
Appendix

adjmat(R1,R2):
This method takes as input two level sets of partitions, R1 and R2,
and returns the adjacency matrix where the (i, j) entry is either 1
if the ith member of R1 covers the jth entry of R2 or 0 otherwise.

Parameters:
R1, R2: two level sets of partitions of the same value n as created
by the latex command Partitions(n,length=k).

Returns:
the adjacency matrix where the (i, j) entry is either 1 if the ith
member of R1 covers the jth entry of R2 or 0 otherwise.

covers(P1,P2):
This method takes two partitions, P1 and P2, as inputs and deter-
mines whether P1 covers P2.

Parameters:
P1, P2: two partitions of the same value n taken from the list
generated by the latex command Partitions(n,length=k).

Returns: 1 if P1 covers P2, 0 otherwise.

CRTUnimodal(fileList, primeList, start, finish):
(partially pseudocode for parallelization). This method uses the
matrices generated by PPrime to recover p(n, k) values and, in
turn, determine whether Pn is unimodal for start ≤ n ≤ finish.

Parameters:
fileList: a list of the files that contain the matrices generated by
PPrime
primeList: a list of the moduli used to create the matrices in
PPrime.
start: the minimum value of n for which Pn is to be tested for uni-
modality.
finish: the minimum value of n for which Pn is to be tested for
unimodality.

Returns: 1 if each specified Pn is unimodal and 0 otherwise (along the
first value of n which is not unimodal).

dana2(R1,R2,B,numtimes):
This function conducts a random walk along matchings of two in-
putted consecutive level sets with each step determined as follows:
A random edge is selected. Then, if the edge can be added to
the graph of the two level sets, it is added. Next, if the edge can

1



be removed, it is removed with probability 1/B. Otherwise, if the
edge can be neither added nor removed, a new edge is selected and
the process is repeated. Last, if the resulting graph is a maximal
matching, the counter of each included edge is incremented. Steps
are taken until numtimes maximum matchings are encountered,
and the list of edgecounts is returned. Note: danafixed begins with
user-specified edges already included as per the additional argument
fixededges.

Parameters:
R1,R2: two level sets of partitions of the same value n as created
by the latex command Partitions(n,length=k).
B: the reciprocal of the probability with which an edge is removed
in the random walk algorithm.
numtimes: the number of maximum matchings that will be found
before the method returns the edgecounts.

Returns:
edgecount: a list of the edgecounts used in the recorded maximum
matchings. (This list uses the same ordering as edgelist.
matchinglist: [only returned by dana3 ] - a list of the maximum
matchings found throughout the duration of the method.
hashcount: [only returned by dana3 ] - a list of how many times
each maximum matching occurred throughout the method (with
the same ordering as matchinglist).

dana3(R1,R2,B,numtimes):
See dana2.

danafixed(R1,R2,B,numtimes,fixededges):
See dana2.

depthfirstsearch(sourceIndex, sinkIndex, edgeCapacity, nodesvis-
ited, listOfEdges, done):
This method performs a depth first search to find a path through
the graph as part of the fordfulkerson algorithm.

Parameters:
sourceIndex: an integer corresponding to the node where the search
is to begin.
sinkIndex: an integer corresponding to the node to be found.
edgeCapacity: a list of integers representing the capacity of all of the
edges in the graph. It is indexed in the same fashion as listofedges.
nodesvisited: a list of booleans. Each entry corresponds to one
node (vertex) in the graph. Initially, every entry in this list should

2



be False.
listOfEdges: a list of two-item lists. Each element represents an
edge in the graph. The edge is identified by numbers corresponding
to the vertices to which is adjacent. These vertices are numbered in
the same fashion that they are numbered in the list nodesvisited.
done: boolean indicating when the search has completed. It should
initially be set to false.

Returns: a list corresponding to the path, if a path is found, or False,
if no path exists.

edgelist(nodelist, size1, size2):
This method takes a list of all the nodes in a graph and returns a
list of all edges in the graph.

