
THE SPERNER PROPERTY FOR INTEGER
PARTITION POSETS

BRIAN BOWERS, KERRY GANNON, KATIE JONES, ANNA KIRKPATRICK

Abstract

We examine the integer partition poset, Pn, ordered by a covering
relation to determine whether or not it has the Sperner property. To
show that Pn is Sperner we must prove it satisfies unimodality and the
bipartite matching property. It has been shown computationally by
Canfield for n ≤ 2000 and asymptotically by Szekeres for n sufficiently
large that Pn is unimodal. Computationally, we have increased the
known bounds for Pn being unimodal to 25,000. It was previously
shown by Canfield that the bipartite matching property holds for n ≤
45. We have computationally worked toward improving this bound. We
prove that the bipartite matching property holds between each pair of

consecutive level sets from level k =
⌈n

2

⌉
to k = n. We also prove that

the bipartite matching property holds between other specific levels of
the poset Pn.

Acknowledgement

We would like to thank our mentor Neil J. Calkin and our gradu-
ate student advisor Janine E. Janoski. We would also like to thank
the other organizers of the REU, Jim Brown and Kevin James. Addi-
tionally, we would like to thank Rodney Canfield, Teena Carroll, Dana
Randall, and Matthew Saltzman for their indispensable assistance and
input.

Bowers, Calkin, Gannon, Janoski, and Jones were partially supported by the
NSF grant DMS 0552799.

Kirkpatrick was partially supported by the South Carolina Governor’s School
for Science and Mathematics Summer Program for Research Interns.

1

1. Introduction

Definition. Let n be a nonnegative integer. A rank k partition of n is
a k-tuple of positive integers (λ1, . . . , λk) satisfying

n =
k∑
i

λi, 1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λk.

We write

(1a12a2 · · ·) to represent

1, ..., 1︸ ︷︷ ︸
a1

, 2, ..., 2︸ ︷︷ ︸
a2

, . . .

 ,

where ∑
i≥1

iai = n

Example. The following table shows all of the partitions of 4 in both
notations and their respective ranks.

First Representation Second Representation Rank
(1, 1, 1, 1) 14 4
(1, 1, 2) 122 3
(1, 3) 13 2
(2, 2) 22 2
(4) 4 1

Let p(n, k) denote the number of partitions of n into k parts, and
P (n, k) denote the number of partitions of n into at most k parts.

Definition. If λ and λ′ are two partitions of the same number, then
we say that λ is covered by λ′, written λ l λ′, if two summands of λ
can be added to form λ′.

Example. (1, 1, 1, 2, 3) l (1, 1, 1, 5)

Definition. We define Pn to be the set of all partitions of the nonneg-
ative integer n with the ordering induced by the reflexive and transitive
closure of the covering relation. We will denote this transitive closure
by 6. Pn is a poset (partially ordered set) under 6.

Definition. We say that λ and λ′ are comparable if λ 6 λ′ or λ′ 6 λ.
Two partitions which are not comparable are called incomparable.

We can organize Pn using a graphical representation called a Hasse
Diagram in the following way: We create the graph with vertices

V = {λ : λ ∈ Pn}
2

arranged in rows, called “level sets”, according to rank. We then add
edges

E = {{λ, λ′} : λ, λ′ ∈ Pn and either λl λ′ or λ′ l λ}.

Example. The Hasse diagram for P8:

8

17 26 35 44

116 125 134 224 233

1115 1124 1133 1223 2222

11114 11123 11222

111113 111122

1111112

11111111

Definition. A chain is a set of partitions {λ′, λ′′, . . . , λ(r)} such that
λ′ l λ′′ l . . .l λ(r).

Definition. We define a chain partition of Pn as a set of non-intersecting
chains whose union is Pn.

Definition. An antichain is a set of partitions which are pairwise in-
comparable.

The elements within a level set form an antichain. For example,
111113 and 111122 in P8 form an anitchain.

We are interested in determining if Pn is Sperner for all nonnegative
integers n.

Definition. A ranked poset is said to be Sperner if the size of its largest
antichain is equal to the size of its largest level set.

The following definitions are required to state an equivalent formu-
lation of the Sperner property:

Definition. We say that Pn is unimodal if there exists a number k1,n,
called the mode, such that p(n, k) < p(n, k + 1) for k < k1,n, and
p(n, k) > p(n, k + 1) for k > k1,n.

3

Definition. Pn is said to have the bipartite matching property if, for
any two consecutive level sets, Λn,a and Λn,b with p(n, a) < p(n, b), there
is an injective matching using the edges of the Hasse Diagram of Pn
from Λn,a onto Λn,b. We call such a matching a maximum matching.

With these definitions, we can state our equivalent formulation of
the Sperner property. If a ranked poset has the bipartite matching
property and it is unimodal, then it is Sperner.

For example, P7 below satisfies the Sperner property because it is
both unimodal and has the bipartite matching property.

7

16 25 34

115 124 133 223

1114 1123 1222

11113 11122

111112

1111111

Some progress has been made toward proving that Pn is Sperner for
all n using this equivalent definition.

In 1952, Szekeres proved that, for “sufficiently large n,” Pn is uni-
modal [8]. It has been previously computationally verified that Pn is
unimodal for n ≤ 2000. Canfield proved in 2003 that Pn is Sperner for
all n ≤ 45 [2]. Canfield proved this by using the Ford-Fulkerson Al-
gorithm, to show that for 1 ≤ n ≤ 45, Pn has the bipartite matching.
Because Canfield proved that these integer posets had the bipartite
matching property, he was able to conclude that Pn is Sperner in each
of these cases since it had already been computationally verified that
Pn is unimodal [2].

The remainder of the paper will be broken into four sections. In
section 2, we will examine various computational and proof-based ap-
proaches to determining the unimodality of Pn. Next, in section 3, we
will study the Bipartite Matching Property of Pn, again using both
computational and proof-based methods. We also include an appendix
of the Sage methods that we created.

4

2. Unimodality

We will explore the unimodality of Pn in two ways. First, we will
use computational approaches to prove unimodality for finitely many
n. Then, we will examine a 1952 paper by Szekeres [8] to determine
the range of n values for which his proof of unimodality holds.

2.1. Computational Approaches for Unimodality. Using several
computational approaches, we have determined that Pn is unimodal
for all n ≤ 25, 000.

