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Abstract

There is a well known natural topology on the set of compatible total
orders on a group. A similar notion is defined on the set of distinct mono-
mial algebras in polynomial and Laurent polynomial rings. We study the
later topological structure for monomial algebras that come from rings of
multiplicative invariants and show that they are either finite discrete spaces
or homeomorphic to the Cantor set. This result agrees with several recent
results on the space of left orders on a group.

1 Introduction

A group G is called left (respectively, right) orderable if there is a total order < on
G compatible with the group operation, that is a < b implies ca < cb (ac < bc)
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for all a,b, c ∈ G. Not every group admits such an order; for example, finite groups
do not. The study of orderable groups is not new, but in recent years there has
been a considerable attention to the field due to the discovery of deep connections
with topology, and dynamics of group action on a circle. Orderability is also a
proven useful tool in 3-manifold theory. For details and other recent developments
on orderable groups we refer to [1, 3, 6, 11]. An example of orderable group is the
free abelian group Zn with the lexicographic (or dictionary) order, <lex, given by
a �lex b if an only if the first nonzero entry of a−b is positive, for a 6= b ∈ Zn. Our
investigation in this paper is based on the set of all compatible orders on Zn, denoted
Ω. Sikora [11] defined a natural topology on Ω with subbasis Ua,b = {< ∈ Ω | a � b}
for each a,b ∈ Zn and showed that this space is a totally disconnected, compact
metric space with no isolated points. Hence it is homeomorphic to the Cantor set.
Linnell [6] also showed that the space of left orders on any orderable group is either
finite or uncountable.

On the other hand, consider the Laurent polynomial ring, k[x±1] = k[x±11 , . . . , x±1n ],
in n variables. A topological structure on the set

V = {V : V is a k−subspace of k[x±1] spanned by monomials}

is defined by Kuroda [5]. We will present details in Section 2 below. Now let < ∈ Ω,
the initial exponent of a nonzero polynomial f ∈ k[x±1] with respect to < is

in<(f) = max
<
{a ∈ Zn : xa occurs in f with nonzero coefficient}.

The initial algebra, in<(R), of a subalgebra R of k[x±1] with respect to < ∈ Ω is
the monomial algebra in<(R) = k[xin<(f) : f ∈ R \ {0}]. Note that in<(R) ∈ V.
Like initial ideals in Gröbner basis theory, initial algebras play an important role
for subalgebras due to the SAGBI theory pioneered by Robbiano and Sweedler [10]
and independently by Kapur and Madlener [4]. The term “SAGBI” is an acronym
for “Subalgebra Analogue to Gröbner Bases for Ideals.”

Consider a subgroup G of the symmetric group Sn and let R be the subring of
polynomial or Laurent polynomial rings which are fixed under the action of G by
permuting variables. Such rings are called permutation invariants. For the subalge-
bra R of permutation invariants, Kuroda [5] showed that the set of distinct initial
algebras {in<(R) : < ∈ Ω} is either finite or uncountable. Kuroda’s argument is
a careful analysis of the subspace topology {in<(R) : < ∈ Ω} ⊆ V. Tesemma [13]
generalized Kuroda’s result on the cardinality of distinct initial algebras for sub-
algebras R that are invariant under action of an arbitrary subgroup of GLn(Z).
These subrings are called multiplicative invariants. Note that permutations can be
realized as permutation matrices, so multiplicative invariants are a larger class of
invariant rings and include permutation invariants. Tesemma’s approach did not
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use a topology on initial algebras but rather counted a family of convex polyhedral
cones associated to these initial algebras.

In this paper we study {in<(R) : < ∈ Ω} ⊆ V as a quotient space of Ω for an
arbitrary ring of multiplicative invariants and show the following analogous result
to the topology on Ω.

Theorem 1.1. Let R be a subalgebra of multiplicative invariants of k[x±]. The set
of distinct initial algebras {in<(R) : < ∈ Ω} under the quotient topology from Ω is
either a finite discrete space or homeomorphic to the Cantor set.

2 Basics on Ring of Multiplicative Invariants

Let G be a finite subgroup of GLn(Z) and k[x±1] be the Laurent polynomial ring
in n variables. G acts on the multiplicative group of monomials {xa, a ∈ Zn} by
ϕ(xa) = xϕ·a where ϕ · a is multiplication of the n× n matrix ϕ in G by the vector
a in Zn. This action extends to the Laurent polynomial ring k[x±1] by k-algebra
automorphism.

