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1. Introduction and Statement of Results

In this paper, we investigate a family of elliptic curves with 3-torsion given by

Ea,b/Q : y2 = x3 + (ax+ b)2.

In particular, we analyze the Selmer groups associated to descent by isogeny of such
elliptic curves by relating them to graphs and then apply elementary techniques from
algebra and combinatorics. This method has been applied for the family of “Congruent
Number” curves, possessing 2-torsion ( [6], [5]), but not for curves with 3-torsion.

Mordell’s Theorem [12] asserts that for a general elliptic curve, E/Q, the group of
rational points, E(Q), is a finitely generated abelian group, i.e.

E(Q) ∼= Zr ⊕ E(Q)tors,

where E(Q)tors is a finite abelian group and r is called the rank of the elliptic curve.
The following deep theorem due to Mazur [9] completely characterizes the possibilities
for the torsion subgroup.

Theorem (Mazur). If E is an elliptic curve, then E(Q)tors is one of the following 15
groups:

(1) Z/nZ, with 1 ≤ n ≤ 10 or n = 12.
(2) Z/2mZ× Z/2Z, with 1 ≤ m ≤ 4.

On the other hand, not much is known about the rank; indeed, the major open ques-
tions about elliptic curves today are concerned with computing the rank. For example,
the famous Birch and Swinnerton-Dyer Conjecture (see [1] or [11]) predicts that the
rank of E/Q equals the order of vanishing of its L-series, L(E, s), at s = 1. The rank
is, in general, very difficult to analyze. In practice, the only way to prove upper bounds
for the rank of E has been to prove upper bounds for #Selm(E), where Selm(E) is an
effectively computable group called the m-Selmer group (see [11] for more details). More
precisely, for every natural numberm we have an exact sequence (see [13]Theorem 10.4.2
for details

0→ E(Q)/mE(Q)→ Selm(E)→XE[m]→ 0,
1
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where XE is the Tate-Shafarevich group and where S[φ] denotes the kernel of φ in an
abelian group S. By Mordell’s Theorem, we have that

E(Q)/mE(Q) ∼= (Z/mZ)r ⊕ E(Q)[m],

In particular, [E(Q) : 3E(Q)] = 3r+1 for our family of elliptic curves since they have the
3-torsion points T = (0,±b) and O (Lemma 2.1 in [3]).

In this paper we use a completely elementary combinatorial approach to compute the
size of certain Selmer groups associated to the family of elliptic curves, E/Q. Feng and
Xiong [6] introduce the notion of “odd graphs” to produce certain families of congruent
numbers, and Faulkner and James [5] use their ideas to compute sizes of the correspond-
ing Selmer groups. We generalize their methods to this setting. For example, consider
the family of elliptic curves

En/Q : y2 = x3 + n2.

There is an isogeny φ : En → Ên given by

φ(P ) = φ((x, y)) =

(
x3 + b2

x2
,
y(x3 − 8b2)

x3

)
.

We realize a concrete correspondence between the associated φ-Selmer group Sel(φ)(En)
and the group of numbers u in Q∗/(Q∗)3 for which the equation

ux3 +
1

u
y3 + 2bz3 − 2axyz = 0

has a solution over Qp for every prime p. We then cast this condition in the language of
graph theory, constructing a complete digraph with vertices corresponding to the prime
divisors of 2b. Each partition of this graph into three parts that satisfies certain criteria
will be called “three-balanced.” (See Section 3 for the precise definitions.) We will then
be able to prove the following theorem.

Theorem. Let En/Q : y2 = x3 + n2. Suppose that n is odd, square-free, and divisible
by 3, and define G(En) to be the associated complete digraph. Then∣∣∣Sel(φ)(En)

∣∣∣ = #{three-balanced partitions of G(En)}.

2. Notation and Setup

We first consider the general family of elliptic curve

E : y2 = x3 +D(ax+ b)2,

with 3-torsion points {O, T ,−T } where T = (0, b
√
D). Every elliptic curve with a

rational 3-torsion subgroup can be given in such a form, where the cube-free part of b is
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coprime with a and D is a fundamental discriminant [3]. We recall the notion of isogeny
between elliptic curves.