We first expanded the values of n for which Pn is known to be uni-
modal from n ≤ 2, 000 to n ≤ 10, 000. We created a Sage algorithm
that generates a matrix for which the (n, k) entry represents p(n, k).
This algorithm defines all entries for which k = 1 or n = k to be 1 and
then calculates the remaining entries according to the recursive formula
p(n, k) = p(n− 1, k− 1) + p(n−k, k). We then used another algorithm
to ensure that each row of the matrix was unimodal. Combining these
two algorithms, we concluded that Pn is unimodal up to n = 10, 000.

We also created a function that finds the column number of the max-
imum element of each row of the p(n, k) matrix, effectively calculating
the rank of the mode of Pn, where n is the row of the matrix. Using
this algorithm, we were able to calculate the rank of the mode of Pn
up to n = 10, 000.

Additionally, we used an improved algorithm that encompasses the
utilities of the previous algorithms. First, it finds the values of p(n,k)
for a specified range of n values. Then, it determines if each Pn is
unimodal and returns the k-value of the column of the first appearance
of the mode if applicable. This function is an improvement over the
previous functions in that, at each step, it deletes all p(n,k) values
which become unnecessary for future computations. This decreased
the necessary data storage by over 50% and allowed us to test the
unimodality of larger values of n. Using this improved algorithm, we
found that Pn is unimodal for all n ≤ 25, 000.

We also created another algorithm that generates the matrix of
p(n, k) values modulo a specified prime. In this manner, we can com-
pute the same matrix modulo many relatively small primes and later
recover specific values of the original matrix using the Chinese Remain-
der Theorem. The advantage of this approach is that it decreases the
file sizes for each individual stored matrix, thereby allowing us to check
unimodality for still larger values of n.

2.2. Szekeres’ Proof of Unimodality. 1

1In this section we will use Szekeres’ notation from [7]
5

We would like to prove that the integer partition poset is unimodal
for all n, and fortunately a great deal of the theoretical work required
has already been done by Szekeres in [7]. He proves the following
theorem regarding unimodality:

Theorem. If n is sufficiently large, then there exists a number k1 =
k1(n) such that p(n, k) < p(n, k + 1) for k ≤ k1, p(n, k) > p(n, k + 1)
for k > k1. [7]

To do so, he uses the recursion relation p(n, k) = P (n − k, k). He
first determines the size of P (n, k) asymptotically and uses this result
in his proof of the theorem above. To determine the size of P (n, k), we
let

F (w) =
k∏
ν=1

(1− wν)−1 =
∞∑
n=0

P (n, k)wn.

By Cauchy’s theorem we can use a contour integral to estimate this
series, given by

P (n, k) =
1

2πi

∫
F (w)w−n−1dw,

centered at 0 with a radius ρ < 1, such that ρ is a real number taken

as the positive root of
wF ′

F (w)
= n. If we recognize the left side of this

equation as the derivative of log(n) we can rewrite this as the sum

k∑
ν=1

νρν

1− pν
= n.

If we set α = −logρ, then we can make a change of variables to see

k∑
ν=1

ν

eνα − 1
= n.

We would like to find bounds on ρ so that we may better estimate
Szekeres’ integral, and thus find explicit bounds on the size on n. To
do this, we would first like to find the relative size of α. So far, we have
considered three cases for α.

Case 1: Let α be very small, such that α� 1
k
. We have concluded

that in this case we would like α to be much smaller than 1, so that
k2

n
= o(1), or k = o(n

1
2). In this case, the integral equation for P (n, k)

has a contour with radius about ρ = 1− k

n
.

6

Case 2: Let α be very large, so that e−α = o(1). Then, upon
doing some analysis, we see that n ∼= e−α, which would imply that
α ∼= −logn, but this cannot happen because we have restricted α > 0.

Case 3: We are also interested in the case where α = u
k

where u > 0
is a constant. This case has not yet been resolved.

Szekeres then lets f(x) =
x

eαx − 1
and φ(t) =

t

et − 1
so that he may

use the well-known Euler Maclaurin summation formula

f(1)+...+f(k) =

∫ k

0

f(x)dx+
1

2
[f(k)−f(0)]+

m∑
ν=0

1

(ν + 1)!
Bν+1[f

ν(k)−f ν(0)]+

∫ k

0

Pm+1(x)m+1(x)dx

where Bν is the νth Bernoulli number and Pm+1 is the mth Bernoulli

polynomial to estimate the size of
k∑
ν=1

ν

eαν − 1
, which is equal to n.

Using the substitution t = αx and writing u = αk, Szekeres is able
to write ∫ k

0

x

eαx − 1
dx

as

α−2

∫ u

0

t

et − 1
dt.

Using this change of variables, Szekeres is able to write

n =
k∑
ν=1

ν

eαν
− 1 = α−2

∫ u

0

t

et − 1
dt+

1

2
α−1

(
u

eu − 1
− 1

)
+

+
1

12

(
1

eu − 1
− ueu

(eu − 1)2
+

1

2

)
+α2A(u)+ ...+αm−2A(u)+O

(
αm−1

)
,

where he computes out the first term in the sum and writes the rest as
a power of α times A(u), where A(u) is some polynomial bounded for
u ≥ 0. The final integral term is treated as the error bound.

We are then interested in bounding the φ and its derivatives. In [7],
Szekeres finds an upper bound for |φ(m)(t)|, however it appears that it
will be sufficient to only bound up |φ(4)(t)|. We have so far determined
bounds for |φ(t)| and |φ′(t)|.

7

Theorem. |φ(z)| < e

e− 1
ze−z

Proof. Suppose z > 1. Now suppose, for contradiction, that∣∣∣∣ ez

ez − 1

∣∣∣∣ > e

e− 1
.

The term is positive, so we can remove the absolute values to see

ez >
e

e− 1
ez − e

e− 1
,

so that

ez
(

1− e

e− 1

)
> − e

e− 1
,

which means
1

e− 1
ez <

e

e− 1
.

Thus,

ez < e,

and

z < 1.

This is a contradiction of our initial supposition, so it must be the case
that ∣∣∣∣ ez

ez − 1

∣∣∣∣ < e

e− 1
,

which means that

|φ(z)| =
∣∣∣∣ z

ez − 1

∣∣∣∣ < e

e− 1
ze−z

�

Theorem. With φ as given above, |φ′(z)| < e

e− 1
ze−z

Proof. Suppose z > 1. Let f(z) =
1

z
− 1

ez − 1
. Then

f(z) =
1

z

(
1− z

ez − 1

)
=

1

z

(
ez − z − 1

ez − 1

)
8

Since 0 <
1

z
< 1 and 0 <

ez − z − 1

ez − 1
< 1, we find that 0 < f(z) < 1.

