equal
to zero, then any move that player makes will change the value of the game
to some non-zero Sprague-Grundy number. It is also known that a player
can force a Sprague-Grundy value of zero onto the next player only if the
player was not handed a Sprague-Grundy value of zero at the beginning of
their turn.

Sprague-Grundy function values are helpful when analyzing Nim played
on graphs. The Sprague-Grundy theorem explains the reason why we take
interest in computing Sprague-Grundy numbers.

2.2. Sprague-Grundy Theorem.

Theorem. The Sprague-Grundy (S-G) value of a game consisting of many
disjoint games is the nim-sum of the Sprague-Grundy values of those com-
ponents.

In the case of traditional Nim, the S-G number of the entire game is the
addition of each pile’s S-G number. In other words, we can consider each
pile as a distinct game with its own S-G number. To calculate a nim-sum
with traditional Nim, we note that the S-G number for a pile of rocks is
simply the number of rocks in the pile. We then take the S-G numbers
from all piles and convert them to binary. The nim-sum is then found by
the addition of all converted S-G numbers mod 2.

For example, in a game with two piles below,
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we take the number of rocks in each pile, 5 and 3, and convert to binary.
We then have the nim-sum below.

1 0 1 = 5
+ 1 1 = 3

1 1 0 = 6

Thus, since the S-G number for this game is greater than zero, player one
has a winning strategy.

With the nim sum calculated for a given game, it is possible for a player
to determine whether a game win is achievable. We know that a game with
a nim-sum of zero is in P-position. Otherwise, if the nim-sum is non-zero,
the game is in N-position. So in order for a player to win a game of Nim
from an N-position, he should remove enough rocks to force the nim-sum
to zero.

3. Graph Nim on Paths

3.1. Simple Paths.

Definition. A path with n edges, denoted Pn, is a tree with two vertices of
degree one and all other vertices of degree two.

An example of P5 is shown below.

When playing Path Nim, we consider disjoint paths instead of disjoint
piles of rocks. A move is made by by removing either one edge, or two
edges connected to the same vertex.

From P5, we take away one edge to create two disjoint paths P1 and P3.

Also from P5, we can take away two edges creating disjoint paths P1 and
P2.
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We can also take away one edge, therefore creating two paths of equal
length. Creating two paths of equal length turns out to be the winning
strategy for Player 1.

By creating two paths of equal length, we force each path to have the
same Sprauge-Grundy number. It is easy to see that when we nim-sum
two equal numbers, we get zero. Therefore, if we are faced with P2c, where
c ∈ Z+, we know we need to remove the two inner edges incident with the
center vertex. Similarly, if we are faced with P2c+1, we only need to remove
the center edge. Therefore, since we know that Player 1 can always force
the nim-sum to zero at the end of their turn, paths can always be won by
Player 1. Since cycles are simply paths where the begining vertex is also
the terminating vertex, the first movement would result in a path; hence,
Player 2 wins Nim played on cycles.

For paths, the Sprague-Grundy numbers are as follows:

0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 1 4 3 2 1 4 2 6
12 4 1 2 7 1 4 3 2 1 4 6 7
24 4 1 2 8 5 4 7 2 1 8 6 7
36 4 1 2 3 1 4 7 2 1 8 2 7
48 4 1 2 8 1 4 7 2 1 4 2 7
60 4 1 2 8 1 4 7 2 1 8 6 7
72 4 1 2 8 1 4 7 2 1 8 2 7

The column labels 0 − 11 represent the least residues of the congruence
l(mod12). The row labels represent the length of path in intervals of 12.

We notice that, a periodic behavior occurs, so that a path of length
greater than 72 has an easily computable S-G number. Say that we have a
path of length l, where l ≥ 72, we can use modular arithmetic to calculate
its S-G number. For example, for l = 87, we have

87 ≡ 3 mod 12⇒ g(87) = 8.
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The difficulty with computing S-G numbers for paths of length less than
72 is that there are multiple exceptions before the S-G numbers become
become periodic.