Definition 2.1. An isogeny between the elliptic curves E and Ê is a morphism φ : E →
Ê satisfying φ(O) = Ô. The dual isogeny to φ is the isogeny φ̂ : Ê → E, satisfying
φ
(
φ̂ (P )

)
= [deg(φ)]P .

We define the dual curve to E as [3]

Ê/Q : y2 = x3 − D̂
(
âx+ b̂

)2
,

where D̂ = 3D, â = a, and b̂ = 27b−4a3
9

. The explicit isogeny φ : E → Ê is given by

φ(P ) = φ((x, y)) =

(
x3 + 4D(a2x2/3 + abx+ b2)

x2
,
y(x3 − 4Db(ax+ 2b))

x3

)
for P 6= O and P 6= ±T , and φ(P ) = Ô if P = O or P = ±T . The dual isogeny φ̂ is
obtained by applying the same formula to Ê/Q and then dividing the x-coordinate by
9 and the y-coordinate by 27. The key fact is that the composition of φ and φ̂ gives
multiplication by 3, according to the following lemma:

Lemma 2.2. (Proposition 1.4 in [3]) The maps φ and φ̂ are group homomorphisms,
and φ ◦ φ̂ and φ̂ ◦ φ are multiplication by 3 maps on E and Ê, respectively. The kernel
of φ is {O,±T}, and that of φ̂ is {Ô,±T̂}, where T̂ = (0, b̂

√
−3D).

According to [13], we have the following exact sequence:

0→ Ê(Q)[φ̂]

φ(E(Q)[3])
→ Ê(Q)

φ(E(Q))
→ E(Q)

3E(Q)
→ E(Q)

φ̂(Ê(Q))
→ 0,

which, by the above lemma, simplifies in our case to the short exact sequence

0→ Ê(Q)

φ(E(Q))
→ E(Q)

3E(Q)
→ E(Q)

φ̂(Ê(Q))
→ 0,

showing that

[E(Q) : 3E(Q)] = [E(Q) : φ̂(Ê(Q))][Ê(Q) : φ(E(Q))].

In general, given a rational isogeny ψ : E → Ê such that E[ψ] ⊂ E(Q), we have the
exact sequence

0→ Ê(Q)

ψ(E(Q))
→ Sel(φ)(E)→XE[ψ]→ 0.
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Combining this with the definition of the Selmer group earlier gives the commutative
diagram

0 0y y
0 −−−→ Ê(Q)

φ(E(Q))
−−−→ Sel(φ)(E) −−−→ XE[φ] −−−→ 0y y y

0 −−−→ E(Q)
3E(Q)

−−−→ Sel(3)(E) −−−→ XÊ[3] −−−→ 0.y y y
0 −−−→ E(Q)

φ̂(Ê(Q))
−−−→ Sel(φ̂)(Ê) −−−→ XÊ[φ̂] −−−→ 0y y y

0 0 0

Let r be the rank of E/Q and let #Sel(φ) = 3s(φ) and #Sel(φ̂) = 3s(φ̂). Then the
fundamental inequality relating Sel(φ) and Sel(φ̂) is

r ≤ s(φ) + s(φ̂).

Now define the 3-descent map α : E(Q)→ Q∗/(Q∗)3 by
α(O) = 1,

α((0, b)) = 1/(2b),

α((x, y)) = y −
√
D(ax+ b).

We define α̂ : E(Q)→ K∗/(K∗)3 analogously, where K = Q[
√
−3D]. This α map is in

fact a group homomorphism [3] from E(Q) to Q∗/(Q∗)3, and the kernel of α is precisely
the image of φ̂. Likewise, the kernel of α̂ is the image of φ. (Prop. 1.4 in [3]). Therefore,

E(Q)

φ̂(Ê(Q))
∼= Im α ⊂ Q∗/(Q∗)3,

Ê(Q)

φ(E(Q))
∼= Im α̂ ⊂ K∗/(K∗)3.

In particular,
3r+1 = [E(Q) : 3E(Q)] = |Im α||Im α̂|.