Thus, ∣∣∣∣φ′(z)

φ(z)

∣∣∣∣ =

∣∣∣∣∣
1

ez−1
− zez

(ez−1)2

z
ez−1

∣∣∣∣∣
=

∣∣∣∣1z − ez

ez − 1

∣∣∣∣
=

∣∣∣∣−1 +
1

z
− 1

ez − 1

∣∣∣∣
= |−1 + f(z)| .

Now, applying our bounds for f(z), we see that∣∣∣∣φ′(z)

φ(z)

∣∣∣∣ < 1.

Therefore,

|φ′(z)| < |φ(z)| < e

e− 1
ze−z.

�

Ultimately, we would like to find the specific value of n for which
Szekeres’ theorem on unimodality holds or at least to find sufficient
bounds on the size of n so that we may computationally verify uni-
modality up to this point. Szekeres claims that we can discard the
condition in his theorem that n be large if we replace the O-notations
in his proofs by explicit constants and check the conjecture for smaller
values of n.

Before we continue, we must first first make a brief digression into
our usage “big O notation.” We use this notation to describe the error
term in the approximation of a mathematical function. So, for example,
O(n2) indicates that the error term is smaller in absolute value than
some constant times n2 for n sufficiently close to 0. We arrive at this
type of approximation by truncating infinite sums and condensing the
value of the remaining terms within a reasonable error bound.

Using techniques in analysis, we found explicit constants for several
of the error terms in Szekeres 1. We have determined the value of O(1)
in [8] in the following way: we are given∫ ∞

0

|φ(m+1)(t)|dt = O(1)

9

with the condition that φν(t) is bounded for t ≥ 0 and tends to zero
monotonically for t ≥ tν , where φ(t) = t(et−1)−1. So we have |φν(t)| ≤
Mν for all t. If we fix ν = m we can split our integral and see that∫ ∞

0

|φ(m+1)(t)|dt =

∫ tm+1

0

|φν(t)|dt+

∫ ∞
tm+1

|φ(m+1)(t)|dt

where, ∫ tm+1

0

|φν(t)|dt < Mm+1tm+1

and ∫ ∞
tm+1

|φ(m+1)(t)|dt = [φ(m)(t)]
∞
tm+1

= 0− φ(m)(tm+1) < Mm

and thus our bound becomes c1 = Mm+1tm+1 +Mm.
It appears that it may be difficult to provide explicit constants and

find an effective bound for n theoretically, and it may be more feasible
to find an sufficiently accurate estimate. In [7], Szekeres determined
that, for sufficiently large n, the rank of the mode of Pn is equal to

c
√
nL+ c2

(
3

2
+

3L

2
− L2

4

)
− 1

2
+O

(
log4n√
n

)
where

c =

√
6

π
and

L = log
(
c
√
n
)

[8].
We have created a spreadsheet which compares the actual rank of the

mode to Szekeres’ estimate as well as the actual error of the estimate to
the big-O expression from Szekeres’ formula. We observed that up to
10,000, Szekeres’ prediction is always within ±2 of the actual mode. It
is possible that such comparisons can lead to estimates of the minimum
n value for which Szekeres’ formula is correct.

By using this equation, if we fix n, we can figure out the rank of the
mode, k1.

Theorem 1.
k = νβ

n = β2

∫ ν

0

t

et − 1
dt+

1

2
β

(
ν

eν − 1
− 1

)
+

1

12

(
1

2
+

1

eν − 1
− νeν

(eν − 1)2

)
10

and

P (n, k) =
1

2π
B
− 1

2
0 β−2exp{2β

∫ ν

0

t

et − 1
dt− (νβ +

1

2
)log(1− e−ν)

+
1

2

(
ν

eν − 1
− 1

)
}[1 +B1(ν)β−1 + · · ·+Bm−1(ν)β−m+1 +O(β−m)]

for any given m > 0, where

B0 =

∫ ν

0

t2et

(et − 1)2
dt,

and

B1(ν) = −[
1

12
νeν(eν − 1)−2 +B−1

0

{
1

8
+

1

4
ν2eν(eν − 1)−2

}
+B−2

0

{
1

8
ν4(eν + e2ν)(eν − 1)−3 − 3

4
ν3eν(eν − 1)−2

}
+

5

24
B−3

0 ν6e2ν(eν − 1)−4].

If we solve for β in terms of ν and k, and plug into the equation
of n in the theorem above, we can solve for ν and, in turn, β. Using
these values and the equation for n, an approximation of P (n, k) can
be made explicit.

One way in which we can possibly find a “large enough n” that
satisfies Szekeres’ theorem, is to compute the exact value of P (n, k)
and compare it to the approximation produced by Szekeres’ formulas.
We can find the precise number of partitions of n into at most k parts,
by a recursion formula,

P (n, k) =
k∑
j=1

p(n, j)

where
p(n, j) = p(n− 1, j − 1) + p(n− j, j).

If the difference between the two values, or error, is sufficiently small,
then the fixed n may be an adequately “large enough n”. If it is not
sufficiently small, fix new values of n until error is minimized.

Denote Pa(n, k) as the actual value of P (n, k) produced by the recur-
sion formula, and Pe(n, k) as the estimated value of P (n, k) by Szekeres’
formula. Also, let the actual mode of an integer n be denoted as ka,n
and the estimated mode be denoted ke,n. The actual and estimated
modes are listed below:

ka,100 = 18 ka,5,000 = 223 ka,10,000 = 341
ke,100 = 17.65654513 ke,5,000 = 222.6936757 ke,10,000 = 341.1610199

11

B
ec

au
se

w
e

ar
e

on
ly

co
n
ce

rn
ed

w
it

h
in

te
ge

rs
n

fo
r

ou
r

in
te

ge
r

p
ar

ti
ti

on
p

os
et

s,
w

e
m

u
st

u
se

th
e

ce
il
in

g
an

d
fl
o
or

of
k
n

′
to

fi
n
d
P
e
(n
,k

).
T

h
e

va
lu

es
of

P
a
(n
,k

)
an

d
P
e
(n
,k

)
ar

e
li
st

ed
b

el
ow

fo
r
n

=
10

0,
50

00
,1

00
00

:

P
a
(1

00
,1

7)
=

6.
46

84
58

4
·1

07

P
e
(1

00
,1

7)
=

6.
49

11
25

40
56

71
33

57
11

26
43

30
79

81
47

08
62

24
38

60
88

97
86

43
5
·1

07

P
a
(1

00
,1

8)
=

7.
57

72
41

2
·1

07

P
e
(1

00
,1

8)
=

7.
60

53
40

25
25

60
06

51
65

33
58

07
05

50
65

46
40

72
47

31
69

14
12

92
1
·1

07

P
a
(5

00
0,

22
2)

=
6.

