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Abstract. In previous works, Jones-Roberts and Pauli-Roblot have studied finite exten-
sions of the p-adic numbers Qp. This paper focuses on results for local fields of characteristic
p. In particular we are able to produce analogous results to Jones-Roberts in the case that
the characteristic does not divide the degree of the field extension. Also in this case, following
from the work of Pauli-Roblot, we prove that the defining polynomials of these extensions
can be written in a simple form amenable to computation. Finally, if p is the degree of the
extension, we show there are infinitely many extensions of this degree and thus these cannot
be classified in the same manner.

1. Introduction

Classifying extensions of Qp has been of interest for many years. Pauli and Roblot [11]
describe a method for computing defining polynomials for all extensions of Qp of a given
degree. Jones and Roberts [9] constructed an online database that identifies degree n exten-
sions of Qp for small values of p and n. They describe how to compute various invariants for
each extension, including the Galois group.

In a similar fashion, we extend these results to characteristic p local fields, focusing on
the unramified, totally tamely ramified, and totally wildly ramified cases. We begin by
introducing the reader to essential background topics.

Given a characteristic p local field F and an integer n relatively prime to p we classify all
degree n extensions of F . We recall the result that for each f | n there is a unique unramified
extension K of degree f . We then turn our attention to totally tamely ramified extensions
of K degree e = n/f . We follow the work of Jones and Roberts [9] to compute a class of
defining polynomials for these extensions, namely a specific type of Eisenstein polynomial.

We next consider the totally wildly ramified case when n = p. Our results for degree
p extensions are not analogous to the case of characteristic zero local fields, as there are
infinitely many degree p extensions.

We conclude by classifying all degree 10 extensions of Fp((T )) where p ≡ ±3 (mod 10).
In particular, in the case that p = 3 we give specific defining polynomials for each extension.
This illustrates computationally how one handles a specific degree and characteristic.
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2. Background

2.1. Local Fields. This paper will be concerned with extensions of local fields. We refer
the reader to [6, 14] for more details on local fields.

Let F be a local field. Let πF denote a uniformizer of F and write OF for the valuation
ring of F , MF = (πF ) for the maximal ideal, and residue field OF/MF . We normalize the
valuation on F so that νF (πF ) = 1.

Throughout this paper L/F will always refer to a finite extension of local fields. Given
L/F of degree n one has πF = πe

L for some integer e ≥ 1 with e | n. We call e the ramification
index of L/F and f = n/e the inertia degree of L/F . We say L/F is unramified if e = 1 and
totally ramified if e = n. If OF/MF has characteristic p, we say L/F is tamely ramified if
p - e and wildly ramified if p | e.

One knows that the compositum of unramified extensions is again unramified, so one can
form a maximal unramified extension F ur of F . Given an extension L/F of local fields, we
set K = L ∩ F ur. Clearly K is the maximal unramified extension of F in L. Note the
extension L/K is necessarily totally ramified.

2.2. The Field of Formal Laurent Series. We will be interested in finite extensions of
the field of formal Laurent series. We now introduce this field.

Let Fp[T ] be the polynomial ring with coefficients in Fp and Fp(T ) its fraction field.

Definition 2.1. Given x ∈ Fp(T ), write x as T r g
h
with g, h ∈ Fp[T ], T - gh. We define a

valuation νT by:

νT

(
T r g

h

)
= r

with νT (0) = ∞.

Note that we can define νf for any irreducible polynomial in Fp[T ] analogously. As the
valuations arising in this manner are non-Archimedean, they give the characteristic p valu-
ations analogous to the p-adic valuations on Q. Moreover, one can define a valuation with
respect to 1/T to obtain the characteristic p valuation analogous to the usual absolute value
on Q. As we will only be interested in the case f = T , we restrict to that case.

We can now complete Fp(T ) with respect to νT to obtain the field of formal Laurent series
over Fp.