For D = 1, i.e. elliptic curves of the form E/Q : y2 = x3 + (ax + b)2, Cohen and
Pazuki [3] prove the following theorem describing the group Im α.
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Theorem 2.3. Let ū ∈ Q∗/(Q∗)3. Write ū = u1u
2
2 where u1 and u2 are square-free,

coprime integers in Z. Then u1u2 | 2b and ū ∈ Im α if and only if the homogeneous
cubic equation Fu(x, y, z) = 0 has a solution, where

Fu(x, y, z) = u1x
3 + u2y

3 +
2b

u1u2
z3 − 2axyz. (2.1)

Remark. When we speak of a solution to a homogenenous equation, we mean a non-
trivial solution.

Let
CE(F ) = {u ∈ Q∗/(Q∗)3 | Fu(x, y, z) = 0 has a solution in F}

The Selmer group Sel(φ) can then be represented as

Sel(φ)(E) = {u ∈ Q∗/(Q∗)3 | CE(Qp) 6= ∅ for every prime p ∈ Z.}
For n ∈ N, let vp(n) be the largest power of p that divides n, i.e. vp(n) = − logp |n|p.

We set vp(0) =∞. Clearly equations with coefficients of the form (ap, bp3) are equivalent
to those with (a, b), so we can assume that vp(b) ≤ 2 or vp(a) = 0. Using the work in
[3], Section 5, we have:

Proposition 2.4. Let

Fu(x, y, z) = u1x
3 + u2y

3 + u3z
3 − 2axyz,

where u1 and u2 are square-free and coprime, u3 = 2b
u1u2

and p3 - b for every prime p
dividing a.

(1) If p 6= 2, p 6= 3, p - b, and p - (27b− 4a3), then Fu(x, y, z) = 0 has a solution in
Qp.

(2) If p 6= 2, p 6= 3, and p | b, then Fu(x, y, z) = 0 has a solution in Qp if and only
if one of the following is fulfilled.
(a) vp(a) = 0.
(b) vp(a) > 0 and exactly one of {u1, u2, u3} is divisible by p and the ratio of the

other two is a cube in F∗p.
(c) vp(a) > 0 and exactly two of {u1, u2, u3} is divisible by p and their ratio is

a cube in F∗p.
(3) If p = 2, then Fu(x, y, z) = 0 has a solution in Qp if and only if 2 - u1u2 or

2 | u1u2 and 4 - b .
(4) If p 6= 2, p 6= 3, p - b, and p | 27b− 4a3, then Fu(x, y, z) = 0 has a solution in Qp

if and only if ui/uj is a cube in F∗p for some i 6= j.
(5) If p = 3 and vp(a) 6= 1, then Fu(x, y, z) = 0 has a solution in Qp if and only if

one of the following is fulfilled.
(a) vp(a) = 0.
(b) vp(a) ≥ 2 and vp(b) = 0 and ui ≡ ±uj (mod 9) for some i 6= j.
(c) vp(a) ≥ 2 and exactly one of {u1, u2, u3} is divisible by p and the ratio of the

other two is ±1 (mod 9).
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(d) vp(a) ≥ 2 and exactly two of {u1, u2, u3} are divisible by 9 and their ratio is
±1 (mod 9).

Remark. We can also give criteria in the case D = −3, i.e. elliptic curves of the form
E/K : y2 = x3 − 3(ax+ b)2. As usual, OK denotes the ring of integers of K.

Theorem. Let ū ∈ K∗/(K∗)3. Write ū = u1u
2
2 where u1 and u2 are square-free, coprime

integers in OK. Then u1u2 | 2b and ū ∈ Im α̂ if and only if the homogenous cubic
equation F ′u(x, y, z) = 0 has a solution, where

F ′u(x, y, z) = u1x
3 + u2y

3 +
√
−3

2b

u1u2
z3 − 2

√
−3axyz (2.2)

We can then similarly define

C ′E(F ) = {u ∈ K∗/(K∗)3 | F ′u(x, y, z) = 0 has a solution in F},

Sel(φ̂)(E) = {u ∈ K∗/(K∗)3 | C ′E(Kp) 6= ∅ for every prime p ∈ OK .
We have not been able to cast the criteria for solvability in a form conducive to our
graphical approach, as we were able to do above. If this is possible, though, it would
provide us with bounds on the rank by the formulas exhibited above.