04
53

71
86

22
93

36
59

08
73

16
89

68
62

13
20

33
33

07
01

78
86

65
20

6
·1

07
3

P
e
(5

00
0,

22
2)

=
6.

05
00

36
37

91
43

17
38

02
79

29
05

28
62

50
82

37
79

20
50

53
46

72
94

4
·1

07
3

P
a
(5

00
0,

22
3)

=
6.

16
67

80
27

35
76

91
08

88
23

05
93

09
95

60
80

82
55

03
90

74
89

90
83

3
·1

07
3

P
e
(5

00
0,

22
3)

=
6.

17
15

52
68

25
08

77
47

01
38

24
97

87
24

90
20

47
10

02
92

97
62

32
10

0
·1

07
3

P
a
(1

00
00
,3

41
)

=
1.

30
40

86
53

06
57

89
58

11
80

80
89

28
31

43
74

74
71

52
60

80
53

64
75

7
·1

01
0
6

P
e
(1

00
00
,3

41
)

=
1.

30
48

29
69

19
43

19
73

61
81

56
97

81
87

18
59

72
39

55
64

28
71

43
19

7
·1

01
0
6

P
a
(1

00
00
,3

42
)

=
1.

32
21

20
19

99
63

87
27

11
50

16
17

49
87

30
90

35
98

28
83

71
81

75
84

8
·1

01
0
6

P
e
(1

00
00
,3

42
=

1.
32

28
74

77
95

44
47

60
74

49
29

57
28

17
37

98
38

69
30

66
62

38
25

89
6
·1

01
0
6

12

With this information, ∆P (n, k) can be determined by

∆P (n, k) = P (n, ke)− P (n, ka),

and the error percentage can be determined by

%error =

∣∣∣∣∆P (n, k)

P (n, ka)

∣∣∣∣ .
∆P (100, 17) = 2.26670056713357112643307981470862243860889786435 ·105

%error P (100, 17) = 0.003504236136%

∆P (100, 18) = 2.80990525600651653358070550654640724731691412921 ·105

%error P (100, 17) = 0.003708348701%

∆P (5000, 222) = 4.6645168498078940612156000376204461348746007737·1070

%error P (5000, 222) = 0.0007715847687%

∆P (5000, 223) = 4.7724089318638131519047729293964549902227241267·1070

%error P (5000, 222) = 0.0007738898939%

∆P (10, 000, 341) = 7.431612853015500076085355748497680303481778439·10102

%error P (10, 000, 341) = 0.0005698711455%

∆P (10, 000, 342) = 7.545795806033629913397830070802710182905650047·10102

%error P (10, 000, 342) = 0.0005707344768%

The error percentage for n = 10, 000 is smaller than for n = 5, 000
and n = 100, which may imply that n = 10, 000 is a sufficiently large
enough n to satisfy Szekeres’ Theorem that Pn is unimodal.

Szekeres also examines ∆log(p(n, k)) in depth, where

∆log(p(n, k)) = log((p, k + 1))− log(p(n, k))

= −log(1−e−u)−α[1+
1

eu − 1
+

1

2
A−1

0

u2(eu + 1)

(eu − 1)2
−3

2
A−1

0

u

eu − 1
+

1

2
A−2

0

u4eu

(eu − 1)3
]

+
3

2
A−1

0 α2 +O(u2∆α),

where u = kπ√
6
√
n
, A0 = π2

3
−
∫∞
u
x2e−x, and α = 1

6
π2 u
· k
n
, and O(u2∆α)

is our error term.
We note the following remarks:

13

Remark. If ∆log(p(n, k)) is positive, then p(n, k + 1) > p(n, k).

Remark. If ∆log(p(n, k)) is negative, then p(n, k) > p(n, k + 1).

Remark. If ∆log(p(n, k)) is zero, then p(n, k) = p(n, k + 1).

Remark. If ∆log(p(n, k)) is positive for k < k1, where k1 is the mode,
and ∆log(p(n, k)) is negative thereafter, then Pn is unimodal.

Another approach to finding a “sufficiently large enough n” is to
test this approximation for ∆log(p(n, k)) for k near and around the
mode for several n and to compare it to the actual, computed value of
∆log(p(n, k)).

Let ∆alog(p(n, k)) denote the actual value of ∆log(p(n, k)), and
∆elog(p(n, k)) denote Szekeres’ approximation for ∆log(p(n, k)).

∆alog(p(100, 17)) = 0.005905118538

∆alog(p(100, 18)) = −0.01837046188

∆alog(p(5000, 222)) = 0.0001173838973

∆alog(p(5000, 223)) = −0.0002627018839

∆alog(p(10000, 340)) = 0.0001501608640

∆alog(p(10000, 341)) = −0.00003598257899

∆alog(p(10000, 342)) = −0.0002194270492

∆elog(p(100, 17)) = −0.03014042401

∆elog(p(100, 18)) = −0.04184253798

∆elog(p(5000, 222)) = −0.0009911772790

∆elog(p(5000, 223)) = −0.001303067991

∆elog(p(100, 341)) = −0.0006048430625

∆elog(p(100, 342)) = −0.0007621053514

With this information, ∆∆log(p(n, k)) can be determined by

∆∆log(p(n, k)) = ∆elog(p(n, k))−∆alog(p(n, k)),

and the error percentage can be deteremined by

%error =

∣∣∣∣∆∆log(p(n, k))

∆alog(p(n, k))

∣∣∣∣ .
∆(∆log(p(100, 17))) = −0.03604554255

%error ∆log(p(100, 17)) = 6.104118371%
14

∆(∆log(p(100, 18))) = −0.02347207610

%error ∆log(p(100, 18)) = 1.277707455%

∆(∆log(p(5000, 222))) = −0.001108561176

%error ∆log(p(5000, 222)) = 9.443894789%

∆(∆log(p(5000, 223))) = −0.001040366107

%error ∆log(p(5000, 223)) = 3.960253697%

∆(∆log(p(100000, 341))) = 0.0005688604835

%error ∆log(p(100000, 341)) = .9405092309%

∆(∆log(p(100000, 342))) = 0.0005426783022

%error ∆log(p(100000, 342)) = .7120778003%

Similar to the error percentage for P (n, k), the error percentage for
∆log(p(n, k)) for n = 10, 000 is smaller than for n = 5, 000 and n = 100.
This reinforces that n = 10, 000 is a good estimate as a sufficiently large
enough n.