Parameters:
nodelist: list of all of the nodes in the graph.
size1: the cardinality of the first level set
size2: the cardinality of the second level set

Returns: a list of two-item lists. Each element represents an edge
in the graph. The edge is identified by numbers corresponding to
the vertices to which is adjacent. These vertices are numbered in
the same fashion that they are numbered in the parameter nodelist.

edgelist(R1,R2):
This function takes two level sets, R1 and R2, as inputs and returns
a list of ordered pairs [i, j] such that R1 [i] and R2 [j] form an edge
according to the covering relation.

Parameters:
R1, R2: two level sets of partitions of the same value n as created
by the latex command Partitions(n,length=k).

Returns:
edgelist: a list of ordered pairs [i, j] such that R1 [i] and R2 [j] form
an edge according to the covering relation.

edgestats(R1,R2):
This method takes two adjacent level sets, R1 and R2, as inputs.
Then, for each edge (P1, P2), where P1 is an element of R1 which
covers P2 (an element of R2 ), the function displays how many of the
total possible maximum matchings between the level sets include
the given edge.

Parameters:
R1, R2: two level sets of partitions of the same value n as created
by the latex command Partitions(n,length=k).

3



Returns: nothing, but displays the appropriate data.

fordfulkerson(R1, R2):
This method uses the Ford Fulkerson algorithm with a depth first
search to determine if a maximum matching exists.

Parameters:
R1, R2: lists of partition objects representing two adjacent level
sets

Returns: True if a maximum matching exists between the two level
sets, False otherwise.

fordfulkerson(R1, R2, nodelist, listofedges, edgeCapacity):
This method uses the Ford-Fulkerson algorithm to determine if two
adjacent level sets have a maximum matching.

Parameters:
R1, R2: lists representing two adjacent level sets
nodelist: a list of all nodes (vertices) in the graph
listofedges:a list of two-item lists. Each element represents an edge
in the graph. The edge is identified by numbers corresponding to
the vertices to which is adjacent. These vertices are numbered in
the same fashion that they are numbered in the lists nodelist and
edgeCapacity.
edgeCapacity: list of integers corresponding to the capacities of all
edges in the graph. This list is indexed in the same fashion as
listofedges.

improvedunimodal(input,start,finish):
This method uses the recurrence p(n, k) = p(n−1, k−1)+p(n−k, k)
to determine the values of p(n, k) for start ≤ n ≤ finish. It then
tests these values along the way to determine if each corresponding
Pn is unimodal. Additionally, as it progresses, the method deletes
the p(n, k) values which become unnecessary for future computa-
tions. In this manner, it reduces the necessary storage capacity and
allows the program to be run for larger values of n than would be
possible for P.

Parameters:
input: a list of lists generated by another execution of improve-
dunimodal that can be used to continue starting at the n value one
greater than the finish value of the previous execution. If start = 1,
this parameter should be an empty list.
start: the maximum value of n for which Pn is to be tested for
unimodality.

4



finish: the minimum value of n for which Pn is to be tested for
unimodality.

Returns: 0 if a Pn is determined to not be unimodal (along with a
display of the n value). Otherwise, the method returns the list
[L,modes], with
L: a list of the currently stored p(n, k) values to possibly be used
in further executions of improvedunimodal where the future exe-
cution’s value of start is set to the current execution’s value of
finish + 1.
modes: a list of the ranks of the modes of Pstart through Pfinish,
respectively.

incidenceMatrix(R1,R2):
This function takes two level sets, R1 and R2, as inputs and returns
the incidence matrix formed by the partitions of R1 and R2 using
the covering relation.

Parameters:
R1, R2: two level sets of partitions of the same value n as created
by the latex command Partitions(n,length=k).

Returns:
M: the incidence matrix determined by the vertices V = R1∪R2 and
the edges E = {(v1, v2) : v1, v2 ∈ V and either v1 l v2 or v2 l v1}.

matchingByRank(n,k):
This method uses the rank of the incidence matrix to determine
whether or not there exists a maximum matching between Λn,k and
Λn,k+1. (A maximum matching exists iff the rank of the incidence
matrix is equal to one less than the total number of partitions in
the two level sets [?]).

Parameters:
n: The specified number to be partitioned.
k: the smaller of the two ranks of the consecutive level sets to be
tested.

