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Chapter 1

Introduction

Alongside plane geometry, number theory is the oldest recorded branch of
mathematics. Its history largely developed out of efforts to understand two
questions, the former algebraic, the latter analytic:

1. What are the integer solutions of multivariable equations, in particular
polynomials?

2. What are the distributions of subsets of the integers, in particular the
primes?

Modern theory attacks these problems using tools from nearly every other
branch of mathematics, bringing together algebraic, analytic, and geometric
perspectives. It is common for problems in this field to have completely
elementary formulations, yet require the most abstract machinery to receive
an answer.

This report addresses topics at the intersection of the two motivating
questions above. As one would expect, the source of our motivation has an
elementary statement:

Problem. How many solutions exist to a cubic congruence in 2 variables,
modulo a prime?

The technical, and more specific, side is: What the distribution of the
traces of Frobenius of the reductions of an elliptic curve E/Q? Here, E/Q is
the set of Q-rational points on a smooth projective curve of genus 1, which
has a natural group structure E(Q). The curve can be reduced modulo a
prime p to E, and the trace of Frobenius of E/Fp is the quantity

ap(E) = p+ 1−#E(Fp)

5
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All the background required to understand elliptic curves and the results we
present in this report are covered in Chapter 2.

Our report falls into three parts. By a theorem of Hasse (Theorem V.1.1
of [18]), we know that |ap(E)| ≤ 2√p. We wish to understand, for a fixed
elliptic curve E/Q:

1. When |ap(E)| is maximized given the bound depending on p.

2. When ap(E) is prime.

3. How fast the ap(E)/2√p converge to their limiting distribution, which
by work of Richard Taylor and others in [22] is semicircular.

We prove results that represent progress toward the first two questions,
and give an exposition of what is known regarding the third. All new results
are stated in their corresponding chapters, under the label “T-T-W.”
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Chapter 2

Background

2.1 Defining Elliptic Curves
In this report, we will work with elliptic curves over number fields and their
reductions. Hence, instead of introducing elliptic curves from the viewpoint
of algebraic geometry, we begin with a less general, but more intuitive,
construction from lattices over C, then pass to the generalization. Recall
that a lattice is an additive subgroup Λ ⊆ C of rank 2, such as 〈1, i〉.

2.1.1 Definition. Let Λ be a lattice. We define g2(Λ) = 60G4(Λ) and
g3(Λ) = 140G6(Λ), where

Gk(Λ) =
∑
ω∈Λ
ω 6=0

1
ωk

is the (absolutely convergent) kth Eisenstein series for all k ≥ 3.

2.1.2 Definition. The Weierstrass ℘ function of Λ is

℘(z; Λ) = 1
z2 +

∑
ω∈Λ
ω 6=0

( 1
(z + ω)2 −

1
ω2

)

How should we visualize the ℘ function? It is periodic in Λ, and its
only singularities are double poles at each point of the lattice Λ. Thus, ℘
is analytic and well-defined on the torus C/Λ, except at 0. It may surprise
the reader that, for fixed Λ, (℘, ℘′) satisfies a polynomial relation:

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

7



8 CHAPTER 2. BACKGROUND

In fact, more is true: the map ψ : z 7→ (℘(z), ℘′(z)) is a homeomorphism
between C/Λ and the surface E defined in C2 by the equation above, once
we attach to E a “point at infinity” corresponding to z = 0. We have now
arrived at the following preliminary definition: An elliptic curve over C is the
image under z 7→ (℘(z), ℘′(z)) of a lattice Λ. Since C/Λ inherits its addition
operation from C, we can formally impose a group law on the points of E
by defining ψ(z1) + ψ(z2) = ψ(z1 + z2) for all z1, z2 ∈ C/Λ.

2.1.1 Theorem (Uniformization). Let g2, g3 ∈ C. Then the following are
equivalent:

1. g3
2 − 27g2

3 6= 0.

2. The surface in C2 defined by Y 2 = 4X3 − g2X − g3 is smooth.

3. There exists a unique lattice Λ with g2(Λ) = g2 and g3(Λ) = g3.

Proof. The equivalence of (1) and (2) follows from the discussion on pp.
6-7 of [14], after a change of variables. See Proposition 14.3 in [2] for the
equivalence of (1) and (3).

From 2.1.1, we deduce another characterization of elliptic curves over
C, that does not make the dependence on the lattice explicit: An elliptic
curve over C is the surface formed by attaching a point at infinity O to a
smooth surface in C2 defined by Y 2 = 4X3 − g2X − g3 for some g2, g3 ∈ C.
From the perspective of algebraic geometry, O turns the surface from an
affine variety into a projective variety; for further details, the reader should
consult Chapter 1 of [18]. We can generalize this definition to elliptic curves
over other fields:

2.1.3 Definition. Let K be a field of characteristic 6= 2, 3. An elliptic curve
over K is the surface E formed by attaching a point at infinity O to a surface
in K2 defined by

Y 2 = 4X3 − g2X − g3

for some g2, g3 ∈ K such that g3
2 − 27g2

3 6= 0.

2.1.4 Definition. The discriminant of E is ∆(E) = g3
2 − 27g2

3. The j-
invariant of E is

j(E) = 1728 g3
2

∆(E)
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We write E/K to indicate that E is defined over K. In particular, if
the equation of E has coefficients in some subfield F ⊆ K, then E is also
defined over F . More precisely, E/F is the subset of points of E/K with
coordinates in F . In the other direction, the canonical field of definition of
E is the algebraic closure K of K.

It is not obvious that, under our extended definition of elliptic curves,
we still have a group law on the points. We find that a line in K2 passing
through two points P1, P2 ∈ E always intersects E in a third point P3, where
we consider a line to intersect E twice at one point iff it is tangent to E
there. Let −P3 be the reflection of P3 across the Y -axis, where −O = O. By
defining P1 + P2 = −P3, we obtain a group law on E. In the case K = C,
this group law is precisely the one induced by C/Λ.

2.1.2 Theorem. E/K forms an abelian group under the law described
above, with identity O.

Proof. See the discussion in III.2 of [18].

2.1.5 Definition. The Mordell-Weil group of E/K is the group E(K) in
2.1.2. If E(K) is finitely generated, then the rank of E/K is the unique r
such that E(K) = E(K)tor × Zr.

2.2 Morphisms

2.2.1 Definition. Let f ∈ K[X,Y ] be the polynomial such that f(X,Y ) =
0 defines E/K. The coordinate ring of E/K is

K[E] = K[X,Y ]
〈f〉

The function field of E/K is the field of fractions K(E) of K[E].

2.2.2 Definition. An (elliptic curve) morphism is a rational map φ :
E1/K → E2/K of the form φ(X,Y ) ∈ K(E1).

2.2.1 Theorem. A morphism φ : E1/K → E2/K is either constant or
surjective.

Proof. See II.6.8 of [5].

Intuitively, a morphism between elliptic curves is a change of variables
between them that can be expressed in terms of rational functions. Suppose
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that φ : E1/K → E2/K is a nonconstant morphism. For all f ∈ K(E2),
define

φ∗(f) = f ◦ φ

Then φ∗ is an injective map from K(E2) into K(E1). In fact, the map
φ 7→ φ∗ induces a contravariant functor from the category of elliptic curves
to the category of their function fields, with a suitable class of morphisms.
Intuitively, elliptic curves are dually symmetric to their function fields.

2.2.3 Definition. Let φ : E1/K → E2/K be a morphism. The degree of
φ is defined as deg φ = 0 if φ is constant and deg φ = [K(E1) : φ∗K(E2)] if
otherwise. Also, φ is separable iff K(E1) is separable over φ∗K(E2).

2.2.4 Definition. An isomorphism is a morphism of degree 1. If there
exists an isomorphism between E1/K and E2/K, then E1 and E2 are called
isomorphic over K.

We can also think of an elliptic curve isomorphism as a bijective morph-
ism. For fixed K, it suffices to study representatives from the isomorphism
classes of elliptic curves over K, because E1, E2 are isomorphic over K iff
K(E1) = K(E2). If K is of characteristic 6= 2, 3, then by substitution, every
elliptic curve over K is isomorphic to a curve E/K of the form

Y 2 = X3 + aX + b

for some a, b ∈ K. In some texts, this is called the Weierstrass form of the
elliptic curve. Throughout the rest of this report, we prefer this form to the
one arising from the ℘ function. We compute ∆(E) = −(4a3 + 27b2) and
j(E) = 1728(4a3)/∆(E).

2.2.2 Theorem. E1/K, E2/K are isomorphic over some finite extension
of K if and only if j(E1) = j(E2).

Proof. This is Proposition 14.5 of [2].

2.3 Isogenies
Up to now, we have not discussed maps that preserve the group structure
between elliptic curves. An isomorphism of elliptic curves is not always
an isomorphism of their Mordell-Weil groups; as an example, we consider
any isomorphism that does not fix O, such as the translation-by-P map
Q 7→ Q+ P . This motivates the following definition:
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2.3.1 Definition. An isogeny is a morphism φ : E1/K → E2/K such that
φ(O) = O. If φ is surjective, then E1 and E2 are called isogenous over K.

2.3.1 Lemma. An isogeny φ : E1/K → E2/K induces a homomorphism
from E1(K) into E2(K).

Proof. See the discussion, “Isogenies,” on pp. 49-50 of [14].