3. Graphical Representations

Generalizing the ideas of Feng [6], we can use Proposition 2.4 to give a characterization
of the Selmer group in terms of graphs. For each elliptic curve, we construct a complete
directed graph whose directed edges are labeled by cubic roots of unity. If we define
a “three-balanced” partition in terms of the following labelings, then the size of Selφ

corresponds to the number of “three-balanced” partitions of the graph. We will make
this notion more precise below.

Let ω be a primitive cubic root of unity. If p ≡ 1 (mod 3) is a rational prime (i.e.
p splits in Z[ω]), then write p = ππ where π ≡ 2 (mod 3) is in the upper-half plane.
Using these conventions, we define the following:

χp(q) =

{(
q
π

)
3

if p ≡ 1 (mod 3)

1 if p ≡ 2 (mod 3).

The following properties of χp are immediate:
(1) χp(q) = 1 ⇐⇒ q is a cube in F∗p.
(2) χp(ab) = χp(a)χp(b).

Since (Z/9Z)∗ is cyclic, in particular generated by 2, we may define χ3 on (Z/9Z)∗ in
the same way. If q = 2t ∈ (Z/9Z)∗, then set

χ3(q) = ωt.

Throughout the rest of this paper, all integers are in Z.
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Case 1. Consider the family E1 of elliptic curves given by

E/Q : y2 = x3 + b2

and suppose that 2b is square-free and divisible by 3. Write 2b = p1p2 . . . pn where the pi
are primes and pn = 3. Let us define a complete directed graph GE associated to E/Q
as follows: the vertex set, V (GE), is

V (GE) = {p1, p2, . . . , pn}.

Label the directed edge from pi to pj with eij according to the following rule:

eij =

{
χpi(pj) pi 6= 3,

χ9(pj) pi = 3.

A partition of V (GE) into three parts is an ordered triple of subsets (V1, V2, V3) such
that V1 ∪ V2 ∪ V3 = V (GE) and V1 ∩ V2 = V2 ∩ V3 = V3 ∩ V1 = ∅.

Definition 3.1. Call the partition (V1, V2, V3) three-balanced if for each pi ∈ Vν, we
have  ∏

pj∈Vν+1

eij

 ∏
pk∈Vν+2

e2ik

 = 1,

where we cycle the indices of the partitions (i.e. V1 = V4, etc.).

Lemma 3.2. Suppose that (V1, V2, V3) is a partition of V (GE). Let

u1 =
∏
pi∈V1

pi, and u2 =
∏
pj∈V2

pj.

Then the homogeneous equation

u1x
3 + u2y

3 +
2b

u1u2
z3 = 0 (3.1)

has a solution in every local field Qp if and only if (V1, V2, V3) is three-balanced.

Proof. Let u3 = 2b/(u1u2). First suppose that (V1, V2, V3) is a three-balanced partition.
By Proposition 2.4, we need to check that χpi(uν+1/uν+2) = 1 if pi | uν , where we cycle
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the indices. But note that

χpi(uν+1/uν+2) = χpi(uν+1)χpi(uν+2)
2

=

 ∏
pj∈Vν+1

χpi(pj)

 ∏
pk∈Vν+2

χpi(pk)
2


=

 ∏
pj∈Vν+1

eij

 ∏
pk∈Vν+1

e2ik

 = 1

since (V1, V2, V3) is three-balanced.
Conversely, suppose that (V1, V2, V3) is not three-balanced. Then by reversing the above
equations there is some pi such that χpi(uν+1/uν+2) 6= 1, so by Proposition 2.4, (3.1) has
no solution in Qpi . �

Theorem 3.3. Let E/Q : y2 = x3 + b2. Suppose that 2b is square-free and divisible by
3, and define GE as above. Then we have

|Sel(φ)| = #{three-balanced partitions of V (GE)}.