Definition 2.2. A formal Laurent series f(T ) is an infinite series of the form
∞∑

i=−m

aiT
i

with m, i ∈ Z, ai ∈ Fp for all i. We denote the set of such series by Fp((T )).

An equivalent expression for the valuation defined above is

νT (x) = νT

(
∞∑

i=−m

aiT
i

)
= −m.

We also define an absolute value | · |T such that
∣∣T r g

h

∣∣
T
= p−r.

Note that Fp((T )) is a non-Archimedean local field with characteristic p. As we will only
discuss the valuation on Fp((T )), we will be using the notation ν(x) rather than νT (x) to
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denote this specific valuation for the remainder of the paper unless otherwise specified. Given
an extension L/Fp((T )) we denote the valuation on L obtained by extending ν by νL.

For the rest of the paper all our fields will be extensions of Fp((T )) for some prime p. In
particular, F will be fixed to be a finite extension of Fp((T )).

2.3. Ramification Groups. Let L/F be a Galois extension of local fields with Galois group
G. We define the ramification groups of L/F by

Gi = {σ ∈ G : νL(σ(x)− x) ≥ i+ 1 for all x ∈ OL}

where i ≥ −1. The ramification groups make up a chain of subgroups of the Galois group
that are eventually trivial. These Gi may not be distinct for all i.

Definition 2.3. In the subgroup chain of ramification groups, a ramification break is defined
to occur at i ≥ 0 such that Gi ̸= Gi+1.

Depending on the Galois group and ramification groups themselves, this break may be
unique. Note that the chain of ramification groups is an invariant of the field, so distinct
chains give distinct fields.

3. Unramified Extensions

Unramified extensions of characteristic p fields are similar to their characteristic zero
counterparts. We have the following theorem in this regard.

Theorem 3.1. [8, p. 167] Let F be a local field and f be a positive integer. Then F has a
unique unramified extension of degree f . This extension is obtained by adjoining a primitive
(pf − 1)st root of unity to F .

In particular, we see that if we wish to classify extensions of degree n of a local field F , it
is enough to classify all the totally ramified extensions of degree e for each e | n.

4. Totally Ramified Extensions

As noted in the previous section, unramified extensions are already well understood. Thus
when we build up our degree n extension of F we focus on building totally ramified extensions
of degree e for each e | n.

Definition 4.1. Let g(x) ∈ OF [x] be a monic polynomial:

g(x) = xe + ae−1x
e−1 + ...+ a0.

If ν(ai) ≥ 1 for each i = 0, ..., e− 1, and ν(a0) = 1, then g(x) is said to be Eisenstein.

The following is a well-known theorem which describes how to construct totally ramified
extensions.

Theorem 4.2. [6, p. 54] A finite extension L/K of a non-Archimedean local field is totally
ramified if and only if L = K[α], with α a root of an Eisenstein polynomial.

3



4.1. Totally Tamely Ramified Extensions. Using the work of Pauli and Roblot [11], we
can show exactly what the totally tamely ramified extensions look like, but first we need some
theorems adapted from Pauli [12]. We let K/F be an unramified extension of degree f and
consider totally tamely ramified extensions L/K of degree e. We define |MK |K := |πK |K .

Definition 4.3. Let L/K be a degree eGalois extension with Galois groupG. Let (δ1, · · · , δe)
be an integral basis of L/K. Write G = {σ1, . . . , σe}. Then

disc(L/K) = (det(σl(δk))1≤k≤e,1≤l≤e)
2

is the discriminant of L/K.

The discriminant of the field generated by an Eisenstein polynomial is exactly the dis-
criminant of the polynomial.

Lemma 4.4. Let L = K(α)/K be a finite Galois extension of degree e with basis elements
1, x, x2, · · · , xe−1 and g be the minimal polynomial over K with roots α1, . . . , αe where α =
α1. Then disc(L/K) = disc(g) and νK(disc(g)) = eνK(g

′(α)).