4. Graph Nim on Caterpillars

Definition. A caterpillar, Cn, is defined as a path consisting of n edges
with one or more edges appended to t vertices of the path, t ≥ 1. Any vertex
not in the path has degree one and distance one from the main path.

Definition. A caterpillar, Cn,k is defined as a caterpillar of length n, where
n is the number of edges, and consisting of one extra edge (or a leg) on in-
dex k, where the leftmost vertex is index zero.

The gameplay of nim on caterpillars is similar to that on paths. Since
there are legs attached to the main path, there are more possible moves
available to a player. For example, consider C5,2 shown below:

All moves available to a player on a path of length five are also available
on this caterpillar (though with different results). In addition, the following
four moves are also available for each extra edge:

Removing all three edges connected at index 2, we get P2 and P1:

Removing the left edge and the appended edge connected to index 2, we
get P1 and P3:
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Removing the right edge and the appended edge connected to index 2,
we get P2 and P2:

Removing only the appended edge from index 2, we get P5:

To begin computing S-G values for caterpillars with one leg, we consider
the simplest caterpillar C2,1:

We can obtain the following graphs in one move:

6



g(P2) = 2 g(P2) = 2 g(P1) = 2

g(P1) = 1 g(P1) = 1 g(P2) = 2

g(P0) = 0

We see that the set of S-G values for followers of C2,1 is {0, 1, 2} because
the resulting moves consist only of the empty graph and paths of lengths
one and two. Taking the mex of this set, we conclude that the S-G number
of C2,1 is 3.

We can continue to analyze caterpillars in this way, obtaining the fol-
lowing S-G numbers for caterpillars of length three:

g(C3,0) = 1 g(C3,1) = 4

g(C3,2) = 4 gC3,3) = 1

To further understand this process, we can look at a few followers of C4,1:

By removing the left most edge from this caterpillar, we obtain the fol-
lowing graph and corresponding S-G number:
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g(C3,0) = g(P4) = 1

Another interesting follower results when we remove the 3rd edge from
the caterpillar:

g(C2,1) = 3 P1 = 1

To get the S-G number of this, we must nim-sum 3 and 1. From this nim-
sum we obtain 2, which is the S-G number of this follower. We see that the
set of the followers’ S-G numbers for C4,1 is {0, 1, 2, 3, 4} and thus the S-G
value of C4,1 is 5.

When we fix the index of the extra edge and increase the length of the
main path, the S-G numbers of caterpillars become perodic. These S-G
values are similar to that of paths in that we have discovered periods of 12
in both.

Figure 1 shows the S-G values of caterpillars of the form Cn,1 and figure
2 shows the S-G values of caterpillars of the form Cn,16. Note that the
periodic behavior of caterpillars does not always begin at the same length.
The periodic behavior of Cn,1 caterpillars begins at length 156, while the
periodic behavior of Cn,16 caterpillars does not begin until length 204.
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Figure 1. A table of S-G numbers for Cn,1. The column
labels 0− 11 represent the least residues of the congruence
n(mod12). The row labels represent the length of path
in intervals of 12. We see a periodic behavior starting at
length 156.

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ 2 3 4 5 6 2 1 0 8 6 0
12 1 2 3 8 5 12 7 1 0 8 9 14
24 1 2 3 11 4 7 12 14 0 16 2 4
36 12 2 3 10 4 7 15 1 16 9 18 16
48 12 2 3 10 16 7 12 1 16 18 11 16
60 12 2 22 11 16 7 12 1 20 24 16 26
72 12 13 22 11 16 24 15 14 16 22 19 16
84 12 13 19 11 16 24 15 14 16 25 11 16
96 12 13 22 11 16 7 15 1 20 25 19 11
108 12 13 22 11 32 19 22 14 20 22 19 11
120 12 13 22 11 25 19 22 14 16 22 19 11
132 21 13 22 11 25 19 22 14 21 25 19 11
144 21 13 22 11 25 19 22 14 20 22 19 11
156 21 13 22 11 25 19 22 14 21 22 19 11
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Figure 2. A table of S-G numbers for Cn,16. The column
labels 0− 11 represent the least residues of the congruence
n(mod12). The row labels represent the length of path
in intervals of 12. We see a periodic behavior starting at
length 204.