However, the ∆elog(p(n, k)) listed above, do not indicate that the
k’s selected above are the mode, because the sign of ∆elog(p(n, k))
does not change from positive to negative. The k values for which
∆elog(p(n, k)) does change sign, which would signify the mode, are
listed below, in comparison with Szekeres’ predicted mode produced
by

k1 = c
√
nL+ c2

(
3

2
+

3L

2
− L2

4

)
− 1

2
+O

(
log4n√
n

)
.

kn Szekeres’ Estimated Mode ∆ Sign for ∆(∆log(p(n, k)))
k100 17.65654513 14
k5,000 222.6936757 218
k10,000 341.1610199 337
k15,000 436.7677659 432
k20,000 519.9072324 515
k100,000 1358.790795 1354
k200,000 2041.843714 2037
k1,000,000 5191.672085 5186

The difference in the modes produced by these formulations may
indicate an error which is worth investigating further.

15

2.3. Log-Concavity. We are also investigating the log-concavity of
p(n, k). We are interested in this because it would imply the uni-
modality of Pn. We say that p(n, k) is log-concave if, for all 1 < k < n,

(1) p(n, k)2 ≥ p(n, k − 1)p(n, k + 1).

Trivially, we can see that p(n, k) is not log-concave for any n > 4
because p(n, n− 1) = p(n, n) = 1 and p(n, n− 2) ≥ 2. Thus,

p(n, n− 1)2 = 1 < 2 ≤ p(n, n− 2) = p(n, n− 2)p(n, n).

However, we have computationally shown that, for all 51 ≤ n ≤ 10, 000,
p(n, k) is log-concave for all 1 < k < n − 25. We conjecture that this
phenomenon will continue for all n > 10, 000, thus proving that it will
be true for all n ≥ 51. At first glance, this seems highly improbable;
however, a close inspection of the bottom half of Pn for any n = n1

reveals a bijection between p(n, k) for dn1

2
e ≤ k ≤ n1 and the partition

function, p(n), for n ≤ bn1

2
c. Using this bijection, we can study the

log-concavity of p(n) to help us determine the log-concavity of p(n, k).
Rademacher’s formula implies

(2) p(n)2 − p(n− 1)p(n+ 1) =
C1

n7/2
eC2
√
n(1 +O(n−1/2)).

This equation will show that p(n) is log-concave for n sufficiently large.
Therefore, if we can prove that equation (2) holds and then find the
sufficiently large n, we will have a much clearer picture of the log-
concavity of p(n, k). In near future work, we will show that equation
(2) holds for all n > 25.

3. Bipartite Matching Property

We examine the Bipartite Matching Property of Pn in three ways:

(1) We use various algorithms to generate data which we will study
to find patterns and matching schemes.

(2) We introduce several matching schemes and explore their utilites
using computational verification and proofs.

(3) We use the Ford-Fulkerson algorithm to find maximum match-
ings between level sets and, in turn, determine values of n for
which Pn has the Bipartite Matching Property.

3.1. Matching Data and Conclusions. We would like to prove that
Pn has the bipartite matching property for all values of n. In order to
do so, we need to look for possible patterns in the perfect matchings of
the integer partition poset. We used several computational approaches
to characterize the matchings between two given level sets.

16

The first approach precisely determines the number of perfect match-
ings between two consecutive level sets of equal size by finding the per-
manent of the adjacency matrix formed by the two level sets. First, a
function creates the adjacency matrix in which the (i, j) entry equals
1 if the ith element of the first level set covers the jth entry of the sec-
ond or 0 otherwise. Next, we find the permanent of this matrix. Sage
has a built-in permanent function called permanent that uses Ryser’s
algorithm [6]. However, in the interest of computing efficiency, we also
created a function which implements the algorithm by Mittal and Al-
Kurdi [5] to more quickly determine the permanent of a sparse matrix
whose entries are either 0 or 1. Next, for each edge of the Hasse dia-
gram between the two levels, the two vertices which comprise the edge
are removed from the graph and the number of perfect matchings of
the resulting graph is determined as above. This number tells us how
many perfect matchings between the two level sets use the edge de-
termined by the two removed vertices. In this manner, we determine
the relative frequency with which each edge appears and display the
resulting data.

Another approach uses a random walk to find maximum matchings.
The algorithm begins with a graph containing no edges. Alternately,
certain fixed edges can also be specified a priori. At each step, an edge
is selected at random. The edge may already be present in the graph, or
it may be an edge that could be added based upon the covering relation.
If that edge is not already in the graph and can be added, it is added.
If the edge is already in the graph, it is removed with probability 1/B.
After a specified number of maximum matchings are acquired in this
manner, the algorithm returns the frequency with which each edge has
appeared in the generated maximum matchings.

We also created a function which implements our random walk al-
gorithm to search for a maximum matching between two consecutive
level sets. Essentially, the function repeats the random walk process
until a matching is found. By using this new algorithm for each pair
of consecutive levels in a particular Pn, we can determine that Pn has
the Bipartite Matching Property.

Additionally, we used a function which uses the previously described
random walk until it finds a specified number of every recorded max-
imum matching that it has found. Each time a matching is found,
its corresponding counter is increased. However, a maximum match-
ing which occurs within five steps of its previous appearance is not
recorded; this allows for faster mixing of matchings. Using this func-
tion, we can approximate the number of unique matchings between two

17

levels by repeating the process until each matching obtained reaches a
certain quota of occurences.

We used the above algorithm to successfully determine approxi-
mately how often a given edge appears in a maximum matching. These
results are organized as a list of the possible edges with the percentage
of how often it appears in a random walk. We may be able to use
these results to show that there exists a bipartite matching for every
n. One way in which we can do so is by using a greedy algorithm to
find a maximum matching. First, select the edge between two given
level sets with the highest probability of appearing and add it to the
matching. Eliminate all other possible edges containing either of the
vertices incident to the edge previously selected. Iterate until no edges
remain. This creates a bipartite matching in which the smaller level
set is completely saturated. We have computationally verified that this
algorithm finds a maximum matching for cases for n ≤ 10.