Proof. Define σi ∈ Gal(L/K) such that σi(α) = αi for i ∈ {1, . . . , e}. Then σi(x
j) = αj

i for
0 ≤ j ≤ e− 1. Note disc(L/K) is the square of the determinant of the matrix

A =


1 x1 . . . xe−1

1

1 x2 . . . xe−1
2

...
...

...
1 xe . . . xe−1

e

 .

Since A is a Vandermonde matrix, detA =
∏

i<j(αi − αj) and it follows that disc(L/K) =

disc(g). On the other hand, for any y ∈ L we can write g(y) = (y − α1) · · · (y − αn), so we
have

g′(αi) =
∑
k

∏
j ̸=k

(αi − αj).

However, only the k = i term is non-zero. Hence

g′(αi) =
∏
j ̸=i

(αi − αj),

so it follows that

disc(g) =
e∏

i=1

g′(αi).

Therefore,

νK(disc(g)) = νK(
e∏

i=1

g′(αi)) = eνK(g
′(αi)).

�
Lemma 4.5. If x0, · · · , xe−1 ∈ K where |xi|K ̸= |xj|K for i ̸= j, then∣∣∣∣∣

e−1∑
i=0

xi

∣∣∣∣∣
K

= max
0≤i≤e−1

{|xi|K}.
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Theorem 4.6. (Ore’s Conditions) For each e | n there exists a totally ramified extension
L/K of degree e and discriminant Me−1

K .

Proof. By Theorem 4.2, every totally ramified extension L of K of degree e can be generated
by adjoining a root α of an Eisenstein polynomial g(x) = xe + ae−1x

e−1 + ... + a0. We
have disc(L/K) = disc(g(x)) and since g(x) is Eisenstein, we can write νK(disc(g(x)))/e =
νK(g

′(α)) because g(x) is irreducible. Since α is a uniformizer in L, νK(α) = 1/e. The
valuations of iaiα

i−1 for 1 ≤ i < e and eαe−1 are all different and so by Lemma 4.5 we get

νK(g
′(α)) = νK(eα

e−1 + (e− 1)ae−1α
e−1 + ...+ a1)

= min
1≤i≤e−1

{
νK(e) +

e− 1

e
, νK(i) + νK(ai) +

i− 1

e

}
.

Note that νK(x) = 0 for all x ∈ Z and νK(ai) ≥ 1 for all 1 ≤ i ≤ e− 1, so

νK(g
′(α)) = min

1≤i≤e−1

{
e− 1

e
, νK(ai) +

i− 1

e

}
=

e− 1

e
.

Thus since g(x) is irreducible and νK(disc(g(x))) = eνK(g
′(α)) = e − 1 it is clear that we

can construct an Eisenstein polynomial g(x) such that disc(g(x)) = Me−1
K . �

4.2. Construction of Generating Polynomials. Let Le denote the set of all totally
ramified extensions L/K of degree e and discriminant Me−1

K . In this section we use the work
of [11,12] to construct a finite set of polynomials that will generate all the extensions in Le.
As above, we let K/F be an unramified extension of degree f and L/K be a totally ramified
extension of degree e. Let H be the Galois group of the extension K/F and let R1,2 be a
fixed H-stable system of representatives of the quotient M1

K/M2
K . We denote R∗

1,2 to be
the subset of R1,2 whose elements have νK-valuation 1.

Let Ω be the set of e-tuples (ω0, . . . , ωe−1) ∈ Ke which satisfy the following conditions:

(1) ωi ∈
{

R∗
1,2 if i = 0,

R1,2 if 1 ≤ i ≤ e− 1.

To each element ω = (ω0, . . . , ωe−1) ∈ Ω we associate the polynomial Aω(x) ∈ OK [x] given
by

Aω(x) = xe + ωe−1x
e−1 + · · ·+ ω1x+ ω0.

Lemma 4.7. The polynomials Aω are Eisenstein polynomials of discriminant Me−1
K .

Proof. By construction νK(ωi) ≥ 1 for all i and νK(ω0) = 1. So Aω is an Eisenstein polyno-
mial.