0 1 2 3 4 5 6 7 8 9 10 11
0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
12 ∗ ∗ ∗ ∗ 4 12 13 0 16 10 7 9
24 0 10 7 9 4 7 16 1 15 10 7 9
36 16 2 10 5 4 12 2 1 0 6 7 12
48 1 16 24 5 19 7 16 0 10 21 7 4
60 24 3 16 27 19 7 27 0 22 10 7 4
72 29 16 26 27 16 7 12 0 21 9 7 32
84 29 12 21 5 36 7 12 0 32 10 7 4
96 28 3 16 9 29 7 12 0 21 9 7 31
108 32 3 21 9 38 7 12 0 21 9 7 40
120 28 3 16 9 29 7 12 0 16 10 7 29
132 22 3 32 9 29 7 12 0 32 10 7 22
144 28 3 35 9 29 7 12 0 16 10 7 22
156 28 3 32 9 37 7 12 0 16 10 7 37
168 28 3 32 9 29 7 12 0 16 10 7 22
180 28 3 32 9 37 7 12 0 16 10 7 22
192 28 3 32 9 37 7 12 0 16 10 7 22
204 28 3 32 9 29 7 12 0 16 10 7 22

5. Nim on Trees

Definition. A tree is a connected graph that contains no cycles. A tree
with n vertices will be denoted Tn

We can define a caterpillar as a tree such that when all leaves and incident
edges are removed the remaining graph is a path. Thus the game of nim
played on a tree is similar to that played on a caterpillar. However, the
number of trees expands exponentially, as does the number of possible
moves.

Sometimes a move on a tree results in a forest. When this situation oc-
curs, we must nim sum the S-G numbers of the trees in the forest to obtain
the S-G number of this follower.

Below is a description of the program used to find the S-G numbers of
trees.
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Program 1. We first generate a list of unlabled trees with a given number
of vertices.

Suppose for a given number of vertices n, we are given all isomorphism
classes of trees of n vertices. Our set of unlabled trees consists of only one
tree from each isomorphism class, significantly decreasing the runtime of
our program. With this set of trees, we can calculate the S-G number of
each non-isomorphic tree.

Iterating through each tree on n vertices, we obtain all possible moves for
each tree. This is done by analyzing each vertex of the tree individually and
obtaining the set of moves for the specific vertex. We iterate through this
set of moves to obtain all followers. The S-G numbers are then calculated
for these followers and added to a set of all S-G numbers for the tree being
analyzed. We find the minimal excluded value of this set, which is the S-G
number of the original tree. We calculate this value for all trees with k edges
and then we then repeat the process for trees with k+1 edges.

Thus far, we have noticed that the first player 1 loss occurs at 10 vertices.
Of the 106 trees of 10 vertices, 16 are player 1 losses. We have also noticed
that there are player 1 losses after 10 vertices, but more computation will
be required to extend our analysis.

6. Graph Nim on Graphs

6.1. Winning and Losing Complete Graphs.

Definition. A complete graph on n vertices, denoted Kn, is the simple
graph in which every pair of distinct vertices is connected by an edge.

Note that

e(Kn) =
(

n

2

)
At the outset of this project, it was known that K1 (trivially), K3, and

K5 were losing graphs and K2, K4, and K6 were winning. We want to
determine if this pattern continues. The proposition below allows us to
just consider K2n+1.

Proposition 1. There are infinitely many winning complete graphs.