2.3.2 Corollary. The set of isogenies from E1/K to E2/K forms a group
under pointwise addition in E1(K), with identity the 0 map.

2.3.2 Definition. We write HomK(E1, E2) for the group in 2.3.2. The
endomorphism ring of E/K is the ring formed by EndK(E) = HomK(E,E)
under function composition. An endomorphism of E/K is an element of
EndK(E).

To illustrate these new definitions, it may help to return to the case
K = C. Suppose E1/C and E2/C correspond to the lattices Λ1 and Λ2.
Then E1, E2 are isogeneous over C if and only if Λ2 is homothetic to a
sublattice of Λ1. In other words, there exists z ∈ C such that zΛ2 ⊆ Λ1; the
lattices are related by a combination of rotation and dilation.

In the case E = E1 = E2 and Λ = Λ1 = Λ2, the set of endomorphisms
of E is in bijective correspondence with the set of z ∈ C such that zΛ ⊆ Λ.
Observe that z ∈ Z if and only if z transforms Λ by dilation alone. We
recall that addition in C turns into the elliptic curve group law under the
canonical homeomorphism z 7→ (℘(z), ℘′(z)); therefore, EndC(E) contains
an isomorphic copy of Z. The “dilation” endomorphisms fit into a broader
description:

2.3.3 Definition. Let m ∈ Z+. The multiplication-by-m endomorphism of
E/K is the map [m] such that

[m]P =
m terms︷ ︸︸ ︷

P + . . .+ P

where the addition is that of E(K).

2.3.4 Definition. The m-torsion of E/K is the subgroup E[m] ⊆ E(K) of
points P such that [m]P = O.

2.3.3 Theorem. Let m ≥ 2 be coprime to the characteristic of K. Then
E[m] ∼= Z/mZ× Z/mZ.

Proof. See III.6.4 in [18].
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The structure of the isogenies between elliptic curves is very rich, and
we cannot give a thorough description here without discussing algebraic
geometry in far greater detail. We will return to the structure of EndK(E)
in Section 2.6.

2.4 Galois Representations
Recall that a number field is a finite extension K ⊇ Q, therefore an algebraic
extension. We think of K as Q[X]/I, where I is some ideal generated by
a finite collection of polynomials. The ring of integers of K is the ring OK
formed by all x ∈ K such that f(x) = 0 for some monic f ∈ Z[X]. We
generally refer to the prime ideals of OK as the primes of K. The following
properties of OK are important:

2.4.1 Theorem. Let K be a number field. Then:

1. OK is a Dedekind domain, meaning every ideal of OK has a unique
factorization into prime ideals, up to order.

2. The map
NK(a) = #(OK/a)

is a norm on the nonzero ideals a ⊆ OK ; that is, a positive-valued
totally multiplicative function.

Proof. These facts are covered in the discussion on Dedekind domains in
standard references on algebraic number theory; see, for example, Chapter
4 of [17].

Suppose K is a number field. A major paradigm of the theory of elliptic
curves is that we learn Galois-theoretic information about an elliptic curve
E/K from how it interacts with the primes p ofK. To study this interaction,
we form a new elliptic curve called the reduction of E at p.

2.4.1 Definition. Let K be a number field. Let p ⊆ K be prime, and let
q = NK(p). The reduction of E/K modulo p is the curve E/Fq formed by
reducing the equation defining E modulo p.

When we reduce the coefficients g2, g3 modulo p to g2, g3, it may be the
case that g3

2 + 27g2
3 = 0 in Fq, so that the reduction is no longer an elliptic

curve. From an algebraic geometry perspective, the reduced curve is no
longer smooth; it possesses a cusp or node point, which interferes the group
law. Note that this occurs precisely when p | 〈∆(E)〉. We therefore make a
distinction:
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2.4.2 Definition. Let K be a number field. A prime p ⊆ K is of good
reduction for E/K iff p - 〈∆(E)〉. Otherwise, p is of bad reduction for E/K.

Intuitively, the trace of Frobenius describes the size of a reduced curve.
In Section 1.1, we stated that the trace of Frobenius of the reduction of
E/Q at p can be defined as p + 1 − #E(Fp). This section and the next,
then, explain why this value is called a trace. First, we must give some
background on Galois representations of elliptic curves.

2.4.3 Definition. An inverse system of groups is a family {Gi}i∈Z of groups,
together with homomorphisms φi,j : Gj → Gi for all i ≤ j, such that

1. φi,i is the identity map on Gi.

2. φi,k = φi,j ◦ φj,k for all i ≤ j ≤ k.

The φi,j are called the transition homomorphisms. The inverse limit of this
system is the group

lim←−
i∈Z

Gi =
〈

(xi)i∈Z ∈
∏
i∈Z

Gi : xi = φi,j(xj) for all i ≤ j
〉

2.4.4 Definition. Recall that K is the algebraic closure of K. The absolute
Galois group of the field K is

GK = Gal(K/K)

interpreted as the inverse limit of the system of Gal(L/K), over all Galois
extensions L/K, where the transitions are induced by inclusion.

2.4.5 Definition. Let ` be prime. The `-adic Tate module of E is the
inverse limit

T`(E) = lim←−
n

E[`n]

where the transition homomorphisms are [`k] : E[`n+k]→ E[`n].

Observe that GK acts on E(K), since it preserves the equation of the
curve; in fact, it distributes over the group law, since it preserves collinearity
and commutes with reflection over the Y -axis. Hence, GK acts on the m-
torsion of E for all m ∈ Z+, and by commuting with the inverse limit,
T`(E) for all prime `. Now, suppose ` is not the characteristic of K. One
way to define the `-adic integers is to consider them as an inverse limit:
Z` ∼= lim←−n Z/`

nZ. From 2.3.3, we deduce that T`(E) ∼= Z2
` , meaning

Aut(T`(E)) ∼= GL2(Z`)
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2.4.6 Definition. The `-adic representation of GK attached to E/K is the
homomorphism ρ`,E/K : GK → Aut(T`(E)) defined by

ρ`,E/K(σ) = (P 7→ σP )

2.4.2 Lemma. Let K be a number field. Let m ≥ 2, and let L = K(E[m]),
the field obtained by adjoining to K the coordinates of all the points of E[m].
Then L/K is a finite Galois extension.

Proof. Recall that E[m] is the image of (C/Λ)[m] under z 7→ (℘(z), ℘′(z))
and use the algebraic properties of the ℘ function.

2.4.3 Corollary. Let ` be prime. Then K(T`(E))/K is a finite Galois
extension.

2.4.4 Corollary. Let L = K(T`(E)). Then ρ`,E/K factors through a Galois
representation ρ`,E/K : Gal(L/K) → Aut(T`(E)). That is, the following
diagram commutes:

GK

Gal(L/K) Aut(T`(E))

ρ`,E/K

ρ`,E/K

In particular, the image of GK under ρ`,E/K is finite.

2.5 The Trace of Frobenius
Retain the notation from the previous section. For simplicity, this section
focuses on the case K = Q. Let p 6= ` be prime. We will find the trace
of Frobenius ap(E) is the trace held in common by a conjugacy class of
matrices in GL2(Z`), these being the images of conjugate elements of GQ,
and that ap(E) is independent of `. Throughout this section, we assume
L/Q is finite.

2.5.1 Definition. The prime P ⊆ L lies over a rational prime p iff P | pOL,
in which case we write P | p. The decomposition group DP,L/Q is the
subgroup of σ ∈ Gal(L/Q) such that σP = P.

2.5.2 Definition. Let p be prime such that pOL has the prime factorization
Pe1

1 . . .P
eg
g in OL.
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1. p ramifies in L iff ei ≥ 2 for some 1 ≤ i ≤ g.

2. p splits in L iff g ≥ 2. In this case, p splits completely iff g = [L : Q].

3. p is inert in L iff g = e1 = . . . = eg = 1.

2.5.1 Theorem. Let L/Q be Galois, and let p be prime with the prime
factorization pOL = Pe1

1 . . .P
eg
g in OL. Then Gal(L/Q) acts transitively on

the Pi.

Proof. See Proposition 1 in §6.2 of [17].

What 2.5.1 says is that the “splitting” of primes in Galois extensions is
well-behaved in several senses. First of all, if p splits into g primes in L,
then e1 = . . . = eg. Moreover, the decomposition groups DPi,L/Q are all
conjugate with #DPi,L/Q = [L : Q]/g. Most importantly, we obtain the
following corollary:

2.5.2 Corollary. Let L/Q be Galois, and let P | p in L. Then there exists
a canonical homomorphism

φP|p : DP,L/Q → Gal(Fq/Fp) ∼= Z/nZ

where q = pn = NL(P), given by the action of DP on OL/P ∼= Fq.

2.5.3 Corollary. The map φP|p in 2.5.2 is surjective. It is an isomorphism
if p is unramified in L.

Proof. See Theorem 14.1.5 and Corollary 14.1.7 in [20].

2.5.3 Definition. Let L/Q be Galois. Let p be unramified in L, and let
P | p. The Frobenius element of DP,L/Q is the unique automorphism

FrobP,L/Q = φ−1
P|p(x 7→ xq)

where q = pn = NL(P) and x 7→ xq is the Frobenius endomorphism of Fq,
the canonical generator of Gal(Fq/Fp) ∼= Z/nZ.