Let α be a root of Aω. Since the discriminant of Aω is the norm from K(α) to K of A′
w(α)

we have

νK(A
′
w(α)) =

e− 1

e

as seen in Theorem 4.6. It follows that νK(disc(Aω)) = e − 1 and disc(Aω) = Me−1
K as

claimed. �
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Lemma 4.8. Let ω be an element of Ω and let α be a root of Aω(x). The extension K(α)/K
is a totally ramified extension of degree e and discriminant Me−1

K . Conversely, if L/K is
totally ramified extension of degree e and discriminant Me−1

K , then there exists ω ∈ Ω and
a root α of Aω(x) such that L = K(α).

Proof. The statement is a special case of the characteristic zero result Corollary 5.3 in [11].
In particular, one specializes to j = 0 and c = 2. The proof there works for characteristic p
as well. �

Theorem 4.9. Let q be the order of the residue field of K. Then the number of totally
ramified extensions of K of degree e and discriminant Me−1

K is

#Le = e.

Proof. To see this, one combines Lemma 6.2 and Lemma 6.3 of [11] and observes the proofs
carry over verbatim to characteristic p. �

Pauli and Roblot have calculated convenient polynomials that generate totally tamely
ramified extensions of unramified extensions of Qp. Their proof carries over to the positive
characteristic case as well. We include the proof for the convenience of the reader.

Theorem 4.10. Let ζ be a primitive (pf − 1)-st root of unity contained in K and let
g = gcd(pf − 1, e). Set m = e/g. There are exactly e totally and tamely ramified extensions
of K of degree e. Furthermore, these extensions can be split into g classes of m K-isomorphic
extensions, all extensions in the same class being generated over K by the roots of the
polynomials

fr(x) = xe − ζrπK

for r = 0, ..., g − 1.

Proof. Consider the set R∗
1,2 = {ζ iπK with 0 ≤ i ≤ pf −2} and R1,2 = R∗

1,2∪{0}. The roots
of the polynomials xe +ωe−1x

e−1 + ...+ω0, where ωi ∈ R1,2 for 1 ≤ i ≤ e− 1 and ω0 ∈ R∗
1,2,

generate all totally tamely ramified extensions of discriminant Me−1
K by Lemma 4.8.

Consider extensions of K generated by roots of the polynomials fi(x) = xe− ζ iπK so that
ωj = 0 for 1 ≤ j ≤ e − 1. Let α be a root of fi(x). Note that since ζ ∈ K, we have ζhα
generates the same extension of K as α for any integer h. If we choose h so that eh+ i ≡ r
(mod pf − 1) with 0 ≤ r < g, then the minimal polynomial of ζhα is feh+i(x) since

(ζhα)e + ζeh+iπK = ζehαe + ζeh+iπK

= ζeh(αe + ζ iπK).

Hence we only need to consider the polynomials fr(x) for 0 ≤ r ≤ g− 1. This polynomial is
Eisenstein and by Theorem 4.2, it will define a totally tamely ramified extension.

Let fr(x) and fr′(x) be two of these polynomials which generate a totally tamely ramified
extension where 0 ≤ r, r′ ≤ g − 1 and r ̸= r′. Let α and α′ be roots of fr(x) and fr′(x)
respectively. Suppose that α and α′ generate the same field L. Then this field contains an
e-th root of ζr−r′ . To see this, consider the following: If we assume α ∈ L if and only if
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α′ ∈ L then fr(α) = 0 = fr′(α
′). Thus

αe − (α′)e = ζr
′
πK − ζrπK

= πK(ζ
r′ − ζr)

= ζr
′
πK(1− ζr−r′).

Thus this field contains an e-th root of ζr−r′ which contradicts our assumption that the field
only contains the (pf − 1)-st roots of unity as r − r′ is never a multiple of e modulo pf − 1.
Therefore α and α′ must generate two distinct extensions of K.