The subalgebra

k[x±1]G = {f ∈ k[x±1] | ϕ(f) = f, ∀ ϕ ∈ G}

is called an algebra or ring of multiplicative invariants. The orbit sum of each
monomial, ϑ(xa) =

∑
ϕ∈G xϕa, is an invariant polynomial. Moreover, the set

{ϑ(xa) : a ∈ Zn}

is a k-basis of the ring of multiplicative invariants. For details on the theory of
multiplicative invariants, we direct the reader to [7].

Definition. Let ϕ ∈ GLn(Z) be a linear transformation on Rn. We call ϕ a reflection
if ϕ fixes a hyperplane and ϕ2 = 1, where 1 is the identity matrix. A group G 6
GLn(Z) is called a reflection group if it is generated by reflections.

The existence of a finite SAGBI basis for a ring of multiplicative invariants is tied to
the group G acting on the algebra being a reflection group. For details on this fact
we refer to [8]. In this paper, whether or not G is a reflection group gives distinct
topological spaces of initial algebras.
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3 Topological Structure on Ω and Initial Algebras

In this section we define a topological structure on initial algebras of a ring of
multiplicative invariants R of a fixed finite subgroup G 6 GLn(Z) and show that
the space of initial algebras is a compact subspace of the Cantor set.

Consider the canonical map from the topological space Ω to the set V

QR : Ω→ V : < 7→ in<(R).

Let Ψ be the quotient space induced by QR on QR(Ω), the set of initial algebras of
R. Consider the equivalence relation ∼R on Ω defined by < ∼R <′ if and only if R
has the same initial algebra with respect to < and <′. By definition

Ω/∼R ∼= Ψ

as topological spaces, where we give Ω/∼R the quotient topology corresponding to
the equivalence relation. Because the equivalence classes that comprise Ω/∼R are
analogous to the Gröbner regions of an ideal, the topological space Ψ with this
quotient topology is a natural object of study as both a space of initial algebras and
a space arising from a natural equivalence relation on Ω that captures the initial
algebra structure of R.

Part of our main result is that if G is not generated by reflections, Ψ is homeomorphic
to the Cantor set. By our definition of Ψ, were the map QR guaranteed to be
injective, a trivial consequence would be that Ψ is the Cantor set. In section 4, we
give an example where G is not generated by reflections but QR is not injective.

We now show that Ψ is a compact subspace of the Cantor set. We begin by re-
stricting a metric defined by Kuroda [5] on V to our space Ψ to show that Ψ is
metrizable.

Lemma 3.1. The space Ψ is metrizable.

Proof. First define any map that induces a finite filtration on Zn as follows:

ρ : Zn → N,

such that ρ−1(s) is finite for each s ∈ N. An example of such a ρ is

ρ : (a1, . . . , an) 7→ 1 +
∑
|ai|.
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Consider the metric on V defined by Kuroda [5] as

dρ(V,W ) =

{
1
r
, if r = max{s ∈ N | xa ∈ V ⇔ xa ∈ W for all a ∈ ρ−1([s])} exists

0, if no such r exists,

for any V,W ∈ V, where [s] = {1, . . . , s}. Let Ψ′ be the topological space obtained
by restricting the metric dρ to QR(Ω) ⊂ V. We will show that Ψ = Ψ′.

We first show that the map QR : Ω→ Ψ′ is continuous. Let QR(<) ∈ Ψ′ and ε > 0.
Let r ∈ N be such that

1

r
< ε.

For any a,b ∈ Zn, consider the subbasic open set

U<
a,b =


Ua,b, if xa � xb

Ub,a, if xb � xa

Ω, if xa = xb.

Because G is finite, for any a ∈ Zn

U<
a =

⋂
ϕ∈G

U<
a,ϕ(a)

is open in Ω. Also for any <′ ∈ U<
a , xa ∈ QR(<) if and only if xa ∈ QR(<′).

Because ρ−1([r]) is finite

U<
r =

⋂
a∈ρ−1([r])

U<
a

is open in Ω. Then if <′ ∈ U<
r ,

dρ(QR(<′),QR(<)) 6
1

r
< ε.