Not only is Gal(Fq/Fp) cyclic for all q = pn, but the group GFp =
Gal(Fp/Fp) = lim←−Fq

Gal(Fq/Fp) is also “cyclic” in a topological sense. To be
precise, GFp consists of limits of sequences of elements taking the form φnp
for some n ∈ Z, where

φp = (x 7→ xp, x 7→ xp
2
, . . .)

is the lift to GFp of (x 7→ xq) ∈ Gal(Fq/Fp).
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2.5.4 Definition. The absolute Frobenius element Frobp ∈ GQ is the pre-
image, defined up to conjugation, of φp under the homomorphism GQ → GFp

having image 〈φp〉, induced by reducing polynomials modulo p.

Another way of interpreting Frobp is as the lift to GQ of FrobP,L/Q ∈
Gal(L/Q) for all (P, L) such that L/Q is (finite) Galois and P | p with p
unramified in L.

We are now almost ready to draw the connection between our ad hoc
definition of ap(E) and our knowledge about Galois representations and
Frobenius elements. We use the following lemma about isogenies, which will
also help us prove Hasse’s Theorem.

2.5.4 Lemma. Let φ : E1/K → E2/K be a nonzero isogeny. Then:

1. kerφ = φ−1(O) is finite and isomorphic to Aut(E1(K)/φ∗E2(K)).

2. If φ is separable, then # kerφ = deg φ.

Proof. See III.4.10 in [18].

2.5.5 Definition. Write µm ⊆ C× for the group of mth roots of unity. The
Prüfer `-group is

T`(µ) = lim←−
n

µ`n

2.5.6 Definition. Let (P1, P2) be a basis for E[m] ∼= GL2(Z/mZ). The
Weil pairing on E[m] is the map em : E[m]2 → µm defined by

em(P,Q) = ζdet((P1,P2)7→(P,Q))
m

which, by linear algebra, is independent of (P1, P2). The Weil pairing e` :
T`(E)2 → T`(µ) is constructed by letting e` commute with the inverse limits
of the E[`n] and µ`n .

2.5.5 Theorem. Let p be a prime of good reduction for E/Q, and let E be
the reduction of E modulo p. Let ` 6= p be prime. Let

ρ : GQ → Aut(T`(E)) ∼= GL2(Z`)

be the representation formed by composing ρ`,E/Q with the isomorphism
Aut(T`(E))→ Aut(T`(E)) induced by reducing a basis modulo p. Then

det(ρ(Frobp)) = p

tr(ρ(Frobp)) = p+ 1−#E(Fp)
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Proof. From chasing around the diagram

GQ

GFp

Aut(T`(E)) Aut(T`(E))

ρ`,E/Q
ρ

ρ`,E/Fp

'

we discover that, up to conjugation on either side, ρ maps Frobp to φp,` =
ρ`,E/Fp

(φp) ∈ Aut(T`(E)), where we also consider φp an element of EndFp
(E)

via
φp(X,Y ) = (Xp, Y p)

By the definition of isogeny degree, deg φp = p. Pick a basis (P1, P2) for
T`(E). Note that the Weil pairing e` : T`(E)2 → T`(µ) is a nondegenerate,
Galois-invariant, bilinear alternating map. We therefore have the chain of
equalities

e`(P1, P2)degφp = e`(P1, P2)p = e`([p]P1, P2)
= e`(φp,`P1, φp,`P2)
= e`(P1, P2)detφp,`

(In Proposition III.8.6 of [18], this step uses the properties of the dual isogeny
φ̂p,`, which for our purposes is the unique map such that φ̂p,` ◦ φp,` = [p].)
So det(φp,`) = deg φp = p. By linear algebra, we also arrive at tr(φp,`) =
deg φp + 1− deg([1]− φp).

Observe that det(φp,`) and tr(φp,`) are independent of `. Since [1] − φp
is separable, we get deg([1] − φp) = # ker([1] − φq) = #E(Fp) by 2.5.5, as
needed. As a check, note that conjugate matrices have the same determinant
and trace, so we are justified in defining a single determinant and trace for
a full conjugacy class in GL2(Z`).

2.5.7 Definition. Let p be a prime of good reduction for E/Q, and let E
be the reduction of E modulo p. Let ρ be defined as in 2.5.5. The trace of
Frobenius of E/Fp is

ap(E) = tr(ρ(Frobp)) = tr(ρ`,E/Fp
(φp))

= p+ 1−#E(Fp)
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2.5.6 Theorem (Hasse). Let p be a prime of good reduction for E/Q. Then
|ap(E)| ≤ 2√p.

Proof in [18]. The degree map defines a positive-define quadratic form on
EndFp

(E). Let

f(φ1, φ2) = deg(φ2 − φ1)− deg φ1 − deg φ2

for all φ1, φ2 ∈ EndFp
(E), the corresponding bilinear form. Then the in-

equality
0 ≤ 4(deg φ1)(deg φ2)− f(φ1, φ2)2

follows from the positive-definiteness. In turn, this yields

|f(φ1, φ2)| ≤ 2
√

(deg φ1)(deg φ2)

Set φ1 = Frobq and φ2 = [1]. Since Frobp generates Gal(Fp/Fp), we know
that Fp = ker([1]−Frobp). As in the previous proof, 2.5.5 implies #E(Fp) =
deg([1]− Frobp), and the result follows.

Later, we find that Hasse’s Theorem actually provides an effective bound
in a sense to be made precise. Investigating the conditions under which the
extreme of ap(E) = b2√pc is reached for prime p is one of our research
interests.

2.6 Complex Multiplication
In this section, we assume some familiarity with the statements of global
class field theory. Our goal is to study the endomorphism ring EndK(E),
where K is either C or Fq.

Recall that if K is an algebraic closure, then EndK(E) is the set of
isogenies φ : E → E, where addition is defined pointwise and multiplication
is function composition. In particular, EndK(E) contains the multiplication-
by-m map [m] for all m ∈ Z, such that [m] 6= [0] for all nonzero [m]. Using
this fact, we can classify the possibilities for EndK(E):

2.6.1 Definition. Let R be a finitely generated Q-algebra. An R-subring O
is an order of R iff it is a finitely generated Z-module such that R = O⊗Q.
(Intuitively, taking a tensor product with Q means allowing the coefficients
of elements of O to live in Q rather than in Z.)

2.6.1 Theorem. EndK(E) is a Z-module of rank ≤ 4. Moreover, one of
the following holds:
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1. EndK(E) ∼= Z.

2. EndK(E) is isomorphic to an order in an imaginary quadratic field.

3. EndK(E) is isomorphic to an order in a quaternion algebra.

Proof. This is Theorem III.9.3 in [18].

For now, consider the case that K = C and EndC(E) is an order in
an imaginary quadratic field K = Q(

√
d), where d < 0 is square-free. The

discriminant ∆K ofK is d if d ≡ 1 (mod 4) and 4d if d ≡ 2, 3 (mod 4). Note
that ∆K is square-free and uniquely determines K. The ring of integers of
K is the subring OK ⊆ K of roots of monic polynomials with coefficients in
Z. We compute OK = Z[ωK ], where ωK = (1 +

√
|d|)/2 if d ≡ 1 (mod 4)

and
√
|d| if d ≡ 2, 3 (mod 4).

2.6.2 Theorem. Let O be an order in K. Then O = Z + fOK for some
unique f ∈ Z+.

Proof. See the discussion, “Orders in Quadratic Fields,” on p. 133 in [2],
especially Lemma 7.2.

2.6.2 Definition. The conductor of O is the integer f defined in 2.6.2. The
discriminant of O is ∆O = f2∆K .

Thus, O is unique to its discriminant. We write OK,f for the order
of conductor f in K. Henceforth, the term “order” means an order in an
imaginary quadratic field, unless otherwise stated.

The following discussion is condensed from [2], pp. 134-136, 143-150. The
ideal theory of O is more complicated than that of OK . Like with OK , we
can speak of fractional ideals, and similarly toOK , we find that the fractional
O-ideals are precisely the O-modules of the form a = xb, where x ∈ K×

and b is an integral O-ideal. We know that if x ∈ O, then xa ⊆ a. However,
the converse does not necessarily hold. If O = OQ(

√
−3), 2 = Z[

√
−3] and

a = 〈2, 1 +
√
−3〉, then xa ⊆ a for all x ∈ OK , whether or not x ∈ O.

2.6.3 Definition. A fractional O-ideal a is faithful iff xa ⊆ a implies x ∈ O,
for all x ∈ K. (Note that [2] uses the term “proper.”)

2.6.3 Theorem. Let a be a fractional O-ideal. Then a is faithful if and
only if a is invertible in O.

Proof. This is Proposition 7.4 in [2].
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2.6.4 Definition. Let IO be the group of faithful fractional O-ideals. Let
PO be the group of principal fractional O-ideals, so that PO ⊆ IO. The ideal
class group of O is

CO = IO
PO

The class number of O is h(O) = #CO.

We would like to relate CO to the ray class groups of K, to understand
O in terms of class field theory. Let f be the conductor of O. We check
that every (integral) O-ideal coprime to fO in O is faithful. Let IfO be the
group of fractional O-ideals generated by the integral O-ideals coprime to
fO, and let P fO be defined similarly. Let P fK,Z = P fOOK .