Let ρ be a primitive e-th root of unity in the algebraic closure of Fp((T )) such that for m,

ρm = ζ(p
f−1)/g. The conjugates of α over K are α, ρα, ..., ρe−1α. Thus α, ρmα, ..., ρ(g−1)mα

all generate the same field, but α, ρα, ...ρm−1α all generate distinct isomorphic extensions.
More specifically, the roots of the polynomial fr(x) generate g classes ofm distinct isomorphic
extensions. Thus there are e total extensions generated by the roots of these polynomials.
By Theorem 4.9 there are exactly e totally ramified extensions of degree e of K, which proves
that all totally tamely ramified extensions of degree e of K are generated by the roots of the
polynomials fr(x) as claimed. �

Thus, we have shown that the polynomials calculated in [11] to generate totally tamely
ramified extensions of K of degree e where p - e also work in the case of char(K) = p.

4.3. Totally Wildly Ramified Extensions of Degree p. In this section we discuss wildly
ramified extensions L/F of degree p. We show that the characteristic p theory differs signifi-
cantly from characteristic zero theory and thus it is not possible to classify such extensions as
in some characteristic zero cases [2–4]. Artin-Schreier theory provides the results needed for
these extensions. From this theory, the Galois group G = Gal(L/F ) will be cyclic, namely
Z/pZ. Because of that fact, the ramification groups will either be G or {1} causing there to
be a single, unique ramification break. For more on Artin-Schreier theory, see [6, p. 67-78].

Note also that in this section, the group Ui, which corresponds to the ramification group
Gi, will be written as either 1 + (πi

L) or 1 +Mi
L.

Definition 4.11. For F a field of characteristic p, an Artin-Schreier polynomial is a poly-
nomial of the form ℘(x) = xp − x− α for α ∈ F×.

The following is a well-known result that leads to our next theorem.

Lemma 4.12 (Hilbert’s Theorem 90, Additive Form). Let L/F be a cyclic Galois extension
with degree n and Galois group G. Let σ be a generator of G and let β ∈ L. Then TrL/F (β)
is equal to 0 if and only if there exists α ∈ F such that β = α− σ(α).

Theorem 4.13. [10, p. 290] Any Galois extension of F of degree p is the splitting field of
an Artin-Schreier polynomial.

Proof. Let L/F be a Galois extension of degree p. Then TrL/F (−1) = p(−1) = 0 since F
has characteristic p. Let σ be a generator of G. By Hilbert’s Theorem 90 there exists α ∈ L
such that σ(α)− α = 1. Thus σ(α) = α + 1 and σi(α) = α + i for i = 1, . . . , p. Since α has
p distinct conjugates, [F (α) : F ] ≥ p. It follows that L = F (α). Note that

σ(αp − α) = σ(α)p − σ(α) = (α+ 1)p − (α+ 1) = αp − α.
7



Since αp − α is fixed by σ, the generator of G, it is fixed by every element of G. Hence
αp − α ∈ F . Let a = αp − α. Then α satisfies the equation xp − x − a = 0 and L/F is the
splitting field of an Artin-Schreier polynomial. �

Theorem 4.14. There are infinitely many wildly ramified extensions of degree p of F .

Proof. Let L be the splitting field of the polynomial ℘(x) = xp−x−π−m
F ∈ F [x] with m ∈ Z.

Suppose L/F is a wildly ramified extension of degree p with νL a discrete valuation on L
and G the Galois group. Let πL ∈ L be a uniformizer. It suffices to show that there are an
infinite number of values at which the unique ramification break can occur.

Consider νL(σ(πL) − πL) = 1 + νL

(
σ(πL)
πL

− 1
)
. With this equality, in Gi we can look

at νL

(
σ(x)
x

− 1
)

≥ i rather than νL(σ(x) − x) ≥ i + 1. It can be found in [14, p. 67]

that σ(πL)
πL

∈ UL. Thus, σ(πL)
πL

= u for some unit u ∈ UL. Let u = uFw for uF ∈ UF and
w ∈ 1 +ML. Then we have,

σ

(
σ(πL)

πL

)
· σ(πL)

πL

= σ(uFw) · uFw

= u2
Fw · σ(w).