Therefore QR : Ω→ Ψ′ is continuous.

Now because Ω is compact and Ψ′ is a metric space and hence Hausdorff, our
map QR : Ω → Ψ′ is closed. Thus because QR : Ω → Ψ′ is continuous, closed and
surjective, QR : Ω→ Ψ′ is a quotient map. Therefore Ψ = Ψ′, so Ψ is metrizable.

Lemma 3.2. The space Ψ is compact.

Proof. By definition QR : Ω → Ψ is continuous. Therefore because Ω is compact
and Ψ is metrizable, Ψ is compact.
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Lemma 3.3. The space Ψ is totally disconnected.

Proof. The metric for Ψ constructed in the proof of Lemma 3.1 takes only rational
values.

Proposition 3.4. The space Ψ is a compact subset of the Cantor set.

Proof. The proposition follows from Lemmas 3.1, 3.2, 3.3.

The rest of the paper is devoted to prove that the space Ψ is also perfect for ring
of invariants under action of a finite non-reflection group. First, we need to further
investigate a certain subset of Ω.

4 Orders on Zn Determined by Weight Vectors

Robbiano [9] gave a classification of all compatible orders on Zn from the point of
view of computational commutative algebra. This classification plays an important
role in Gröbner and SAGBI basis theories. In this section we consider those orders
defined by a single weight vector w ∈ Rn. First note that the map a 7→ w · a is
one-to-one if and only if w is of rational dimensional n, i.e. the coordinates of w
span an n-dimensional vector space over Q. It follows that each vector w of rational
dimension n determine an ordering, <w, on Zn by

a <wb ⇔ a ·w > b ·w, ∀ a,b ∈ Zn

It is immediately apparent from the definition that <w = <λw for λ ∈ R>0. But if
w1 and w2 are two non-parallel vectors then the set {v ∈ Rn : v ·w1 > 0 > v ·w2}
is a non-empty open convex cone in Rn, and hence by density of rationals contains
some a ∈ Zn. It follows that a <w10 and 0 <w2a and hence <w1 6= <w2 . Thus any
order induced by a weight vector is induced by a unique vector in the set

S := {w ∈ Rn : ||w|| = 1 ∧ dimQ(w) = n}

where dimQ denotes the rational dimension.

Proposition 4.1 (Kuroda [5]). If we endow S with the subspace topology from the
standard metric topology on Rn, then the map

ι : S → Ω : w 7→ <w

is continuous.
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Proof. Consider a subbasic open set

Ua,b = {< ∈ Ω | a<b}.

Its preimage is

ι−1(Ua,b) = {w ∈ S | w · a > w · b} = {w ∈ S | w · (b− a) > 0}
= S ∩ {v ∈ Rn | v · (b− a) > 0}

which is an open set in S.

Kuroda [5] also showed that the image ι(S) is dense in Ω. His proof relies on the
classification of orders on Zn by Robbiano in [9]. We give an alternative proof using
some facts from convex polyhedral geometry.

Definition.

1. A subset C of Rn is called a polyhedral cone if there is a finite subset X ⊆ C
such that

C = Cone(X) =

{∑
v∈X

λvv

∣∣∣∣∣ λv ∈ R>0

}

2. The dual of a polyhedral cone C is the set C∨ = {w ∈ Rn |w ·v > 0 ∀ v ∈ C}

3. A cone C is strongly convex if {0} is a face of C.

Lemma 4.2 (Cox, et.al. [2, Chapter 1]). Let C be a polyhedral cone. The following
are equivalent:

i. C is strongly convex.

ii. C contains no positive-dimensional subspaces of Rn.

iii. dimσ∨ = n.

Lemma 4.3 (Cox, et.al. [2, Chapter 1]). Let X ⊆ Zn be finite and C = Cone(X).
Then

C ∩Qn =

{∑
v∈X

λvv

∣∣∣∣∣λv ∈ Q>0

}
.

Proposition 4.4. The image ι(S) is dense in Ω.
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Figure 1: Depiction of how w ∈ ι−1(U) corresponds to the geometry of the cone C
when U 6= ∅

Proof. Consider a nonempty basic open set

U =
k⋂
i=1

Uai,bi .

Let vi = ai − bi ∈ Zn and C = Cone{v1, . . . ,vk}.