2.6.4 Theorem. The following is a diagram of homomorphisms:

IfO IfK

CO IfO/P
f
O IfK/P

f
K,Z

CfK

'

' '

where CfK = IfK/P
f
K,1.

2.6.1 Remark. The notation IfK , P
f
K,1, C

f
K is from class field theory. Here,

IfK is the group of fractional OK-ideals generated by the OK-ideals coprime
to fOK , and P fK,1 is the subgroup of IfK generated by the principal ideals
xOK such that x ≡ 1 (mod fOK). We call CfK the ray class group modulo
f of K.

Proof. See the discussion, “Ideals Prime to the Conductor,” on pp. 143-146
in [2], in particular Propositions 7.20 and 7.22.

Since IfK/P
f
K,Z is a congruence subgroup of CfK , class field theory predicts

a unique abelian extensionKO ofK, such that every prime ofK that ramifies
in L must divide fOK , and

CO ∼= IfK/P
f
K,Z
∼= Gal(KO/K)

2.6.5 Definition. Let O be an order in K. The ring class field of O is KO
defined above.
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For example, the ring class field of OK is the Hilbert class field of K,
the maximal unramified abelian extension of K, since in this case f = 1.
The significance of this definition will become apparent in the next section,
when we find that an “ordinary” elliptic curve over Fp “lifts” to an elliptic
curve over the ring class field of its endomorphism ring.

We now connect this new theory with our previous exposition: Every
order is a lattice in C, so every fractional ideal of an order is a lattice as
well.

2.6.6 Definition. The lattices Λ1,Λ2 are homothetic iff there exists z ∈ C
such that zΛ2 = Λ1. In this case, we write Λ1 ∼ Λ2.

Observe that homothety is an equivalence relation on the lattices in C.
We wish to describe the homothety classes of the faithful fractional ideals
of a fixed order O. To do this, recall that the j-invariant is a function on
elliptic curves over C, hence a function on lattices.

2.6.5 Lemma. Let Λ1,Λ2 be lattices. Then j(Λ1) = j(Λ2) if and only if
Λ1 ∼ Λ2.

Proof. Since homothety corresponds to the C-isomorphism of elliptic curves,
this lemma is a corollary of 2.2.2.

2.6.6 Theorem. Let Λ be a lattice, z ∈ C − Z. Then zΛ ⊆ Λ if and only
if there exists an order O such that z ∈ O and L is homothetic to a faithful
fractional O-ideal.

Proof. This is Theorem 10.14 in [2].

2.6.7 Definition. The ring of complex multiplication of Λ is the order O
defined in 2.6.6.

Let Λ1,Λ2 be lattices with the same ring of complex multiplication O.
Then Λ1 ∼ Λ2 if and only if Λ1 and Λ2 are respectively homothetic to
faithful fractional O-ideals that belong to the same class in CO. Therefore,
each element of CO corresponds to a well-defined j-invariant, which in turn
corresponds to a homothety class of faithful fractional O-ideals. In fact:

2.6.7 Theorem. Let j1, . . . , jh be the j-invariants corresponding to the h =
h(O) classes in CO. Then:

1. The j1, . . . , jh are conjugate algebraic integers.

2. KO = K(jk) for all 1 ≤ k ≤ h. That is, the ring class field of O is
obtained by adjoining the j-invariant of any faithful fractional O-ideal
to K.
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2.7 The Theorems of Deuring
Let E/C be an elliptic curve with lattice Λ. The Uniformization Theorem
tells us EndC(E), the endomorphism ring of its C-rational points, is iso-
morphic to the ring of z ∈ C such that zΛ ⊆ Λ. Using 2.6.6, we deduce
that EndC(O) strictly contains Z if and only if Λ has a ring O of complex
multiplication, and in this case, EndC(O) ∼= O.

However, the situation for the endomorphism rings of elliptic curves over
finite fields is more complicated. There are two kinds of elliptic curves over
Fp with p prime:

2.7.1 Definition. We say E/Fp is ordinary if ap(E) 6= 0 and supersingular
if otherwise.

It turns out that if E/Fp is supersingular, then EndFp
(E) is an order in

an quaternion algebra; we will not deal with this case. Nonetheless, we note
that in both cases, EndFp

(E) is strictly larger than Z. Hence, we say that
elliptic curves over finite fields always have “complex multiplication.”

The crucial observation is: If E/Fp is ordinary, then EndFp
(E) takes

the same form as EndC(E′) for some E′/C. Our goal is to understand the
precise correspondence. In what follows, it will be important to keep track
of the subscript F in the notation EndF (E) for the various endomorphism
rings of E.

The following statements of theorems of Max Deuring from the mid-20th
century are adapted from theorems proven in [13], Ch. 13, and [2], Section
14. In what follows, we assume p 6= 2, 3 is a rational prime. Recall that a
prime p of a number field lies over p iff N(p) = p. We write p | p to mean p
lies over p.

2.7.1 Theorem (Deuring Reduction). Let F be a number field. Let E/F
be an elliptic curve with EndC(E) ∼= OK,f , and let p | p be a prime of F of
good reduction for E. Then:

1. The reduction E of E modulo p is ordinary if and only if p splits
completely in K.

2. If E is ordinary, then EndFp
(E) ∼= OK,f0, where f = pef0 and p - f0.

Proof. This is Theorem 12 in Ch. 13 of [13].

2.7.2 Theorem (Deuring Lifting). Let E/Fp be an ordinary elliptic curve
with O ∼= EndFp

(E). Then there exist an elliptic curve E′/KO and a prime
p | p of KO of good reduction for E′ such that E = E′ (mod p).



2.7. THE THEOREMS OF DEURING 23

Proof. We assemble this statement from Theorem 14.16 in [2] and 2.7.1.

2.7.3 Theorem. Let O be an order. Let E/KO be an elliptic curve with
EndC(E) ∼= O, and let p | p be a prime of KO of good reduction for E. Let
E = E (mod p). Then:

1. EndFp
(E) ∼= O.

2. There exists π ∈ O such that N(π) = p and ap(E) = π + π. Here, π
corresponds to the Frobenius endomorphism x 7→ xp of Fp.

Proof. This is Theorem 14.16 in [2].

Together, the three results above completely characterize the relationship
between curves over ring class fields and ordinary elliptic curves over Fp via
their endomorphism rings. We sketch the proof of the final theorem in this
section, which enumerates the ordinary curves over Fp of a given order.

2.7.2 Definition. The Hurwitz class number of O = OK,f is

H(O) =
∑
f0|f

2 h(OK,f0)
#O×K,f0

We also writeH(D) for the Hurwitz class number of the order of discriminant
D.

2.7.4 Theorem (Deuring Counting). Let p 6= 2, 3 be prime, and let a 6= 0
be an integer with |a| ≤ 2√p. Then the number of elliptic curves E/Fp with
#E(Fp) = p+ 1− a is

p− 1
2 H(a2 − 4p)

2.7.5 Lemma (Tate). Let E1, E2 be elliptic curves over Fp, at least one of
which is ordinary. Then E1 and E2 are isomorphic over Fp if and only if
#E1(Fp) = #E2(Fp) and j(E1) = j(E2).

Proof in [2]. Suppose E1 and E2 are isomorphic over Fp. The groups E1(Fp)
and E2(Fp) are isomorphic, so have the same number of points. Moreover,
E1 and E2 are isomorphic over Fp via the natural embedding Fp ↪→ Fp, so
have the same j-invariant, by 2.2.2.

Now suppose #E1(Fp) = #E2(Fp) and j(E1) = j(E2). Without loss
of generality, assume E1 is ordinary. A theorem of Tate says #E1(Fp) =
#E2(Fp) implies that E1 and E2 are at least isogenous. Let φ : E1/Fp →
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E2/Fp be an isogeny. Without loss of generality, assume φ is separable, since
we can replace φ with [1] − φ. At the same time, 2.2.2 says j(E1) = j(E2)
implies that E1 and E2 are isomorphic over some finite extension Fpe of Fp.
Let ψ : E2/F → E1/F be an isomorphism.

Note ψ ◦φ ∈ EndFp
(E1). Since E1 is ordinary, we know EndFp

(E1) ∼= O,
where O is an order in some imaginary quadratic field. So Z[π] has finite
index m in EndFp

(E1), where π is the element of O corresponding to Frobp.
We check that p does not divide the conductor of Z[π], so does not divide
m. Thus, mψ ◦ φ = ψ ◦mφ ∈ Z[Frobp], which implies ψ ◦mφ ∈ EndFp(E1).
But mφ is separable, so ψ is defined over Fp, as needed.

Proof of 2.7.4. We enumerate the possibilities for the order O ∼= EndFp
(E),

then count how many elliptic curves are associated with each order.
By 2.7.2 and 2.7.3, it is necessary and sufficient that O contains an

element π such that N(π) = p and a = π+π, corresponding to the Frobenius
map. Hence, the minimal polynomial of π is (x− π)(x− π) = x2 − ax+ p,
from which

π = a±
√
a2 − 4p
2

(The solutions differ by a ∈ Z, so we can treat them interchangeably.) The
orders that contain π are precisely the orders that contain Z[π].