Proof. By Lemma 3.2, each three-balanced partition corresponds to a homogeneous
equation (3.1) which is solvable over each local field Qp. �

Case 2. Consider the family E2 of elliptic curves given by

E/Q : y2 = x3 + (ax+ b)2

where v3(a) ≥ 2 and 2b is square-free and divisible by 3. Write

d :=
4a3 − 27b

gcd(4a3 − 27b, 2b)
= q1q2 . . . qm,

and
b = p1p2 . . . pn,

where the qi and pi are primes and pn = 3. Let us define a complete directed graph GE

associated to EQ as follows: the vertex set V (GE) is

V (GE) = {q1, q2, . . . , qm, p1, p2, . . . , pn}.

Label the directed edge from vi to vj with e(−−→vivj) according to the following rule:

e(−−→vivj) =


χvi(vj) vi 6= 3 and vj | b,
χ9(vj) vi = 3 and vj | b,
1 otherwise.
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Definition 3.4. Call the partition (V1, V2, V3) three-balanced if for each vertex pi and
qi ∈ Vν, we have  ∏

pj∈Vν+1

eij

 ∏
pk∈Vν+2

e2ik

 = 1,

where we cycle the indices of the partitions (i.e. V1 = V4, etc.).

Lemma 3.5. Suppose that (V1, V2, V3) is a partition of V (GE). Let

u1 =
∏
pi∈V1

pi, and u2 =
∏
pj∈V2

pj.

Then the homogeneous equation

u1x
3 + u2y

3 +
2b

u1u2
z3 − 2axyz = 0 (3.2)

has a solution in every local field Qp if and only if (V1, V2, V3) is three-balanced.

Proof. Let u3 = 2b/(u1u2). First suppose that (V1, V2, V3) is a three-balanced partition.
By Proposition 2.4, we need to check that{

χpi(uν+1/uν+2) = 1 pi | uν , pi | b,
χqi(uν+1/uν+2) = 1 qi | d,

where we cycle the indices. But note that

χpi(uν+1/uν+2) = χpi(uν+1)χpi(uν+2)
2

=

 ∏
pj∈Vν+1

χpi(pj)

 ∏
pk∈Vν+2

χpi(pk)
2


=

 ∏
pj∈Vν+1

eij

 ∏
pk∈Vν+2

e2ik

 = 1

since (V1, V2, V3) is three-balanced. Similarly, χqi(uν+1/uν+2) = 1.
Conversely, suppose that (V1, V2, V3) is not three-balanced. Then by reversing the above
equations there is some p ∈ Vν such that χp(uν+1/uν+2) 6= 1, so by Proposition 2.4, (3.1)
has no solution in Qp. �

Theorem 3.6. Let E/Q : y2 = x3 + (ax+ b)2 where v3(a) ≥ 1 and 2b is square-free and
divisible by 3. Define GE as above. Then we have

|Sel(φ)| = 1

3m
#{three-balanced partitions of V (GE)}.
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Proof. By Lemma 3.5, each three-balanced partition corresponds to a homogeneous
equation (3.2) which is solvable over each local field Qp. We overcount by a factor
of 3 for each vertex qi since which partition it is in is irrelevant. �

Remark. Case 1 above is in fact a special case of Case 2, but we chose to separate
them for clarity.

Case 3. Consider the family E3 of elliptic curves given by

E/Q : y2 = x3 + (ax+ b)2

where 3 - a and 2b is square-free. Write

d :=
4a3 − 27b

gcd(4a3 − 27b, 2b)
= q1 . . . qm

and
b = p1p2 . . . pn,

where the qi and pi are primes. Let us define a complete directed graph GE associated
to E/Q as follows: the vertex set V (GE) is

V (GE) = {q1, q2, . . . , qm, p1, p2, . . . , pn}.

Label the directed edge from vi to vj with e(−−→vivj) according to the following rule:

e(−−→vivj) =

{
χvi(vj) vi 6= 3 and vj | b,
1 otherwise.

Definition 3.7. Call the partition (V1, V2, V3) three-balanced if for each vertex pi and
qi ∈ Vν, we have  ∏

pj∈Vν+1

eij

 ∏
pk∈Vν+2

e2ik

 = 1,

where we cycle the indices of the partitions (i.e. V1 = V4, etc.).