First we show that C is strongly convex. Suppose to the contrary that C is not
strongly convex. Then by fact 4.2, C contains a positive-dimensional subspace of
Rn. Thus there exists {ri}i, {si}i ⊂ R>0 such that

0 6=
k∑
i=1

rivi = −
k∑
i=1

sivi.

Without loss of generality assume s1 6= 0. Then we can solve for v1 to get that
−v1 ∈ C. Then by Lemma 4.3,

−v1 ∈ C ∩Qn =

{∑
v∈S

λvv |λv ∈ Q>0

}
. (1)

For any < ∈ U , each vi � 0, but by (1) −v1 � 0 so v1 ≺ 0. Thus no such < exists,
contradicting that U is nonempty.
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Therefore C is strongly convex. Thus by Proposition 4.2 above, dimC∨ = n and
hence there exists w ∈ C∨ ∩ S. Then for all i ∈ {1, . . . , k}, w · vi > 0.

Thus ι(w) ∈ U , and ι(S) is dense in Ω.

We now use weight orders to give an example of a non-reflection group for which
QR is not injective.

Example. Consider the subgroup

G =


1 0 0

0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 1

 = {1, ϕ} ⊂ GL3(Z)

and its ring of multiplicative invariants R = k[x±11 , x±12 , x±13 ]G.

Consider xa = xa11 x
a2
2 x

a3
3 ∈ k[x±11 , x±12 , x±13 ] and w = (w1, w2, w3) ∈ S

The monomials xa and ϕ(xa) = x−a11 x−a22 xa33 have the same coefficient in any poly-
nomial in R. Thus xa ∈ QR(<w) if and only if xa <w ϕ(xa), which occurs if and
only if

w1a1 + w2a2 + w3a3 > −w1a1 − w2a2 + w3a3.

Therefore QR(<w) depends only on w1 and w2, so QR is not injective.

5 Perfectness of the Space QR(Ω)

In this section we will prove that if G is not generated by reflections then Ψ is perfect.
In [5], Kuroda proves a similar result for the special case when G is a subgroup of the
symmetric group Sn that is not generated by transpositions. Our proof is inspired
by Kuroda’s, but requires important changes to work in our more general setting.

In our setting the action of G can change the length of exponent vectors. Thus
where Kuroda uses a polytope

M =

{
(v1, · · · , vn) ∈ Rn

>0

∣∣∣∣∣
n∑
i=1

vi = 1

}
whose surface is closed under permutations, we use the existence of a G-invariant
inner product to construct a surface that is closed under the action of G.
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Let Iσ := ker(σ − 1) where σ ∈ GLn(,Z) and 1 is the identity matrix. Similarly for
G 6 GLn(Z) let IG :=

⋃
σ∈G\{1} Iσ.

Definition & Remarks. Let G 6 GLn(Z).

(i) An inner product 〈·, ·〉G on Rn is called G-invariant if 〈x,y〉G = 〈ϕ(x), ϕ(y)〉G
for all x,y ∈ Zn and ϕ ∈ G. Such inner product exists for finite groups by
defining a new inner product as follows:

〈x,y〉G :=
∑
ϕ∈G

ϕ(x) · ϕ(y).

(ii) We define a G-sphere, SG := {x ∈ Rn | 〈x,x〉G = 1}.

(iii) A point x ∈ SG is said to be projectively rational if x = cr for some c ∈ R and
r ∈ Qn. It is clear from density of Qn on Rn that projectively rational points
are dense in SG.

Lemma 5.1. For any σ ∈ G, dim Iσ = n− 1 if and only if σ is a reflection.

Proof. The forward direction is given by the definition of a reflection.
Now suppose dim Iσ = n− 1; that is, σ fixes a hyperplane. Since σ preserves angles
in the G-invariant inner product, it preserves the line orthogonal to Iσ, and hence
must map this line onto itself or its opposite. In the first case, σ is the identity, which
contradicts that dim Iσ < n. Thus σ must negate this line, so it is a reflection.

In particular, Iσ disconnects SG if and only if σ is a reflection.

Remark 5.2. Let τ ∈ G. Then τ maps IG onto IG.