By computation, Z[π] has discriminant D = a2 − 4p. Write D = ∆f2

with ∆ square-free, so that ∆ is the discriminant of the imaginary quadratic
fieldK containing Z[π]. In running through the intermediate orders between
OK = OK,1 and Z[π] = OK,f , we hit all of the elliptic curves over Fp, since
OK is the maximal order of K containing Z[π]. More precisely, every elliptic
curve E/Fp lifts—by 2.7.2—to an elliptic curve E′/LK,f0 for some f0 | f ,
where LK,f0 is the ring class field of O = OK,f0 .

It suffices to show the number of elliptic curves over Fp with ap(E) = a,
that lift to a curve over L = LK,f0 , must be (p−1)h(OK,f0)/#O×K,f0

. Recall
that by 2.6.6, if EndFp

(E) ∼= O, then there are h(O) possible j-invariants for
E. By 2.7.5, curves with different j-invariants must be non-isomorphic, so
we must show there are (p− 1)/#O× curves corresponding to each possible
j-invariant j.

Suppose ∆O = ∆f2
0 6= −3,−4, which implies j(E) 6= 0, 1728. Let p | p

in L. Since L is the ring class field of O, we know p splits completely in L
and OL/p ∼= Fp. Let

k = 27j
j − 1728 ∈ Fp
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and for all c ∈ OL − p, let Ej,c/L be defined by

Y 2 = 4X3 − kc2X − kc3

Then the Ej,c form a family of elliptic curves over L with j(Ej,c) = j, of
good reduction at p. Moreover, by 2.7.1 and 2.7.2, every curve over Fp with
EndFp

(E) ∼= O and j-invariant j is the reduction of Ej,c for some c (see
also Exercise 14.16 in [2]). All told, the reductions of the Ej,c for fixed j
represent p− 1 curves over Fp. However, that these reduced curves have the
same j-invariant does not imply that they are isomorphic, since 2.7.5 says
we also need them to have the same size. In other words, not all of these
curves have trace a, as the element of norm p in O corresponding to the
Frobenius element of EndFp

(E) might not be ±π as needed.
Since O 6= Z[i],Z[ζ3], where ζ3 is a primitive 3rd root of unity, we know

O× = {±1}. Therefore, the only elements of norm p in O are ±π,±π. So
the reductions of the Ej,c fall into two isomorphism classes, corresponding
to ±π and ±π separately. (We can predict which class from whether c is a
QR modulo p; see Exercise 14.18 in [2]). Ultimately, there are (p − 1)/2 =
(p − 1)/O× curves over Fp with trace a and j-invariant j, completing this
case of the proof. We leave the cases j(E) = 0, 1728 as exercises, with proofs
on pp. 320-322 of [2].
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Chapter 3

Extremal Traces of Frobenius

3.1 Motivation and Results
Throughout this chapter, we write ”p | p in K” to mean the prime p of a
number field K lies over the rational prime p.

Our investigation concerns the question: Given an elliptic curve E/Q,
which primes p cause the reduction of E modulo p to have the maximum or
minimum number of points possible, among all elliptic curves defined over
Fp? Recall that, if p is a prime of good reduction for E, then the trace of
Frobenius of the reduced curve E/Fp is

ap(E) = p+ 1−#E(Fp)

understood to be the trace of the representation of the pth Frobenius endo-
morphism on the Tate module T`(E) for any prime ` 6= p. (See Sections 4-5
of the previous chapter.) Hasse proved:

3.1.1 Theorem (Hasse). Let p be a prime of good reduction for E/Q. Then

|ap(E)| ≤ 2√p

The interval in the theorem, [−2√p,+2√p], is sometimes called the
Hasse interval. In asking which p yield the maximum/minimum number
of points possible on E(Fp), our motivating question is really: How often,
for a fixed curve E, does Hasse’s Theorem yield an effective bound? Note
that in Section 7 of the previous chapter, we saw that for a fixed prime p,
both ends of the Hasse interval can be obtained by some elliptic curves over
Fp. Hence, another way to phrase our motivation is as an inversion of the
known results: Instead of fixing a prime and varying the curve, we are fixing
a curve and running over primes of good reduction.

27
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3.1.1 Definition. Let F be a number field. Let E/F an elliptic curve, and
let p | p be a prime of F of good reduction for E. We say p is a extremal
prime for E iff

|ap(E)| = b2√pc

In his 2012 masters’ thesis [8], Jason Hedetniemi studies the primes p
such that ap(E) = −b2√pc, which in his work are called “champion primes”
since they correspond to having a maximum possible value of #E(Fp). In
Section 2.2 of the thesis, Hedetniemi considers the number of champion
primes on average.

3.1.2 Theorem (Hedetniemi). Let A,B > 0 satisfy the following growth
conditions in X for some ε1, ε2, ε3 > 0:

1. A� exp((1/4 + ε1)X).

2. B � exp((1/4 + ε2)X).

3. AB � exp((5/4 + ε3)X).

For all a, b ∈ Z with 4a3 + 27b2 6= 0, let Ea,b be the elliptic curve defined by
Y 2 = X3 + aX + b. Then

lim
X→∞

#{Ea,b : |a| ≤ A, |b| ≤ B, Ea,b has a champion prime}
#{Ea,b : |a| ≤ A, |b| ≤ B} = 1

We should note that the density of extremal primes for a fixed curve
E/Q depends largely on whether E has complex multiplication (CM) or not.
This is because the limiting distribution function of the normalized traces
ap(E)/2√p is “semicircular” if E does not have CM, and is the roughly the
“opposite” of that distribution if E does have CM. As stated in [10]: For all
[a, b] ⊆ [−1,+1], if E does not have CM, then

lim
X→∞

#{p ≤ X : ap(E)/2√p ∈ [a, b]}
#{p ≤ X} = 2

π

∫ b

a

√
1− t2 dt

If E has CM, then there is a spike at ap(E) = 0 of measure 1/2, which
corresponds to the supersingular primes, and

lim
X→∞

#{p ≤ X : ap(E)/2√p ∈ [a, b], ap(E) 6= 0}
#{p ≤ X} = 1

2π

∫ b

a

1√
1− t2

dt

The latter result is classical, and was first established by Ernst Hecke in 1919
in the papers [6] and [7]. The non-CM case is substantially more difficult,
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and was first achieved by Richard Taylor in 2006 in [22], after two other
papers written in collaboration. We revisit their work in Chapter 5.

In short, the difference between the CM and non-CM cases means it
is very difficult to find champion or extremal primes for non-CM curves—
typically there are fewer than a dozen among all primes ≤ 100 000—whereas
there are many such primes for CM curves. Using the Chinese Remainder
Theorem, it is trivial to show that there exist elliptic curves without CM
that have no extremal primes ≤ N given any N ∈ Z+. As of this writing,
the following conjectures are open:

3.1.3 Conjecture. Every elliptic curve E/Q without complex multiplication
has an extremal prime.

3.1.2 Definition. Let π(X) be the usual prime-counting function, meaning
the number of primes ≤ X. Let πHasse

E (X) be the number of extremal primes
≤ X for E/Q.

3.1.4 Conjecture. Every elliptic curve E/Q with complex multiplication
has infinitely many extremal primes, and

πHasse
E (X) ∼ CHasse

E

X3/4

logX

(Recall that there are only finitely many primes of bad reduction for E.)

3.1.5 Conjecture. For all nonzero b ∈ Z, let Eb be the elliptic curve defined
by Y 2 = X3 + b. Then there exists some N > 0 such that if |b| ≥ N , then
Eb has an extremal prime ≤ b.

By itself, each conjecture above is a question of great difficulty. In this
chapter, we show that a weaker form of 3.1.4 holds, if we assume the truth
of a classical conjecture of Hardy-Littlewood in [4].

3.1.6 Conjecture (Hardy-Littlewood Conjecture F, 1923). Let f(T ) =
aT 2 + bT + c ∈ Z[T ], such that a > 0 and

1. gcd(a, b, c) = 1.

2. 4 - (a+ b)c.

3. df = b2 − 4ac is not a square.
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Let πf (X) be the number of primes p ≤ X of the form p = f(n) with n ∈ Z.
Then

πf (X) ∼ εfCf√
a

∏
p| gcd(a,b)

p 6=2

p

p− 1

√
X

logX

where

εf = 1
2(3 + (−1)a+b)

Cf =
∏
p-a
p6=2

(
1− 1

p− 1

(
df
p

))

3.1.7 Theorem (T-T-W). Assume that the Hardy-Littlewood Conjecture
F holds. Let E/Q be an elliptic curve with EndQ(E) ∼= O, where O is an
imaginary quadratic order of discriminant ∆O 6= −3,−4. Then

πHasse
E (X) = Θ(X3/4/ logX)

meaning πHasse
E (X)(logX)/X3/4 is bounded uniformly in X.

3.2 Proofs
3.2.1 Definition. For convenience, let D(a, n) = a2 − 4n for all a, n ∈ Z.
Abbreviate D(n) = b2

√
nc2 − 4n.

The following lemma is immediate from the work of Deuring presented
in Section 7 of the previous chapter. However, it is infrequently written out
in formal expositions, so we state it here.