Lemma 3.8. Suppose that (V1, V2, V3) is a partition of V (GE). Let

u1 =
∏
pi∈V1

pi, and u2 =
∏
pj∈V2

pj.

Then the homogeneous equation

u1x
3 + u2y

3 +
2b

u1u2
z3 − 2axyz = 0 (3.3)

has a solution in every local field Qp if and only if (V1, V2, V3) is three-balanced.
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Proof. Let u3 = 2b/(u1u2). First suppose that (V1, V2, V3) is a three-balanced partition.
By Proposition 2.4, we need to check that{

χpi(uν+1/uν+2) = 1 pi | uν , pi | b, pi 6= 3

χqi(uν+1/uν+2) = 1 qi | d,

where we cycle the indices. But note that

χpi(uν+1/uν+2) = χpi(uν+1)χpi(uν+2)
2

=

 ∏
pj∈Vν+1

χpi(pj)

 ∏
pk∈Vν+2

χpi(pk)
2


=

 ∏
pj∈Vν+1

eij

 ∏
pk∈Vν+2

e2ik

 = 1

since (V1, V2, V3) is three-balanced.
Conversely, suppose that (V1, V2, V3) is not three-balanced. Then by reversing the above
equations there is some pi ∈ Vν such that χp(uν+1/uν+2) 6= 1, so by Proposition 2.4,
(3.3) has no solution in Qp. �

Theorem 3.9. Let E/Q : y2 = x3 + (ax+ b)2 where v3(a) ≥ 1 and 2b is square-free and
divisible by 3. Define GE as above. Then we have

|Sel(φ)| = 1

3m
#{three-balanced partitions of V (GE)}.

Proof. By Lemma 3.8, each three-balanced partition corresponds to a homogeneous
equation (3.3) which is solvable over each local field Qp. We overcount by a factor
of 3 for each vertex qi since the partition it is in is irrelevant. �

Case 4. Consider the family E4 of elliptic curves given by

E/Q : y2 = x3 + b2

where 3 | b and 4 - b. Write 2b = b1b
2
2, with gcd(b1, b2) = 1, and let b1 = p1p2 . . . pm,

b2 = q1q2 . . . qn where the pi, qi are primes. Let us define a complete directed graph GE

associated to E/Q as follows: the vertex set V (GE) is

V (GE) = {p1, p2, . . . , pm, q1, q2, . . . , qn, q′1, q′2, . . . , q′n}.
where qi = q′i. Label the directed edge from vi to vj with e(−−→vivj) according to the
following rule:

e(−−→vivj) =


χvi(vj) vi 6= 3 and vj 6= vi,

χ9(vj) vi = 3

1 vi = vj.
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Definition 3.10. Call the partition (V1, V2, V3) three-balanced if {q′1, q′2, . . . , q′m} ⊂ V3
and for each vertex vi = pr ∈ Vν and each vi = qs ∈ V3, we have ∏

vj∈Vν+1

eij

 ∏
vk∈Vν+2

e2ik

 = 1,

where we cycle the indices of the partitions (i.e. V1 = V4, etc.) and for each qi ∈ Vν for
ν 6= 3 ∏

vj∈V3

eij

( ∏
vk∈Vν

e2ik

)
= 1.

Lemma 3.11. Suppose that (V1, V2, V3) is a partition of V (GE). Let

u1 =
∏
vi∈V1

vi, and u2 =
∏
vj∈V2

vj.

Then the homogeneous equation

u1x
3 + u2y

3 +
2b

u1u2
z3 − 2axyz = 0

has a solution in every local field Qp if and only if (V1, V2, V3) is three-balanced.