Returns: 1, if a maximum matching exists, 0, otherwise

matchingdata(start, finish, B, numtimes):
This method uses numtimes steps in dana2 to approximate the
relative frequencies of each edge for consecutive pair of level sets
for each value of n in [start,finish].

Parameters:
start: the minimum value of n for which data will be displayed.
finish: the maximum value of n for which data will be displayed.

5



B: the reciprocal of the probability with which an edge is removed
in the random walk executed by dana2.
B: the number of maximum matchings dana2 finds before it returns.

Returns: nothing, but prints the appropriate data to the screen.

mode(M):
This method determines the first occurence of the maximum of the
largest element in each row of the inputted matrix. In practice, this
method is used to determine modes of Pn using a matrix generated
by the method P. The maximum row elements (modes) are returned
in a list in the order of the rows of the inputted matrix.

Parameters:
M: the inputted matrix.

Returns:
modes: a list of the maximum row elements (modes) in the order
of the rows of the inputted matrix.

order(R1):
This method converts a level set of partitions from Sage’s propri-
etary data format into a list of lists, where each interior list repre-
sents a single partition. Each individual partition is sorted lexico-
graphically; then, the list of partitions is sorted lexicographically.

Parameters:
R1: two partitions of the same value n taken from the list generated
by the latex command Partitions(n,length=k).

Returns:
modes: the level set stored as a list of lists.

P(howfar):
This method uses the recurrence p(n, k) = p(n−1, k−1)+p(n−k, k)
to determine the values of p(n, k) for start ≤ n ≤ finish. The values
are returned in a matrix where the (i, j) entry equals p(i, j).

Parameters:
howfar: the largest value of n for which the method calculates
p(n, k).

Returns:
M: a howfar× howfar matrix where the (i, j) entry equals p(i, j).

perm(M):
This method uses the algorithm described by Mittal and Al-Kurdi

6



[?] to determine the permanent of the inputted matrix. This algo-
rithm is specifically designed to calculate the permaments of sparse
0-1 matrices more quickly.

Parameters:
M: the inputed matrix.

Returns:
the permanent of M.

Pmod(howfar,p):
This method uses the recurrence p(n, k) = p(n−1, k−1)+p(n−k, k)
to determine the values of p(n, k) for start ≤ n ≤ finish modulo the
specified number p. The values are returned in a matrix where the
(i, j) entry equals p(i, j) (mod p).

Parameters:
howfar: the largest value of n for which the method calculates
p(n, k) (mod p).
p: the modulus in which all p(n, k) values will be calculated.

Returns:
M: a howfar × howfar matrix where the (i, j) entry equals p(i, j)
(mod p).

PPrime(howfar,howbig,howmany):
This method generates a list of the first howmany primes after
howbig. It then uses Pmod to construct a matrix of p(n, k) values
modulo p for each p in the generated list of primes. By calculat-
ing modulo primes, we decrease the necessary storage size for each
individual matrix.

Parameters:
howfar: the value of n up to which the p(n, k) values will be calcu-
lated for the matrix
howbig: the program makes a list of the first howmany primes after
this value
howmany: determines the number of primes in the generated list
to be used as moduli

setup(L1,L2):
This method creates a partial matching and then calls fordfulkerson
to determine if a maximum matching exists.

Parameters:
L1, L2: two lists representing two adjacent level sets.

Returns: True, if a maximum matching exists, False, otherwise

7



topToMode2(n,mode):
This method determines whether the “match furthest available to
the left lexicographically” scheme from section [?] creates a max-
imum matching between each consecutive pair of levels above and
including the mode for Pn.

Parameters:
n: the n value for which Pn will be checked.
mode: the rank of the mode of Pn.

Returns: 1 if the scheme works; otherwise, it returns 0, along with
the first row numbers of Pn for which the scheme does not work.

unimodal(M):
This method determines if each row of the inputted matrix is uni-
modal.

Parameters:
M: the inputted matrix.

Returns: 1 if each row is unimodal; otherwise, it returns 0, along with
the row number of the matrix row which is not unimodal.

8