Our data also allows us to determine the total probability of any
given vertex appearing in a maximum matching by adding up the prob-
abilities of all the edges in which that vertex appears. The probabilities
of vertices of a smaller level set will always be 1, because in order to
be a bipartite matching, each vertex of the smaller level set must be
matched. On the other hand, the probabilities of the vertices of the
larger level set are less than 1 because not all of the vertices appear in
each maximum matching, minus a few exceptions.

The data produced by these algorithms is critical in finding possible
matchings schemes which will possibly produce a maximum matching.

3.2. Matching Schemes. By examining many Hasse Diagrams, we
have determined several matching schemes that can be used to help
create maximum matchings for all n.

Remark. For even positive integers, 2n, the partition of (2n) always
matches to (2n−24).

Remark. For positive integers, 3n, the partition of (3n) always matches
to (3n−26).

Remark. In general, for positive integers, bn, where b = 1, 2, 3, 4...,
the partition of (bn) always matches to (bn−22b).

So, if (bn−22b) is in the larger level set, it always has probability of
1 of being included in a maximum matching.

We looked for patterns between many levels of our Hasse Diagrams.
We believe that it is feasible to find four sets of rules: one for Λn,1 to
Λn,m (where Λn,m designates the mode), one for the levels adjacent to

18

the mode, one for Λn,m to Λn,dn
2
e, and one from Λn,dn

2
e to Λn,n. We will

sort our results into these sections.

3.2.1. Λn,1 to Λn,m. The proof of the existence of a maximum matching
from Λn,1 to Λn,2 is trivial. We have proven the following theorems
regarding maximum matchings:

Theorem. For all n > 6 there exists a maximum matching from Λn,2

to Λn,3.

Proof. Let λ ∈ Λn,2. Then λ = (x, y) where x ≤ y. If n is odd, then
it follows that x < y, and we can assign a mapping from Λn,2 to Λn,3

such that (1, x, y−1)l (x, y) for all (x, y) ∈ Λn,2. Since each pair (x, y)
will be unique, it follows that this is an injective mapping and thus will
form a maximum matching.

When n is even, we must consider the exception where x = y = n
2
.

This case will occur only once for each n, and we use the mapping such
that

(
2, n

2
− 2, n

2

)
l
(
n
2
, n

2

)
. We know that

(
2, n

2
− 2, n

2

)
has not previ-

ously been covered by an element of Λn,2 because each of our partitions
in the level set above contains at least one 1, whereas

(
2, n

2
− 2, n

2

)
con-

tains none when n > 6. Thus we create a maximum matching between
the two level sets.

�

Theorem. For all n ≥ 4 there exists a maximum matching from Λn,3

to Λn,4.

Proof. It has been proven computationally that Pn has the bipartite
matching property for all n ≤ 45. The following scheme proves that
there is maximum matching for n > 9.

Let λ ∈ Λn,3 such that λ = (x, y, z) where x ≤ y ≤ z.
Let φ : Λn,3 → Λn,4 be a function defined as follows:

(1) For odd n, φ
((

2, n−5
2
, n+1

2

))
=
(
2, 3, n−5

2
, n−5

2

)
(2) If y < z, then φ ((x, y, z)) = (1, x, y, z − 1) , unless it has already

been matched under (1)
(3) If y = z, then φ ((x, y, y)) = (2, x, y − 2, y),

where φ(λ) = µ implies µ l λ. It is clear that (2) and (3) will form
an injective mapping. Note that we must take extra care in (1). Let
λ′ = φ

((
2, n−5

2
, n+1

2

))
=
(
2, 3, n−5

2
, n−5

2

)
. Since n > 9, it follows that

n+1
2
> 4, thus n+1

2
− 3 > 1. Therefore λ′ does not contain any 1’s, thus

will not form a matching of type (2). If λ′ came from our third class of
matchings, then it would have come from

(
3, n−5

2
, n−5

2
+ 2
)
, but clearly

n−5
2
6= n−5

2
+ 2 and so it would not be matched under (3). Therefore

it is guaranteed that
(
2, n−5

2
, n+1

2

)
will map to a unique vertex in Λn,4.
19

Thus φ is an injective map and we can form a maximum matching from
Λn,3 to Λn,4.

�

Example. A mapping from Λ11,3 to Λ11,4.

119 128 137 146 155 227 236 245 335 344

1118 1127 1136 1145 1226 1235 1244 1334 2223 2234 2333

Using schemes similiar to the ones listed in the proofs above, we hope
that we may be able to categorize the way that mappings are formed
from Λk to Λk+1 where k, k + 1 < m and hopefully we will be able
to write a proof based on generalizing the pattern of exceptions as we
look for maximum matchings between level sets of increasingly larger
ranks.

We are also pursuing an alternate idea for finding maximum match-
ings from Λn,1 to the mode. Let Λn,m designate the level set at the
mode. Then we have produced a matching scheme which works from
Λn,1 to Λn,m−1 up to n = 32; we will call this scheme Leftmost to the
Mode (LTM). To produce such a matching, look at two consecutive lev-
els, Λk and Λk+1, with lexicographic ordering, where 1 ≤ k, k+ 1 < m.
First, take λ ∈ Λn,k and check if it covers the leftmost element of Λn,k+1,
call this µ. If this is so, we draw an edge between λ and µ. If not, look
at the next element in Λn,k+1 and apply the same process. We continue
this process until λ has been matched with some µ ∈ Λn,k+1. Then
we repeat the process with the next element in Λn,k, call this λ′. We
repeat this process until we have matched all of the elements in Λn,k

with elements of Λn,k+1. We have found that LTM fails at n = 35, but
this scheme may still be useful for improving algorithm efficiency.

Example. A matching produced by this scheme for P12. Note that this
is an exceptional case because our matching works to the mode at k = 4.

20

12

1,11 2,10 39 48 57 66

11,10 129 138 147 156 228 237 246 255 336 345 444

1119 1128 1137 1146 1155 1227 1236 1245 1335 1344 2226 2235 2244 2334 3333

3.2.2. Levels adjacent to the mode. As mentioned above, our LTM
scheme oftentimes works down to the mode. In cases where this rule
fails for Λn,m−1 to Λn,m we have observed that p(n,m− 1) ≈ p(n,m).