Proof. Let u3 = 2b/(u1u2). First suppose that (V1, V2, V3) is a three-balanced partition.
By Proposition 2.4, we need that gcd(u1, u2) = 1, which is exactly when {q′1, q′2, . . . , q′n} ⊂
V3 and we need to check that{

χpi(uν+1/uν+2) = 1 pi ∈ Vν or qi ∈ V3
χqi(u3/uν) = 1 qi ∈ uν where ν 6= 3,

where we cycle the indices. But note that for pi ∈ Vν or qi ∈ V3,

χvi(uν+1/uν+2) = χvi(uν+1)χvi(uν+2)
2

=

 ∏
vj∈Vν+1

χvi(vj)

 ∏
vk∈Vν+2

χvi(vk)
2


=

 ∏
vj∈Vν+1

eij

 ∏
vk∈Vν+2

e2ik

 = 1
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since (V1, V2, V3) is three-balanced. Similarly, for qi ∈ Vν with ν 6= 3,

χvi(u3/uν) = χvi(u3)χvi(uν)
2

=

∏
vj∈V3

χvi(vj)

( ∏
vk∈Vν

χvi(vk)
2

)

=

(∏
vi∈V3

eij

)( ∏
vk∈Vν

e2ik

)
= 1.

Conversely, suppose that (V1, V2, V3) is not three-balanced. Then by reversing the
above equations there is some pi ∈ Vν or qi ∈ V3 such that χp(uν+1/uν+2) 6= 1 or some
qi ∈ Vν where ν 6= 3 such that χq(u3/uν) 6= 1, so by Proposition 2.4, (3.1) has no solution
in Qp. �

Theorem 3.12. Let E/Q : y2 = x3 + b2 where 3|b and and 4 - b.. Define GE as above.
Then we have

|Sel(φ)| = #{three-balanced partitions of V (GE)}.

Proof. By Lemma 3.11, each three-balanced partition corresponds to a homogeneous
equation (3.11) which is solvable over each local field Qp. �

Case 5. Consider the family E5 of elliptic curves given by

E/Q : y2 = x3 + b2

where 2b is not square-free and 4|b, write b/4 = b1b
2
2, with gcd(b1, b2) = 1, and let

b1 = p1p2 . . . pm, b2 = q1q2 . . . qn where the pi, qi are primes. Let us define a complete
directed graph GE associated to E/Q as follows: the vertex set V (GE) is

V (GE) = {p1, p2, . . . , pm, q1, q2, . . . , qn, q′1, q′2, . . . , q′n, 2, 2, 2}.

where qi = q′i. Label the directed edge from vi to vj with e(−−→vivj) according to the
following rule:

e(−−→vivj) =


χvi(vj) vi 6= 3 and vj 6= vi,

χ9(vj) vi = 3

1 vi = vj.

Definition 3.13. Call the partition (V1, V2, V3) three-balanced if {q′1, q′2, . . . , q′m, 2, 2, 2} ⊂
V3 and for each vertex vi = pr ∈ Vν and each vi = qs ∈ V3, we have ∏

vj∈Vν+1

eij

 ∏
vk∈Vν+2

e2ik

 = 1,
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where we cycle the indices of the partitions (i.e. V1 = V4, etc.) and for each qi ∈ Vν for
ν 6= 3 ∏

vj∈V3

eij

( ∏
vk∈Vν

e2ik

)
= 1

Lemma 3.14. Suppose that (V1, V2, V3) is a partition of V (GE). Let

u1 =
∏
vi∈V1

vi, and v2 =
∏
vj∈V2

vj.

Then the homogeneous equation

u1x
3 + u2y

3 +
2b

u1u2
z3 − 2axyz = 0 (3.4)

has a solution in every local field Qp if and only if (V1, V2, V3) is three-balanced.

Proof. The case for every prime except 2 is the same as above. By Proposition 2.4, we
need 2 - u1u2, which happens exactly when all the copies of 2 are in V3. �

Theorem 3.15. Let E/Q : y2 = x3 + b2 where v3(a) ≥ 1 and 2b is not square-free and
divisible by 3. Define GE as above. Then we have

|Sel(φ)| = #{three-balanced partitions of V (GE)}.