Proof. If Kn is losing then Kn+1 will be winning, since on Kn+1 Player 1
can delete the n edges incident to one vertex, leaving the Player 2 with Kn.
Thus at least half of the complete graphs must be winning. �

We give the following definitions to allow us to talk about the relationship
between two graphs.
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Definition. We call an addition of edges that are all incident to the same
vertex an anti-move.

Definition. We say that a graph G′ is a child of the graph G if G′ may be
obtained from G in a single move. Equivalently, if G may be obtained from
G′ in a single anti-move. We call G the parent of G′.

In order to compute whether K7 is a win or loss, we need to know the
status of all 1043 subgraphs of K7. Below we describe the program we wrote
to find all n-vertex losing graphs, which we were able to run for 1 ≤ n ≤ 11.

Program 2. We use the fact that every parent of a losing graph is a win-
ning graph. We start by creating a list of losing graphs; initially this list
consists only of the empty graph on n vertices, letting n = 2k+1 where k
∈ Z. We then iterate through the possible edge-numbers of n-vertex graphs,
generating lists of all nonisomorphic graphs with 1, 2, 3, ...,

(
n
2

)
edges, which

we will call L1, L2, L3, ..., L(n
2).

After Lm has been generated, we make anti-moves on each of the losing
graphs, which have fewer than m edges, in every way possible that leaves
an m-edge graph. Since all m-edge graphs obtained in this manner are the
parents of losing graphs, they must be winning; we delete them from Lm.
After performing all possible anti-moves on the losing graphs and deleting
the resulting graphs from Lm, we will have eliminated all of the winning
graphs from Lm. Thus, we add any graphs remaining in Lm to our list of
losing graphs, generate Lm+1, and repeat the above process. In this fashion,
we determine whether every graph on n vertices is winning or losing.

This program computed that K7, K9, and K11 are losing graphs (and,
by implication, that K8, K10, and K12 are winning graphs). Thus, we have
extended the pattern of complete graphs alternating between winning and
losing from n = 6 to n = 12. We hope to extend this to find a winning
strategy for player 2.

6.2. The Sprague-Grundy Approach. Rather than directly computing
a list of the losing graphs on n vertices, we now discuss the approach of
computing the S-G numbers of all n-vertex graphs. Since those graphs
with S-G number 0 are the losing graphs, this approach encompasses the
approach of the previous section. However, what is gained in information
is lost in efficiency; computing the S-G numbers of every n-vertex graph
is a more demanding computational task than determining which graphs
are losing. The program that finds the S-G numbers of n-vertex graphs
operates similarly to the program that finds the S-G numbers for trees, and

12



so we will provide just a brief description of how it works.

Program 3. Assuming we have calculated the S-G numbers for all graphs
with fewer than m edges, we describe how we will calculate the S-G numbers
of the m-edge graphs. For each graph G with m edges, we generate all the
children of G. We then find the minimal excluded number of the set of the
S-G numbers of these child graphs; this will be the S-G number of G. After
computing the S-G numbers of all m-edge graphs in this manner, we move
up to (m + 1)-edge graphs, and continue likewise until the S-G number of
every graph on n vertices has been computed.

Figure 3 shows the distribution of the S-G numbers for 7-vertex graphs.
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A few observations regarding the S-G number distributions can be made
immediately. For instance, as was true with trees, graphs have the max-
imum possible S-G number (i.e., e(G) = g(G)) roughly half of the time.
Also, for graphs of size m, the percentage of graphs with a particular S-G
number, s, tends to peak at s ≈ 0.6m, before bottoming out to nearly zero
for 0.6m < s < m. In order to understand these and other patterns in the
S-G number distribution, we conducted a heuristic analysis of the data.

6.3. Heuristic Analysis of S-G Number Distribution. Given the dis-
tribution of the S-G numbers for n-vertex graphs of size 0, 1, . . . ,m− 1, we
want to predict what the distribution should be for graphs of size m. Here
we present a heuristic method for making this prediction.