3.2.1 Lemma. Let E/Q be an elliptic curve with EndQ(E) ∼= O, where O is
an imaginary quadratic order. Let p 6= 2, 3 be a prime of ordinary reduction
for E. Then

D(ap(E), p) = ap(E)2 − 4p = ∆Ov2

for some v ∈ Z.

Proof. Let E be the reduction of E modulo p, and let a = |ap(E)|. We know
EndFp

(E) contains the Frobenius element π, satisfying π2 ± aπ + p = 0. So
Z[π] ⊆ EndFp

(E), where we compute that D(a, p) is the discriminant of
Z[π]. But by hypothesis, p does not divide the conductor of O and E is
ordinary, from which EndFp

(E) ∼= O by Chapter 13, Theorem 12 of [13].
This proves D(a, p) = ∆v2 for some v ∈ Z.
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3.2.2 Lemma. Let D be a nonpositive integer such that D ≡ 0, 1 (mod 4).
Then for all n ∈ Z≥0,

D(n) = D ⇐⇒ n =


u2 + |D|4 , u ≥ |D|4 D ≡ 0 (mod 4)

u2 + u+ |D|+ 1
4 , u ≥ |D|+ 1

4 D ≡ 1 (mod 4)

for some u ∈ Z≥0.

Proof. Suppose u2 ≤ n < (u + 1)2, where u ∈ Z. Write n = u2 + n0. If
n0 ≤ u, then 2u ≤ 2

√
n <
√

4u2 + 4u+ 1 = 2u+1, from which b
√

4nc = 2u.
Similarly, if n0 > u, then b

√
4nc = 2u+ 1. Altogether,

Dn =
{
−4n0 n0 ≤ u
−4(n0 − u) n0 > u

and the result follows.

3.2.2 Definition. Let O be an imaginary quadratic order. We define

∆′O =
{

22∆O ∆O = −7
∆O otherwise

3.2.3 Corollary (T-T-W). Let E/Q be an elliptic curve with EndC(E) ∼=
O, where O is an imaginary quadratic order with ∆O 6= −3,−4. Let p 6= 2, 3
be a prime of ordinary reduction for E. Then p is a extremal prime for E if
and only if there exist u, v ∈ Z, where u ≥ 0, such that either of the following
holds:

1. p = u2 + |∆
′
O|v2

4 and u ≥ |∆
′
O|v2

4 .

2. p = u2 + u+ |∆
′
O|v2 + 1

4 and u ≥ |∆
′
O|v2 + 1

4 .

Proof. By 3.2.2, it suffices to prove that p is a extremal prime for E if and
only if D(p) = ∆′Ov2 for some v ∈ Z. Note that 3.2.1 proves the “only
if” direction and proves the “if” direction in the case where ∆O 6= −7. If
∆O = −7, then we check using 3.2.2 that D(ap(E), p) = −7v2 can occur for
p odd only if 2 | v. So we can write D(p) = ∆′Ov2, where ∆′O = 22∆O.
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3.2.1 Remark. With 3.2.3, we have shown that the problem of comput-
ing πHasse

E (X) for a CM curve E is equivalent to determining how often
members of a family of quadratic polynomials attain prime values. The
fact that the error bounds on the Prime Number Theorem are, in the best
case, X1/2 logX assuming the Riemann Hypothesis, is what causes this and
Hardy-Littlewood’s problem to remain wide open.

Proof of 3.1.7. We will use the conditions above guaranteeing that a prime
p is an extremal prime for a CM curve of discriminant ∆ 6= −3,−4. For
some v, we compute the number of primes p ≤ n with D(p) = ∆v2. For
∆v2 odd, this equals the number of primes p that can be written in the form
n2 +n+ (1−∆v2)/4 with 4√p ≥ ∆v2, denoted E(∆v2, n). (It’s easy to see
that |D(p)| ≤ 4√p.) We note that the discriminant of this quadratic is ∆v2

and apply 3.1.6. We also use that
(

∆v2

p

)
=
(

∆
p

)
to get

E(∆v2, n) ∼ 2c
( √

n

logn −
∆v2

4
2 log ∆v2

4

)

where c is a constant depending on ∆.
Now, when ∆v2 is even, we do the same thing but with n2 − ∆/4 and

so we have

E(∆v2, n) ∼ c
( √

n

logn −
∆v2

4
2 log ∆v2

4

)

From this, we can see that we can compute the number of external primes
by summing E(∆v2, n) over v. Since we will be computing a θ bound, we
can ignore the 2 for the case when ∆v2 is odd. Our sum can only go up to
when ∆v2/4 ≤

√
n, in which case v ≤ vmax = 2n1/4/

√
∆.

We get an easy upper bound on the number E(n) of external primes less
than n, by

E(n) ≤
vmax∑
v=1

2c
√
n

logn = O(n3/4 logn)

Now to get a lower bound, we recall that we want only primes satisfying the
quadratics above that are greater than ∆2v4/16.

vmax∑
v=1

E(∆v2, n) ∼
vmax∑
v=2

c

( √
n

logn −
∆v2

4
2 log ∆v2

4

)
> cvmax

√
n

logn −
∆c
16

vmax∑
v=2

v2

log v



3.3. FUTURE WORK 33

We must compute
∑X
v=2

v2

log v . We can approximate this with

∫ X

v=2

v2

log vdv = X3

3 logX +
∫ X

v=2

v2

3(log v)2 = X3

3 logX +O

(
X3

(logX)2

)

<
2X3

3 logX
Plugging in X = vmax, we get E(n) > c(vmax

√
n/ logn− 2v3

max/3 log vmax).
Since vmax < n1/4, this is Ω(n3/4/ logn). Therefore, we conclude that
E(n) = θ(n3/4/ logn).

3.3 Future Work
By algebraic number theory, we find that the extremal primes of an elliptic
curve E/Q with EndQ(E) ∼= O, an imaginary quadratic order, are precisely
the primes that split in O, such that the primes that lie over them live in
the interior of parabolic regions in C, with axis along the real axis. These
regions arise because of the condition u ≥ |∆′O|v2/4 or u ≥ (|∆′O|v2 + 1)/4
encountered in 3.2.3.

The problem of merely showing there are infinitely many extremal primes
for E, without the assumption of Conjecture F, is equivalent to showing
that these parabolic regions contain infinitely many primes of the quadratic
field K to which O belongs. This is analogous to viewing Conjecture F as
a statement about the density of primes of K along horizontal lines in C
through points of O—a stronger statement.

The solution of these density problems will undoubtedly use much more
advanced tools of number theory than the theorems of Deuring on which our
work is based. In fact, these problems point at the natural improvement on
the Chebotarev Density Theorem, which predicts the asymptotic density of
primes of K as their maximum norm tends to∞, but says nothing regarding
the distribution of their angles in C. The Hardy-Littlewood Conjecture F,
and by extension our result 3.1.7, agree with the belief that the primes
of K should be roughly equidistributed with respect to their angles, after
accounting for natural symmetries.

In the vein of these observations, let us conclude with this conjecture:
3.3.1 Conjecture. Let D be a nonpositive integer with D ≡ 0, 1 (mod 4).
Then there exists CD > 0 such that

πD(X) = #{p ≤ X : D(p) = D, p is prime} ∼ CD
X1/2

logX
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Chapter 4

Prime Traces of Frobenius
[Attached]

[Please see the attached file, 3_PrimeTraces.pdf, for the main content.]

4.1 Results

4.1.1 Definition. For all a, b ∈ Z such that 4a3 + 27b2 6= 0, let Ea,b be
the elliptic curve defined by Y 2 = X3 + aX + b. Let πa,b(α;X) denote the
number of primes p ≤ X such that ap(Ea,b) ≤ 2α√p and is prime.

4.1.1 Theorem (T-T-W). Let

Sα(U, V,A,B;X) = 1
AB

∑
a∈(U,U+A]
b∈(V,V+B]

πa,b(α;X)

Then
Sα(U, V,A,B;X) ∼ c(α)π(X)

where

c(α) = 16C
π

∫ α

0

√
1− t2 dt = 8C

3π
(
α
√

1− α2 + arcsin(α)
)

π(X) =
∫ X

2

dt
(log t)2 = (1 +O((logX)−1)) X

(logX)2

35
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and

C =
∑
k:2-k

µ(k)τ(k)
φ(k)k

∑
u:2-u

gcd(u,k)=1

µ(u)2

u4

∑
v:2-v

gcd(v,uk)=1

µ(v)2

φ(v)vD(k, u, v)

D(k, u, v) =
∑

f ′:gcd(f ′,2k)=1

1
f ′3

∑
w:2-w

(w,v)=1

φ(w) gcd(k,w) gcd(v, w)
φ(k,w)φ(u,w)w3

where φ, τ, µ are the classical arithmetic functions and φ(a, b) = φ(gcd(a, b))
for all nonzero a, b ∈ Z.

4.1.2 Theorem (T-T-W). Suppose A,B > (X logX)2. Then

1
AB

∑
a∈(U,U+A]
b∈(V,V+B]

|πa,b(α;X)− c(α)π(X)|2 = o(π(X)2)

4.2 Analytic Techniques

We outline the version of the Hardy-Littlewood Circle Method that inspires
our own approach, largely following the procedure of K. James and G. Yu in
Section 2 of [9]. In the 1920s, G. H. Hardy and J. E. Littlewood developed
a broad paradigm to deal with questions in additive number theory related
to Waring’s Problem. Specifically, they proposed using complex analysis to
estimate the number of ways to write an integer as a sum of a fixed number
of elements from a fixed subset of the integers.