Proof. By Lemma 3.14, each three-balanced partition corresponds to a homogeneous
equation (3.4) which is solvable over each local field Qp. �

4. Linear Algebra Perspective.

Given a graph G as defined in the previous section, we construct a characteristic
matrix as follows.
Case 1. If G has no repeated vertices, define the n-by-n matrix A(G), where n is the
number of vertices in G, such that

A(G)ij =

{
logω eij i 6= j,

0 i = j,

with the usual choice of the principal branch so that logω 1 = 0. Let di =
∑

j A(G)ij,
i.e. the sum of the entries in the ith row of A(G). Now let

L(G) = A(G)−


d1

d2
. . .

dn

 .
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Note that there is a bijection between partitions of V (G) into three possibly empty parts
and Fn

3 vectors v. Specifically, let v = (v1, . . . , vn) and set

vi =


0 pi ∈ V1,
1 pi ∈ V2,
2 pi ∈ V3.

.

Lemma 4.1. We have v ∈ kerL(G) if and only if the partition corresponding to v is
three-balanced.

Proof. Let v = (v1, . . . , vn). Suppose pi ∈ V1. Then we have

(L(G)v)i =
∑
j

aijvj − divi =
∑
j

aij(vj − vi) =
∑
vj=1

aij +
∑
vj=2

2aij,

which is congruent to 0 (mod 3) if and only if∏
pj∈V2

eij

( ∏
pk∈V3

e2ik

)
= 1.

The other two cases are completely analogous.
�

Case 2. If G has repeated vertices and at most 2 copies of 2, let the vertices, in
order, be {p1, p2, . . . , pm, q1, q2, . . . qn, q′1, q′2, . . . , q′n}, where qi = q′i and all other ver-
tices are distinct. Otherwise, if G has 3 copies of 2, let the vertices, in order, be
{p1, p2, . . . , pm, q1, q2, . . . qn, q′1, q′2, . . . , q′n+3}, where qi = q′i and all other vertices are dis-
tinct except for q′n+1 = q′n+2 = q′n+3 = 2.

If 4 - b, let n′ = (m+ 2n). Otherwise if 4|b, let n′ = (m+ 2n+ 3). Define the n′-by-n′
matrix A′(G) such that

A′(G)ij =

{
logω eij i 6= j,

0 i = j,

with the usual choice of the principal branch so that logω 1 = 0. Next, let

di =

{∑
j A
′(G)ij i ≤ m,

−
∑

j A
′(G)ij m < i ≤ n′,

Now let

L′(G) = A′(G)−


d1

d2
. . .

dn′

 .

Let L(G) be the upper left (m+ n)-by-(m+ n) submatrix of L′(G).
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Note that there is a bijection between valid partitions of V (G) into three possibly
empty parts and Fn′

3 vectors w. Specifically, let w = (w1, . . . , wn′) and set

wi =


1 vi ∈ V1
2 vi ∈ V2
0 vi ∈ V3

.

Remark. Note that kerL(G) = {w ∈ kerL′(G) | wi = 0 i > m+ n}

Lemma 4.2. We have w ∈ kerL(G) if and only if the partition corresponding to w is
three-balanced.

Proof. It suffices to show that v ∈ {w ∈ kerL′(G) | wi = 0 i > m + n} if and only if
the partition corresponding to w′ is three-balanced, where w′ = {w1, . . . , wm+n}. We see
that wi = 0 for i > m + n if and only if all the q′i are in V3, which is one condition for
the partition to be three-balanced.

For pi ∈ V1 we have

(L′(G)w)i =
∑
j

aijwj − diwi =
∑
j

aij(wj − wi) =
∑
wj=2

aij +
∑
wj=0

2aij,

which is congruent to 0 (mod 3) if and only if∏
pj∈V2

eij
∏
pk∈V3

e2ik = 1.

The cases for when pi ∈ V2 or V3 or when qi, q′i ∈ V3 are completely analogous.

For qi ∈ V1 we have

(L′(G)w)i =
∑
j

aijwj − diwi =
∑
j

aij(wj + wi) =
∑
wj=0

aij +
∑
wj=1

2aij,

which is congruent to 0 (mod 3) if and only if∏
vj∈V3

eij
∏
vk∈V1

e2ik = 1

The case for when qi ∈ V2 is completely analogous.

�

Corollary 4.3. The number of three-balanced partitions of G is 3l−s, where s is the rank
of the l-by-l matrix L(G).

Corollary 4.4. |Selφ| = 3l−s, where s is the rank of the l-by-l matrix L(G).
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