Proof. For any σ ∈ G, if x ∈ Iσ, σ(x) = x. Then

τστ−1(τ(x)) = τσ(x) = τ(x)

so τ(x) ∈ Iτστ−1 . Thus τ maps Iσ onto Iτστ−1, and hence maps IG onto IG.

Lemma 5.3. Assume G is not a reflection group. Then for every a ∈ SG\IG, every
connected component of SG \ IG contains at least two points of the orbit

ϑ(a) = {σ(a) | σ ∈ G}.
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Proof. First, note that each σ ∈ G maps SG into SG because σ preserves the G-
invariant inner product.
By Remark 5.2, any σ ∈ G preserves IG, so it must map SG \ IG onto itself. Since
σ is a homeomorphism, it preserves components of SG \ IG.
If SG \ IG has only one connected component, that component must contain ϑ(a).
Since a /∈ IG, ϑ(a) contains at least two elements, satisfying the claim.
Otherwise, let C 6= D be two connected components of SG \ IG. Consider a path

ψ : [0, 1]→ SG

between a point in C and a point in D. Further suppose that this path does not
intersect any Iσ for non-reflections σ or any Iσ ∩ Iτ for σ 6= τ ∈ G and that

{t ∈ [0, 1] | ψ(t) ∈ Iτ for some reflection τ ∈ G}

is finite. Denote these points t0 < · · · < tr, and for each ti let τi be the reflection
in G whose invariant subspace contains ψ(ti). Since each τi is a homeomorphism,
τr ◦ · · · ◦ τ1 is a bijection mapping C onto D. Since τr ◦ · · · ◦ τ1 is also a bijection on
ϑ(a), C and D must contain the same cardinality of elements of ϑ(a).
Now, suppose some component C has only one element of ϑ(a); then every compo-
nent does. For each σ ∈ G, σ(a) 6= a because a /∈ Iσ. Hence σ(a) lies in a different
component D. Since σ(a) is D’s unique element of ϑ(a), the product of reflections τ
mapping C onto D must also map a onto σ(a). Then στ−1 fixes a /∈ IG, so we must
have στ−1 = I, and hence σ = τ . Thus σ is a product of reflections in G. Hence G
is a reflection group, contradicting the assumption.

Lemma 5.4. For any a,b ∈ SG \ IG, if there is a path from a to b in SG, there is
such a path in which projectively rational points are dense.

Proof. Let our original path be given by γ0 : [0, 1] → SG \ IG, with γ(0) = a and
γ(1) = b.

For each t ∈ [0, 1], fix

δ(t) = inf{d(γ0(t),y) |,y ∈ IG} > 0.

We now describe another path γ1 from a to b:

Set ε1(t) = δ
2
. By Proposition 4.4 we can find a projectively rational

point ρ with d(ρ, γ0(
1
2
)) < ε(t). Now we take γ1 to be another continuous

function with γ1(0) = γ0(0) and γ1(1) = γ0(1), but γ1(
1
2
) = ρ; restrict γ1

to satisfy d(γ1(t), γ0(t)) < ε(t) for any t ∈ [0, 1].
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a

b

ε1(0)

7→ 7→

Figure 2: Example γ0, γ1, and γ2.

For each i, we define γi from γi−1 similarly, by repeating this procedure on each
interval of the form [ j

2i−1 ,
j+1
2i−1 ]; however, we modify it so that the εi(t) used is

εi(t) = min

{
1

2

(
inf{d(γi−1(t),y) | y ∈ IG} −

δ(t)

4

)
,

1

2i

}
.

This εi(t) ensures that d(γi(t), γi+1(t)) < 1
2i

for all t ∈ [0, 1], so the sequence
γ0, γ1, . . . is uniform convergent. Then it has a limit γ, which is continuous and
has image in SG \ IG still since at each t γ(t) has distance to any point in IG at least
δ(t)
4

. Since

γi

(m
2i

)
= γi+k

(m
2i

)
is projectively rational for any i, k,m ∈ N, it follows that γ is projectively rational at
any dyadic fraction; but dyadic fractions are dense in [0, 1], so projectively rational
points are dense in γ([0, 1]).

Remark 5.5. Let w,v ∈ Rn and the coordinates of w be rationally independent.
Then for any nonempty open I ⊂ R, there exists δ ∈ I such that the coordinates of
w − δv are rationally independent.