Continue this process of multiplying by σ(πL)
πL

= σ(uFw) on each side until, on the left hand

side, the term is equal to σp(πL)
πL

. Because this is a degree p extension with cyclic Galois
group,

1 =
σp(πL)

πL

= up
Fwσ(w) · · ·σ

p−1(w) where wσ(w) · · ·σp−1(w) ∈ 1 +ML.

Divide by wσ(w) · · ·σp−1(w) to see up
F ∈ 1+ML. This implies uF ∈ 1+ML and uF ∈ 1+MF .

Then, σ(πL)
πL

∈ 1 + ML. This gives σ(πL)
πL

= 1 + uLπ
s
L for some uL ∈ UL and s ≥ 1, where

s does not depend of choice of uniformizer. From [14, p. 66-67], σ(u)
u

≡ 1 (mod πs+1
L ) for

u ∈ UL. We can conclude for any λ ∈ L×, σ(λ)
λ

∈ 1 + πs
LUL. To see this let λ = uLπ

a
L with

p - a. Then
σ(λ)

λ
=

σ(uLπ
a
L)

uLπa
L

=
σ(uL)

uL

(
σ(πL)

πL

)a

∈ 1 + πs
LUL.

Thus, νL

(
σ(λ)
λ

− 1
)
= s. This implies that G = Gs and Gs+1 = {1}. Therefore, the unique

ramification break occurs at i = s.
Now suppose λ is a root of ℘(x) = xp − x− α, where α = π−m

F . Then,

α = λ(λ+ 1) · · · (λ+ (p− 1))

because if λ is a root, then λ + j for j ∈ Z/pZ is a root. In the above product, (λ +
1), · · · , (λ + (p − 1)) are units, so νF (α) = νL(λ). Therefore, νF (α) = s. For α = π−m

F ,
−m = s. Because there are infinitely many choices for m, there are infinitely many possible
ramification breaks, thus extensions of degree p. �
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Note that when given two Artin-Schreier polynomials ℘1(x) = xp − x − a and ℘2(x) =
xp − x − b for a, b ∈ F , ν(a) = ν(b) does not imply the extensions generated by ℘1 and
℘2 are isomorphic. If the constant terms a and b differ by a function of the form cp − c for
c ∈ F , then ℘1 and ℘2 will generate isomorphic extensions.

5. Example

We utilize the results proven in the paper to classify all degree n = 10 field extensions
L/F where F = Fp((T )) with p ≡ ±3 (mod 10). We have L/F is necessarily one of the
following:

(1) a degree 10 unramified extension,
(2) a degree 2 totally tamely ramified extension of a degree 5 unramified extension,
(3) a degree 5 totally tamely ramified extension of a degree 2 unramified extension,
(4) or a degree 10 totally tamely ramified extension.

From Theorem 3.1, the unramified portion of each case is unique. These extensions are
formed by adjoining a root of the cyclotomic polynomial xpf − x and have Galois group
isomorphic to Z/fZ. To compute a defining polynomial for these extensions, see [5, p. 587]
which uses an algorithm to find irreducible polynomials in the ring Fp[x] that can be applied
to the polynomial ring over Fp((T )).

For the totally tamely ramified portion of the extensions, it is necessary to use a formula
similar to the one for the characteristic zero case outlined in [11]. By Theorem 4.9 there
are e distinct, but not necessarily non-isomorphic degree e extensions. By Theorem 4.10 for
g = gcd(e, pf − 1) there are g non-isomorphic totally tamely ramified extensions of degree
e and the defining polynomials are in the form xe − ζrπF for 0 ≤ r ≤ g − 1. Thus for
case 1 there is 1 unique extension and there are gcd(2, p5 − 1) = 2, gcd(5, p2 − 1) = 1,
gcd(10, p1 − 1) = 2, non-isomorphic extensions for case 2, 3 and 4 respectively. In total,
there are 6 non-isomorphic extensions of degree 10 for such p.