We will try to predict the percentage distribution of the S-G numbers for
labeled graphs of order n and size m, given that we know the distributions
for graphs of order n and size < m. Working with labeled graphs has the
advantage of allowing us to consider the deletion of any two distinct subsets
of edges to be distinct moves, regardless of graph isomorphism.

Definition. We define a typical labeled graph on n vertices with m edges,
Gn,m, to be a graph whose degree sequence is the average of the degree
sequences of all n-vertex, m-edge labeled graphs when the degrees are or-
dered from least to greatest. We write the degree sequence of Gn,m as
(d1, d2, . . . , dn), where d1 ≤ d2 ≤ . . . ≤ dn.

In order to predict the S-G number distribution for labeled graphs, we
ask ourselves the question: For the typical n-vertex, m-edge labeled graph,
Gn,m, what is the probability that the S-G number will be 0, 1, . . . ,m?

Once we have calculated the degree sequence of Gn,m, we will know how
many children of size (m−1), (m−2), . . . , (m−dn) Gn,m has. We make the
assumption that each of these children of size (m− k) for 1 ≤ k ≤ dn will
be a random labeled graph of size (m − k). That is, a child graph of size
(m− k) will have the S-G number 0, 1, . . . , (m− k) with probability equal
to the percentage of labeled (m − k)-edge graphs whose S-G numbers are
0, 1, . . . ,m−k. Since we know the number of children, we can can calculate
the probability that Gn,m will have S-G number 0, 1, . . . ,m.

In order to run this heuristic, we need the distribution of S-G numbers
for labeled graphs of size m − k. We find this by counting each graph’s
S-G number N times, where N is the number of unique relabelings of the
graph. Figure 4 shows the distribution of S-G numbers for labeled 7-vertex
graphs:
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We need the following definitions to describe our heuristic method.

Definition. Let Pe(s) to be the probability that a random labeled graph with
e edges will have S-G number s. Similarly, let PGn,m(s) to be the probability
that our typical graph Gn,m has S-G number s.

Definition. Let ck to be the number of children of Gn,m with m− k edges.

Definition. Let Ne(s, te) to be the probability that given te random labeled
graphs with e edges, none of them will have S-G number s. Note that
Ne(s, te) = (1 − Pe(s))t. Also note that Ne(s, te) = 0 if s > e, since
g(H) ≤ e(H) for all graphs H.

Definition. Lastly, let NGn,m(s) to be the probability that Gn,m has no
children with S-G number s.

With this notation, we can describe the exact heuristic method used.
Assume that the probability that a child of Gn,m with (m − k) edges has
S-G number s, is equal to P(m−k)(s). Take 1 ≤ j ≤ n to be the maximum
index s.t. m− dj ≥ s. Then

NGn,m(s) = Nm−1(s, c1)× . . .×Nm−dj (s, cdj )

We know that PGn,m
(s) is equal to the probability that Gn,m has children

with S-G numbers 0, 1, . . . , (s − 1) and no children with S-G number s.
Thus,

PGn,m(s) = {1−NGn,m(0)} × . . .× {1−NGn,m(s− 1)} ×NGn,m(s)

From the above equations, we see that if we can find the number of
children of Gn,m, c1, . . . , cdn

, we will know the probability that Gn,m has
S-G number 1 through m. Since Gn,m is labeled, computing c1, . . . , cdn is
a simple task.

This method yields reasonably accurate predictions of the S-G num-
ber distributions, despite our assumptions. Figure 5 shows a table of our
heuristic predictions of the S-G number distributions compared to the ac-
tual distributions for n = 7 and m = 4, 5, . . . , 18.
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7. Conclusion

We have shown a periodic behavior for paths and caterpillars of type
Cn,k. We want to continue this research to all graphs whwere we fix a main
graph, G, and attach a path of increasing length to one vertex.

We have also shown that K2n+1 is a losing graph for 0 ≤ n ≤ 5. We
want to determine if K13 will be winning or losing.

Finally we want to improve our heuristic analysis and extend our method
to analyze trees.
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