3.2.3. From Λn,m to Λ
n,

⌈n
2

⌉: We tried applying several rules for this

section of the graph, but all had multiple exceptions which we expect
to become increasingly more numerous and complex as the size of n
increases. If we again consider the partition λ =

(
jλ̄
)

where j is the

largest summand, then the rule such that λ maps to λ′ =
(
1(j − 1)λ̄

)
will produce and non-crossing matching across at least half of each level.
In this instance, our rule breaks down when our partition λ contains
no ones, but instead ends in repeated 2’s or 3’s. We suspect that this
trend will continue for partitions than end in repeated summands i
such that i ≥ 2. In this instance, we were unable to find any rule for
exceptions that worked uniformly, but did consider the following three
ideas:

1. Whenever a vertex has a double matching, redirect the first match-
ing by adding the smallest two summands together.

2. Break the second-largest summand, i, into i− 2 and 2.
3. Match the vertex to any other vertex that will work.
The third rule worked in all examples we studied but is not very

helpful in terms of a proof. We have explored some other ideas for
creating maximum matchings between two consecutive level sets more
easily. Denote the partitions of two consecutive level sets as Λn,k =
u1, u2, ..., ui1 and Λn,k−1 = t1, t2, ..., ti2 , where i1 = p(n, k) and i2 =
p(n, k − 1). For 9 ≤ n ≤ 13, the first four vertices in two adjacent

21

level sets with p(n, k) ≥ 4, match consecutively with our lexographical
ordering. In other words, ui matches to ti for i ≤ 4. Also, the last
vertex in the larger level set can be removed and a maximum matching
still exists.

Similarly, for any two adjacent level sets in P12 and P13, no matter
their rank, if the leftmost vertices of both level sets can be, and are
consecutively matched, i.e. ui is matched to ti, then there still exists a
maximum matching. In P13 the last vertex of the larger level set can
be left off as well and the above statement still holds. These matching
properties can make our matching algorithms, such as Ford-Fulkerson,
more efficient because these edges and vertices can be disregarded.

In order to make proving the bipartite matching property more fea-
sible, we hope to find a way to consecutively match all vertices within
any two adjacent level sets. In order to do so, we must find another
way to order the vertices in the level sets. Lexographically, produc-
ing a non-crossing matching is not possible. Ordering the vertices in
order of descending probability of appearing, and ordering the parti-
tions by their increasing number of summands have failed to yield a
non-crossing matching as well.

3.2.4. Λn,bn
2
c to Λn,n.

Lemma 3.1. Suppose n is a non-negative integer and 1 ≤ k ≤ n. If
λ ∈ Λn,k, then λ has at least max({(2k − n), 0}) summands equal to 1.

Proof. Suppose, for contradiction, λ ∈ Λn,k has (2k−n− δ) summands
equal to 1 (where δ ∈ N). Then it must have k−(2k−n−δ) = n−k+δ
summands which are greater than or equal to 2. Thus, the sum of these
(n−k+ δ) summands is at least 2(n−k+ δ) = 2n−2k+2δ. Therefore
the total of all of the summands is at least (2n−2k+2δ)+(2k−n−δ) =
(n + δ). This is a contradiction, since δ > 0 and λ is a partition of n.
Thus, it must be the case that λ has at least (2k−n) summands equal
to 1. �

Theorem. For any positive integer n, for all integers dn
2
e ≤ k < n,

there exists a maximum matching from Λn,k+1 to Λn,k.

Proof. Suppose λ ∈ Λn,kwhere dn
2
e + 1 ≤ k ≤ n. By our previous

lemma, we can conclude that λ contains at least 2k − n ≥ 2(dn
2
e +

1) − n ≥ 2 summands equal to 1. So, we can write λ as 12λ̄, where λ̄
represents the (k − 2) other parts of the partition.

We define φ : Λn,k+1 → Λn,k by φ(12λ̄) = 2λ̄).
Now, suppose there exists another partition λ′ ∈ Λn,k such that

φ(λ) = φ(λ′). We know that λ and λ′ can be expressed as 12λ̄ and
22

12λ̄′, respectively. Thus,

φ(12λ̄) = φ(12λ̄′)

2, λ̄ = 2, λ̄′

λ̄ = λ̄′

λ = 12λ̄ = 12λ̄′ = λ′.

Therefore, φ is 1-1. Therefore, using φ to choose our edges, we have
λlφ(λ), and we create a maximum matching between Λn,k+1 and Λn,k.

�

Example. The partial Hasse diagram below shows our matching scheme
φ applied to the bottom half of P8.

k = d8
2
e = 4 1115 1124 1133 1223 2222

k = 5 11114 11123 11222

k = 6 111113 111122

k = 7 1111112

k = n = 8 11111111

Theorem. For all positive odd integers n, for k = dn
2
e, there exists a

maximum matching between the kth and the (k − 1)th, or bn
2
c, level.

Proof. Suppose λ ∈ Λn,dn
2
e. By our previous lemma, each partition of

n into k parts has at least (2k − n) summands equal to 1. For odd n,
when k = dn

2
e = n+1

2
, we have at least

2

(
n+ 1

2

)
− n = n+ 1− n = 1

summands equal to 1. So λ has at least one summand equal to 1.
Let λ ∈ Λn,dn

2
e be denoted as (1λ̄lλ), where λ̄ is the (dn

2
e − 2) other

summands of the partition, and lλ is the largest summand of that
partition.

Define φ : λk → λk−1 by φ((1λ̄l)) = (λ̄(1 + l)).
Suppose there exists a partition, µ ∈ Λn,dn

2
e, such that φ(λ) = φ(µ).

Then

φ((1λ̄lλ)) = φ((1µ̄lµ)).

That is,

(λ̄(1 + lλ)) = (µ̄(1 + lµ)).
23

Since lλ is our largest summand in λ, then 1+lλ is our largest summand
in φ(λ).

So

lλ = lµ.

Thus

(λ̄(1 + lλ)) = (µ̄(1 + lλ)),

so that

λ̄ = µ̄.

Thus,

λ = µ.

Hence, φ is injective. Since λl φ(λ), we have a maximum matching.
�

3.3. Ford-Fulkerson Algorithm. As previously stated, Rodney Can-
field utilized the Ford Fulkerson Algorithm to prove that Pn has the
bipartite matching property for n ≤ 45. We implement this algorithm
as well in hopes of producing more maximum matchings. The Ford
Fulkerson algorithm, in general form, is a systematic way to determine
the maximum flow through a graph in which each edge has a specified
capacity. We used a specialized form of this algorithm. The algorithm
generates a maximum matching or verifies that no such matching ex-
ists.