Proof. Let w = (w1, . . . , wn) and v = (v1, . . . , vn). Let δ ∈ R such that it is not in
Q[w1, . . . , wn, v1, . . . , vn], the extension of Q by adjoining the coordinates of w and
v. We claim that the coordinates of w− δv are rationally independent. Suppose to
the contrary that there exist a1, . . . , an ∈ Q, not all zero, such that

n∑
i=1

ai(wi − δvi) = 0.

Then because the wi are rationally independent
∑n

i=1 aiwi 6= 0. Thus
∑n

i=1 aivi 6= 0
so

δ =

∑n
i=1 aiwi∑n
i=1 aivi

∈ Q[w1, . . . , wn, v1, . . . , vn],
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which contradicts our choice of δ. Since any nonempty open I ⊂ R contains such a
δ, this completes our proof.

Theorem 5.6. Let R be a ring of multiplicative invariants under action of a non-
reflection subgroup of G 6 GL(n,Z). For any w ∈ S, any open ball B(w, ε) ⊆ S
contains wδ such that QR(<wδ) 6= QR(<w).

Proof. Fix arbitrary w ∈ S and let < = <w = ι(w). Now choose a ∈ SG \ IG
for which a < σ(a) for any σ ∈ G. By Lemma 5.3, we can find σ(a) in the same
component for some σ ∈ G. Then we can define a path between them, that is, a
continuous γ : [0, 1]→ SG \ IG with γ(0) = a and γ(1) = σ(a). By Lemma 5.4, we
can choose γ to have projectively rational points dense in γ([0, 1]).
Now fix τ = σ−1, and observe that

t 7→ w · (γ(t)− τ(γ(t)))

is a continuous function. Since a � τ(a) and σ(a) ≺ τ(σ(a)) = a, this function is
positive for t = 0 and negative for t = 1; by the intermediate value theorem, it must
have at least one zero in (0, 1). Now, for each ρ ∈ G, we define

Tρ = {t ∈ [0, 1] | w · (t− ρ(t)) = 0}

and
T =

⋃
ρ∈G\{I}

Tρ.

We know Tτ is nonempty and thus T is, so we define t0 = inf T and b = γ(t0). Each
Tρ is the preimage of 0 under a continuous map, so it is closed; then T is a finite
union of closed sets and hence also closed. Thus t0 ∈ T , so for some ρ ∈ G

w · (b− ρ(b)) = 0,

but since b /∈ Iρ,
b− ρ(b) 6= 0.

Moreover, for all t < t0 and all φ ∈ G,

w · (γ(t)− φ(γ(t)) > 0. (2)

Next we take a sequences of projectively rational points {ti}i>0 in [0, 1] such that
each ti < t0, but the sequence converges to t0. Define ai = γ(ti).
Now, because ai−ρ(ai) approaches b−ρ(b), and its dot product with w approaches
0 from above, for each ε′ we can find Nε′ such that for i > Nε′∣∣(b− ρ(b)) ·

(
(b− ρ(b)− (ai − ρ(ai))

)∣∣ < ε′ (3)
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and
0 < w · (ai − ρ(ai)) < ε′. (4)

For each δ > 0 define wδ = w− δ(b− ρ(b)). For any ε > 0, we can find δ > 0 such
that ∣∣∣∣w − wδ

|wδ|

∣∣∣∣ < ε

and by Lemma 5.5 we can choose δ such that wδ is rationally independent. For such
δ set

ε′ =
δ

1 + δ
|b− ρ(b)|2.

Using (3) and (4), we have for large enough i

wδ · (ρ(ai)− ai) =
(
w − δ(b− ρ(b))

)
· (ρ(ai)− ai)

= w · (ρ(ai)− ai)

− δ(b− ρ(b)) ·
(
(ρ(ai)− ai)− (ρ(b)− b) + (ρ(b)− b)

)
> −ε′ − δε′ + δ |b− ρ(b)|2

= (−1− δ)ε′ + (1 + δ)ε′ = 0

Now defining

w′δ =
wδ

|wδ|
∈ S

we see wδ · (ρ(ai)−ai) > 0 as well, that is, ρ(ai) �w′δ
ai . Since ai is psuedorational,

there is a real r such that a′i = rai ∈ Zn, and

ρ(a′i) = ρ(rai) = rρ(ai) �w′δ
a′i.