Though our problem does not have this additive nature, the analytic
techniques used in the Circle Method are still fruitful. Let n ≡ 0, 1 (mod 4)
be negative, and fix a subset R ⊆ Z. We wish to estimate the number of
representations of n in the form r2 − 4p, where r ∈ R and p is prime. Note
that r ≤ 2√p. We fix X > 0 and α ∈ (0, 1), and count the representations
of n with p ≤ X and r ≤ 2√pα, weighted by log p:

R(n) =
∑

p≤X, r≤2√pα
r2−4p=n

log p

Here and throughout the rest of the article, it is implicitly understood that
a sum over r and p only runs over r ∈ R and p prime. Before using contour
integration, we must rewrite R(n) in a nicer form. Let g = 1 + (logX)−5,
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and let L = blogg(4X/n)c � (logX)5 log logX. Then R(n) =
∑L
`=0R`(n),

where
R`(n) =

∑
p∈(X/g`+1, X/g`]

r≤2√pα
r2−4p=n

log p

Let us modify R` to

R∗` (n) =
∑

p∈(X/g`+1, X/g`]
r≤2
√
X/g`α

r2−4p=n

log p

The difference is bounded: 0 ≤ R∗` (n) − R`(n) � logX +
√
X/g` logX)−4.

In particular, the number of ` such that R∗` (n) − R`(n) > 0 is constant in
α. Altogether, then,

R(n) =
L∑
`=0

R∗` (n) +O(
√
X(logX)−3)

We now explain the actual estimation of R∗` (n). Let Γ be the circle of
radius 1 centered at 0 in the complex plane. By Cauchy’s Integral Formula,∫

Γ z
m−1 dz equals 2πi if m = 0 and 0 if otherwise. We rewrite this integral

as 2πi
∫ 1

0 e(mβ) dβ, where e(β) = e2πiβ. The trick is:

R∗` (n) =
∑

p∈(X/g`+1, X/g`]
r≤2
√
X/g`α

∫ 1

0
e((r2 − 4p− n)β) log p dβ

=
∫ 1

0
s`, 1(β)s`, 2(−4β)e(−nβ) dβ

where

s`, 1(β) =
∑

p∈(X/g`+1, X/g`]
e(pβ) log p

s`, 2(β) =
∑

r≤2
√
X/g`α

e(r2β)

It is useful to translate the interval of integration to I = [P/X, 1 + P/X],
where P = (logX)A for some large fixed A to be chosen later.
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The idea of Hardy and Littlewood is to partition I into “major arcs”
M and “minor arcs” m (the term “arc” comes from the circle Γ), chosen so
that the contribution to the integral from m is small compared to that from
M. In particular, on the major arcs, we estimate R∗` (n) as the product of
a singular sum S(n) and a singular integral J∗` (n), following the notation
given by R. C. Vaughan in [23]. On both major and minor arcs, the first
objective is to bound

f(α) =
∑
p≤X

e(pα) log p

In our work, of course, R is the set of primes.
Outside of the standard techniques covered in R. C. Vaughan’s textbook

[23], we also rely on the following results, found as Theorem 2 in [12] and
Theorem 2 in [3], respectively:

4.2.1 Theorem (Kumchev). Let α,Q ∈ R and k ∈ Z+ such that∣∣∣∣α− a

q

∣∣∣∣ < Q

qY k

for some a/q ∈ Q in lowest terms such that 1 ≤ q ≤ Q ≤ Y . Then for all
ε > 0,

∑
p∈[Y,2Y )

e(αpk) ≤ Ck,εQ1/2Y 11/20+ε + qεY (log Y )c

(q + Y k|qα− a|)1/2

where c is an absolute constant and Ck,ε depends at most on k, ε.

4.2.2 Theorem (Ghosh). Let Λ(n), the von Mangoldt function, equal log p
if n = pm is a prime power and 0 if otherwise. Let α ∈ R and N ∈ Z+.
Then for all ε > 0,∑

n≤N
Λ(n)e(n2α) ≤ CεN1+ε(q−1 +N−1/2 + qN−2)1/4

where Cε depends at most on ε.

4.3 Future Work
While the proofs of 4.1.1 and 4.1.2 are interesting in their own right, the
theorems themselves are relatively specialized results, unless we consider the
question of the density of prime traces of Frobenius part of a broader goal,
of predicting densities of traces of Frobenius belonging to certain infinite
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subsets of the integers. We believe that, under sufficiently strong conditions
of equidistribution analogous to those of Kumchev and Ghosh, we should
find generalizations of 4.1.1 and 4.1.2 to other infinite subsets of the integers
that—like the prime numbers—are predicted to behave mostly “randomly”
with respect to the sequence of traces of Frobenius of a typical E/Q.
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Chapter 5

The Akiyama-Tanigawa
Conjecture

This chapter is a shortened exposition of Shigeki Akiyama and Yoshiro
Tanigawa’s 1999 result, that a stronger form of the Sato-Tate Conjecture—
one that proposes the rate of convergence of the normalized traces to their
limiting distribution—implies the Riemann Hypothesis for elliptic curves
over Q without complex multiplication. To conclude, we describe a plan of
future exploration of this work.

5.1 Strengthening the Sato-Tate Conjecture

Since March 2006, the Sato-Tate Conjecture has largely been proven via the
joint work of Michael Harris, Laurent Clozel, Nicholas Shepherd-Barron,
and Richard Taylor. We state a weaker form of their result here (Theorem
1 in [15]):

5.1.1 Theorem (Harris-Clozel-Shepherd-Barron-Taylor). Let E/Q be an
elliptic curve without complex multiplication, having at least one prime of
multiplicative reduction. Then for all [a, b] ⊆ [−1,+1],

lim
X→∞

#{p ≤ X : ap(E)/2√p ∈ [a, b]}
#{p ≤ X} = 2

π

∫ b

a

√
1− t2 dt

where p runs over the primes of good reduction for E.

Above, ap(E)/2√p is the pth trace of Frobenius, ap(E), normalized by
the size of the Hasse interval. Hence, 5.1.1 says that the normalized traces

41
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for an elliptic curve without complex multiplication follow a semicircular
distribution. In what follows, it will be useful for us to reparametrize:

5.1.1 Definition. Let p be a prime of good reduction for E/Q. We define
θp(E) ∈ [0, π] by

cos θp = ap(E)
2√p

After a change of variables, we find 5.1.1 is equivalent to saying that the
θp(E) have limiting density (2/π) sin2 θ dθ, running over the primes ≤ X of
good reduction, as X →∞. In this exposition, we are interested in the rate
of convergence to the limiting distribution. Towards this goal, we introduce
the following terminology and notation:

5.1.2 Definition. Let (xn)∞n=1 be a sequence in R. The Nth empirical
distribution function of (xn) is

FN (t;xn) = #{n ≤ N : xn ≤ t}
N

(See [11], p. 31.) The asymptotic distribution function of (xn) is defined by
F (t;xn) = limN→∞ FN (t;xn), when that limit exists.

5.1.3 Definition. Let (xn) be a sequence. The discrepancy of (xn)Nn=1 with
respect to F : R→ R is

δ(N ;xn, F ) = sup
t∈R
|FN (t;xn)− F (t)|

We abbreviate δ(xn, F ) = limN→∞ δ(N ;xn, F ).

Note that F is the asymptotic distribution function of (xn) if and only if
δ(xn, F ) = 0. As Chris Swierczewski states in [21], the use of a discrepancy
function was proposed by Harold Niederreiter, in a paper on quasi-Monte
Carlo integration methods.

Let (pn) be the sequence of primes of good reduction for E/Q. We
find the Sato-Tate Conjecture is equivalent to stating: (θpn(E)) has the
asymptotic distribution function

FST(t) = 2
π

∫ t

0
sin2 θ dθ

for all t ∈ [0, π]. Written in full, δ(N ; θpn(E), FST)→ 0 as N →∞. Shigeki
Akiyama and Yoshiro Tanigawa propose the following refinement in [1]:



5.2. A RIEMANN HYPOTHESIS FOR ELLIPTIC CURVES 43

5.1.2 Conjecture (Akiyama-Tanigawa). Let E/Q be an elliptic curve that
does not have complex multiplication. Then

δ(N ; θpn(E), FST) = O(N−(1/2−ε))

for all ε > 0, where FST(t) = (2/π)
∫ t

0 sin2 θ dθ.

We will see this conjecture has a deep connection to one form of the
Riemann Hypothesis—specifically, for L-functions attached to elliptic curves.

5.2 A Riemann Hypothesis for Elliptic Curves
5.2.1 Definition. Let p be a prime of bad reduction for E/Q. We generalize

ap(E) =


0 additive reduction

+1 split reduction
−1 non-split reduction

(Recall that E has split reduction at p iff the slopes of the tangent lines to
the node of E/Fp live in Fp. See [18], VII.5.)