To calculate the Galois group of each of these extensions, it is necessary to use a lemma
found in [14, p. 66-67]:

Lemma 5.1. Let F be a field of characteristic p. Let L/F be a Galois extension with Galois
group G and let ML denote the maximal ideal of the integers in L. For i ≥ −1, let Gi be
the i-th ramification group. Let U0 be the units in L and for i ≥ 1, let Ui = 1+ (πi

L), where
πL is the generator of ML.

(a) For i ≥ 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.
(b) The group G0/G1 is cyclic and isomorphic to a subgroup of the group of roots of

unity in the residue field of L. Its order is prime to p.
(c) The quotients Gi/Gi+1 for i ≥ 1 are abelian groups and are direct products of cyclic

groups of order p. The group G1 is a p-group.
(d) The group G0 is the semi-direct product of a cyclic group of order prime to p with a

normal subgroup whose order is a power of p.
(e) The groups G0 and G are both solvable.

The GAP package [7] in Sage [13] can be used to find possible Galois groups as described
for extensions of Qp in [2–4]. For small degrees, the online L-functions and Modular Forms
Database (LMFDB) [1] can also be used to find possible Galois groups with the necessary
properties. The same technique in finding the Galois group for the p-adic case can be applied

9



to the function field case. Consider one of the case 2 extensions. As mentioned above, one
can use the methods described in [5, p. 587] to efficiently find a defining polynomial for
K/F . For example, we find that x5 + 2x + 1 is a defining polynomial for K/F in the case
p = 3. By Theorem 4.10 defining polynomials for the two non-isomorphic case 2 extensions
are given by x2−T and x2−ζT where T is a uniformizer in F and consequently a uniformizer
for K/F and ζ is a primitive p5 − 1-st root of unity. We will use Lemma 5.1 to discuss the
properties of the Galois group and find the Galois group for a case 2 extension with x2 − T
being a defining polynomial for L/K.

The Galois group of L/K is a solvable subgroup of Sn, or in this case S10. There are 24
solvable subgroups of S10. The Galois group will have a subfield corresponding to G/G0, the
Galois group of the unramified intermediate extension. This G/G0 must be isomorphic to
Z/5Z since the Galois group of an unramified extension is always isomorphic to Z/fZ. From
Lemma 5.1 part (a), G0/G1 is isomorphic to Aut(L/K) which is necessarily isomorphic to
Z/2Z since L/K is a degree two extension. Note that Z/2Z is cyclic and of order prime to
5. In this particular case, since Gi is isomorphic to the trivial group for i ≥ 1, G0

∼= G0/G1.
Thus the Galois group must have a normal subgroup isomorphic to Z/2Z. The only group
which fits these criteria is Z/10Z. Below is a table listing the Galois groups for all six degree
10 extensions:

Case e f Gal(L/F )
1 1 10 Z/10Z
2 2 5 Z/10Z
2 2 5 Z/10Z
3 5 2 F5

4 10 1 F5 × Z/2Z
4 10 1 F5 × Z/2Z

Note that F5 is the Frobenius group of order 20 which is isomorphic to a semidirect product
Z/5Z n Z/4Z ∼= Z/5Z n Aut(Z/5Z).

The same methods of finding the Galois group of L/F can be applied to intermediate
extensions. The following table contains information about the intermediate unramified and
totally tamely ramified extensions in the case that p = 3.

Case e f Gal(K/F ) Polynomial for K/F Gal(L/K) Polynomial for L/K
1 1 10 Z/10Z x10 + 2x2 + 1
2 2 5 Z/5Z x5 + 2x+ 1 Z/2Z x2 − T
2 2 5 Z/5Z x5 + 2x4 + 2x+ 2 Z/2Z x2 − ζ242T
3 5 2 Z/2Z x2 + x+ 2 F5 x5 − T
4 10 1 F5 × Z/2Z x10 − T
4 10 1 F5 × Z/2Z x10 − ζ2T
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