Our algorithm first sets up a graph. This graph consists of two
adjacent level sets. Each partition becomes a vertex in the graph, and
covering relations correspond to the edges. Additionally, we create a
source vertex and a sink vertex. The source vertex is connected by
edges to each vertex in one level set, and the sink vertex is connected
in a similar fashion to all the vertices in the other level set. All of the
edges in this graph are assigned an initial capacity of one. That is,
these are forward edges that can transmit flow in a forword direction.
These edges may later be converted to backwards edges, which can
transmit flow in the opposite direction.

The algorithm then performs a search to find a path through the
graph from the source vertex to the sink vertex. In searching for this
path, the algorithm can push flow forword through forword edges and
backwards through backwards edges. Our algorithm uses a depth-first
search to find a path, but the Ford-Fulkerson algorithm does not spec-
ify which type of search should be used, and other types of searches
could be employed. After a path is found, the algorithm pushes flow

24

along this path, modifying the graph. All edges which are traveled in a
forward direction have their capacities reduced to zero. This converts
the edges to backwards edges. All edges which are traveled in a back-
wards direction have their capacities increased to one, converting them
to forword edges. After the graph has been appropriately modified, the
algorithm searches for another path and repeats the above steps.

Once no more complete paths can be found, the algorithm computes
the total flow through the graph by counting the number of backwards
edges that are adjacent to the source node. This number is then com-
pared to the number of vertices in the smaller level set. If these two
numbers are equal, there is a maximum matching. Otherwise, no such
matching exists. With rational flow values, the algorithm is guaranteed
to terminate.

Example. To create a maximum matching between Λ7,3 and Λ7,4, the
algorithm would first find the bold path.

sink

source

115 124 133 223

1114 1123 1222

The graph would then be altered by flipping the arrows (altering the
capacities) along the path to give:

sink

source

115 124 133 223

1114 1123 1222

Next, this path would be found:
25

sink

source

115 124 133 223

1114 1123 1222

The graph would be altered to form:

sink

source

115 124 133 223

1114 1123 1222

The process is continued until no more paths can be found.

This algorithm must be run on every pair of adjacent level sets in
a given poset to verify the bipartite matching property. In order to
reduce the running time, we have parallelized the algorithm, running
each pair of level sets on a different computer.

In addition to running the algorithm as described above, we have
tried seeding Ford Fulkerson with a partial matching. Instead of start-
ing with a graph in which all of the edges have capacity one, we set the
capacity of several of these edges to zero. Specifically, we matched a
partition of smaller rank to a partition of larger rank which was identi-
cal except that the largest summand had been split into one and itself
minus one. For most pairs of level sets, it is not possible to connect all
partitions in this manner. The Ford-Fulkerson algorithm can fill in the
remaining edges.

26

Example. The Ford Fulkerson algorithm without partial matchings
would attempt to create a maximum matching between Λ7,3 and Λ7,4

beginning with the graph:

sink

source

115 124 133 223

1114 1123 1222

The algorithm which uses partial matchings, however, would begin
with the follow graph. The bold edges are those whose directions have
been reversed. They create a partial matching.

sink

source

115 124 133 223

1114 1123 1222

Due to the long running time of these algorithms when applied to
large level sets, we have not yet been able to verify the bipartite match-
ing property for any values of n beyond those that Canfield verified.

4. Conclusion

We have found that Pn is unimodal for all n ≤ 25, 000. We have
also explored potential values for the “sufficiently large n” for which
Szekeres’ proof of unimodality holds.

We have also proven several matching schemes which apply for all
n. These steps represent fairly substantial progress toward proving the
Sperner property for Pn for all n. However, several obvious avenues for
improvement still remain open:

27

If the bounds suggested by our data for Szekeres’ proof can be rig-
orously proven, then the question of unimodality will be proven for
all n (assuming the computationally-proven values of n surpass the
“sufficiently large n” found from the paper).

If Pn’s unimodality must be proven for larger values of n than 25,000,
an algorithm similar to the one which generates the p(n, k) matrix could
be made with the following modifications: the new algorithm would
store the values in overlapping two-dimensional arrays by column. In
this way, no individual file will become too large. Each of these values
can be stored modulo several medium-sized primes to further reduce the
necessary capacity of each file. In order to implement this algorithm,
one should first calculate the left-most columns for a specified range
of k values and then pass the last calculated column to the function
that calculates the next set of columns. Proceed in this manner until
no columns remain for the specified range of k values. At this point,
repeat the entire process with an incrementally larger range of k values
until all user-specified p(n, k) values are calculated.

The Ford-Fulkerson algorithm can be modified so that it starts with
a partial matching. In order to do this, a breadth-first search should be
implemented instead of a depth-first, search. Additionally, by seeding
the Ford-Fulkerson algorithm with “good” edges, we believe that the
runtime of the algorithm can be significantly reduced.

References

[1] Ivona Bezáková, Daniel Stefankovic, Vijay V. Vazirani, and Eric Vigoda. Ac-
celerating simulated annealing for the permanent and combinatorial counting
problems. In In Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA, pages 900–907. ACM Press, 2006.

[2] E. Rodney Canfield. Integer partitions and the sperner property. Theoretical
Computer Science, 307(3):515–529, 2003.

[3] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approxima-
tion algorithm for the permanent of a matrix with nonnegative entries. Journal
of the ACM, 51(4), 2004.

[4] L. Lovász and M. D. Plummer. Matching theory, volume 121 of North-Holland
Mathematics Studies. North-Holland Publishing Co., Amsterdam, 1986. Annals
of Discrete Mathematics, 29.

[5] R. C. Mittal and Ahmad Al-Kurdi. Efficient computation of the permanent of
a sparse matrix. Intern. J. Computer Math., 77:189–199, 2001.

[6] H.J. Ryser. Combinatorial Mathematics. Mathematical Association of America,
1963.

[7] G. Szekeres. Some asymptotic formulae in the theory of partitions. Quarterly
Journal of Mathematics, 2(2):85–108, 1951.

[8] G. Szekeres. Some asymptotic formulae in the theory of partitions(ii). Quarterly
Journal of Mathematics, 2(4):96–111, 1953.

28