5.2.2 Definition. The L-series of the elliptic curve E/Q of discriminant ∆
is

L(s;E/Q) =
∏
p

L(s;E/Fp)

where

L(s;E/Fp) =


1

1− ap(E)p−s + p1−2s p - ∆

1
1− ap(E)p−s p | ∆

is the local factor of L(s;E/Q) at p.

Recall that, whenever we are given an L-series, we seek to construct the
meromorphic continuation—called the associated L-function—of the series
to all of the complex plane. In particular, we want a functional equation,
which will tell us a transformation under which the L-function has symmetry
across a vertical axis in C. For instance, the original Riemann ζ function
has a functional equation with symmetry about Re(s) = 1/2. We then want
to determine the zeroes and poles of the L-function, using this equation.

The Generalized Riemann Hypothesis for E/Q states: The zeroes of
L(s;E/Q) in the critical strip 0 ≤ Re(s) ≤ 2 all live on the functional
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axis of symmetry. Akiyama and Tanigawa prove an approximation to the
functional equation of L(s;E/Q), which confirms the expectation that the
axis of symmetry is Re(s) = 1. (By the Modularity Theorem, elliptic curves
over Q are in correspondence with newforms in S2(Γ0(N)). Per Theorem
16.1.4 of [16], the functional equation for a cusp form of weight k for Γ1(N)
is known, with symmetry about Re(s) = k/2.)

In light of the functional equation for L(s;E/Q), the following conjecture
implies the GRH for E/Q:

5.2.1 Conjecture. logL(s;E/Q) is holomorphic in the open half-plane
Re(s) > 1. (We use the principal branch of the complex logarithm.)

In their 1999 article, Akiyama and Tanigawa show that their conjecture
5.1.2 implies 5.2.1, and by extension the Generalized Riemann Hypothesis
for elliptic curves. The next section discusses the proof of this result:

5.2.2 Theorem (Akiyama-Tanigawa). 5.1.2 implies 5.2.1 for all elliptic
curves E/Q without complex multiplication.

5.3 Proof of the Akiyama-Tanigawa Theorem

5.3.1 Lemma (Koksma, for Continuous Functions). Let f : [0, 1] → R be
continuous with total variation Vf < ∞, and let dµ be an a. e. nonzero
density function on [0, 1]. Then

∣∣∣∣∣ 1
N

N∑
n=1

f(xn)−
∫ 1

0
f(t) dµ(t)

∣∣∣∣∣ ≤ Vfδ(N ;xn, µ)

for every sequence (xn)n∈Z+ in [0, 1].

5.3.1 Remark. Recall that the total variation of f is defined to be Vf =
supP

∑
|f(pj+1) − f(pj)|, where the supremum is taken over all partitions

P = {0 = p0 < . . . < pJ = 1} of [0, 1]. See [19], p. 117.

Proof. Define
δt(N ;xn, µ) = FN (t;xn)− µ(t)

Let χ[0,t] : R → {0, 1} be the indicator of [0, t], meaning χ[0,t](x) = 1 if
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x ∈ [0, t] and χ[0,t](x) = 0 otherwise. We integrate by parts:

∫ 1

0
δt(N ;xn, µ) df(t) = 1

N

N∑
n=1

∫ 1

0
χt(xn) df(t)−

∫ 1

0
µ(t) df(t)

= 1
N

N∑
n=1

(f(1)− f(xn))− f(1)µ(1) +
∫ 1

0
f(t) dµ(t)

= − 1
N

N∑
n=1

f(xn) +
∫ 1

0
f(t) dµ(t)

Bound |
∫ 1
0 δt(N ;xn, µ) df(t)| ≤ Vf supt∈[0,1] |δt(N ;xn, µ)| = Vfδ(N ;xn, µ)

to complete the proof.

5.3.2 Theorem. Let (αn) be a sequence in C such that∣∣∣∣∣
N∑
n=1

αn

∣∣∣∣∣ = O(N1/2+ε)

for all ε > 0. Then the Dirichlet series
∑∞
n=1 αnn

−s is holomorphic on
Re(s) > 1/2.

5.3.3 Lemma. Let s ∈ C such that σ = Re(s) > 0. Then for all n ∈ Z+,∣∣∣∣ 1
ns
− 1

(n+ 1)s

∣∣∣∣ ≤ |s|σ
( 1
nσ
− 1

(n+ 1)σ
)

Proof. Let a = (n + 1)/n. Multiplying on both sides by |(n + 1)s|, we see
it suffices to prove |as − 1| ≤ (|s|/σ)(aσ − 1). After rearranging, this is
equivalent to

|as − 1|2

(aσ − 1)2 − 1 ≤ |s|
2

σ2 − 1 = τ2

σ2

where τ = Im(s). Observe that as = aσeiτ ln a, from which we compute
|as − 1|2 = a2σ + 12 − 2aσ cos(τ ln a) by the Law of Cosines. Substituting,

|as − 1|2

(aσ − 1)2 − 1 = 2aσ(1− cos(τ ln a))
(aσ − 1)2 = − 1− cos(τ ln a)

1− cosh(σ ln a)

But by Taylor expansion, we know that (1 − cos(τ ln a))/τ2 ≤ (ln a)2/2 ≤
−(1− cosh(σ ln a))/σ2, which concludes the proof.
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Proof of 5.3.2. It suffices to prove that the partial sums An =
∑N
n=1 αnn

−s

converge uniformly on every compact subset of Re(s) > 1/2. We do this by
proving uniform convergence in the region

Γσ0,R = {s ∈ C : Re(s) > σ0 and |s| < R}

for all σ0 > 1/2 and R large.
Fix R > σ0 > 1/2. Let s ∈ Γσ0,R. By hypothesis, there exists A > 0

such that |AN | ≤ ANσ0 . Using summation by parts and 5.3.3,∣∣∣∣∣
N∑
n=1

αn
ns

∣∣∣∣∣ ≤ |AN |Nσ
+
N−1∑
n=1
|An|

∣∣∣∣ 1
ns
− 1

(n+ 1)s

∣∣∣∣
≤ A+

N−1∑
n=1

Anσ0 |s|
σ

( 1
nσ
− 1

(n+ 1)σ
)

Above, n−σ − (n+ 1)−σ = O(n−(1+σ)) from combining terms and applying
binomial expansion. So the sum in the last expression is O(n−(1+σ−σ0)),
where σ − σ0 > 0. As N → ∞, we find the sum converges, which proves∑∞
n=1 αnn

−s converges.
Again using summation by parts, we compute |

∑∞
n=N+1 αnn

−s| = A +
2AR

∑∞
n=N+1 n

σ0(n−σ − (n+ 1)−σ) = O(N−(σ−σ0)). Thus, the convergence
is uniform.

Proof of 5.2.2. Let E/Q be an elliptic curve without complex multiplication.
Let σ ∈ C with σ = Re(s) > 1. By Taylor expansion and Hasse’s bound on
the ap(E) (recall that |ap(E)| ≤ 1 for all primes p of bad reduction),

logL(s;E/Q) =
∑
p

ap(E)p−s +O

∑
p-∆

p1−2σ


Since there are only finitely many primes of bad reduction, we ignore them
along with the error term in the above expression. Then it suffices to prove∑
p-∆ ap(E)p−s is holomorphic in the half-plane Re(s) > 1.
We see dFST(t) = (2/π) sin2 t,dt, from which

∫ π
0 cos θ dFST(θ) = 0. As

before, let (pn) be the sequence of primes of good reduction for E. After a
change of variables, 5.3.1 yields∣∣∣∣∣ 1

N

N∑
n=1

apn(E)
2√p

∣∣∣∣∣ =
∣∣∣∣∣ 1
N

N∑
n=1

cos θpn(E)−
∫ π

0
cos θ dFST(θ)

∣∣∣∣∣
≤ Vfδ(N ; θpn(E), FST)
≤ 2δ(N ; θpn(E), FST)
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Then 5.1.2 implies (1/N)
∑N
n=1 apn(E)/2√pn = O(N−(1/2−ε)) for all ε > 0.

That is,
N∑
n=1

apn(E)
2√pn

= O(N1/2+ε)

Therefore, after a second change of variables, 5.3.2 says
∑∞
n=1 apn(E)p−sn is

holomorphic in the half-plane Re(s) > 1, as needed.

5.4 Future Work
According to a presentation of William Stein, accessible at

http://wiki.l-functions.org/talks/20071016-convergence/talk.pdf

an email from Akiyama to Barry Mazur says that the converse to 5.2.2 holds
at least for the the L-functions we have defined. In this email, Akiyama
states that Hirofumi Nagoshi expects it to follow from the Erdös-Turán
Inequality, which can be used to bound the discrepancy. However, this
converse result has been neither submitted nor published.

We are unsure of Nagoshi’s claim, because preliminary work indicates
that, while the GRH for E/Q without complex multiplication does imply a
bound on the rate of convergence of the 1st moment of the normalized traces
to its limit—that is, the rate at which the mean of the first N traces tends
to 0—it does not appear to give information about the higher moments of
the normalized traces. Indeed, information about all the higher moments
would be needed to use the Erdös-Turán Inequality to prove 5.1.2 from
5.2.1. Admittedly, one might use the Wiener-Ikehara Theorem and/or other
powerful analytic tools to obtain this information from the assumption of
the GRH.

http://wiki.l-functions.org/talks/20071016-convergence/talk.pdf
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