Now any G-invariant polynomial containing xa′i must also contain xρ(a
′
i), so xa′i

cannot be its initial term; thus xa′i /∈ QR(<w′δ
).

But the orbit sum
f(x) =

∑
ρ∈G

xρ(a
′
i)

is a G-invariant polynomial with initial term xa′i under under <w by (2), so xa′i ∈
QR(<w).
Thus QR(<w) 6= QR(<w′δ

), and by construction w′δ ∈ B(w, ε).

Remark 5.7. Tesemma has a similar result in [13, Theorem 3.5], but his approach
doesn’t make use of a topology on Ω. Moreover, his result is for orders induced by
weight vectors in Rn with a fixed “tie breaker”.
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6 Main Results

Let R ⊆ k[x±1] be the ring of multiplicative invariants as before under action of a
finite group G 6 GLn(Z).

Remark 6.1. If G is a reflection group then by [13, Theorem 1.1] the space QR(Ω)
is finite. Since Ω is metrizable, is a finite discrete space.

Proposition 6.2. If G is a non-reflection subgroup of GL(n,Z), QR(Ω) is perfect.

Proof. Let A ∈ QR(Ω) be an initial algebra.

Case 1 If A = QR(<w) for some rationally independent w, then any open set
containing QR(<w) has open preimage under QR ◦ ι. By Lemma 5.6, the
preimage has an element wδ satisfying QR(ι(wδ)) 6= QR(ι(w)). Hence the
open set contains the distinct element QR(ι(wδ)).

Case 2 If A = QR(<) but A 6= QR(<w) for any rationally independent w, then by
the density of weight orders any neighborhood of A contains a weight order,
which cannot be A.

In either case, A is a limit point, so all points of QR(Ω) are limit points.

Propositions 3.4 and 6.2 prove the main result:

Theorem 6.3. If G is a non-reflection subgroup of GLn(,Z), then Ψ is homeomor-
phic to the Cantor set.
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8 The Aftermath: Invariants of Conjugates of the

Alternating Group

Let G be a subgroup of Sn acting on the polynomial ring k[x] = k[x1, . . . , xn] by
permuting the variables, and let R = k[x]G. Recall the ring of invariants of G has a
finite SAGBI basis in any order if and only if G is generated by transpositions. A
corollary of this follows.

Theorem 8.1 (Göbel). The ring of invariants of the alternating group An 6 Sn
has no finite SAGBI bases.

Göbel studied the existence of a matrix σ ∈ GLn(k) such that the ring of invariants
of conjugates of the alternating group σAnσ

−1 = {σϕσ−1 : ϕ ∈ An} have a finite
SAGBI bases under a special linear action, where σ(f)(x) = f(σx). If we have such
a matrix, we can determine subalgebra membership by determining if elements’
conjugates lie in the conjugate ring of invariants. For the last two weeks, we turned
our attention to the open problem posed by Göbel in which he wanted to find all
such matrices. To begin tackling this problem we began calculating the desired
matrices in Sage using the subduction algorithm described in Sturmfels [12]. The
Sage code we used is given below.

s i n g u l a r . eva l ( ”LIB \” sagb i . l i b \” ; ” )
#Use sage to run the subduc t ion a l gor i thm
#to check i f the f i r s t s e t a l l reduce
#to cons tant po lynomia l s by the second
def reducesToConstant (P, I ) :

i f P[0]==0: return t rue
PP = s i n g u l a r ( I d e a l (P) )
I I = s i n g u l a r ( I d e a l ( I ) )
R = s i n g u l a r . sagbiReduce (PP, I I ) . sage ( )
for r in R. gens ( ) :

i f not r . i s c o n s t a n t ( ) : return f a l s e
return t rue

#Compute the g e n e r a t o r s o f the t o r i c i d e a l a s s o c i a t e d to matrix A
#Then compose them with the n po lynomia l s I
def ToricGens (A, I ) : return map(lambda x : x ( I . gens ( ) ) , To r i c Id ea l (A) . gens ( ) )

def l e ad ing exp ( f ) : return vec to r ( f . lm ( ) . exponents ( ) [ 0 ] )

#Compute the matrix d e f i n i n g the r e l e v a n t t o r i c i d e a l
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def t o r i cMat r i x ( I ) : return matrix (map( l ead ing exp , I . gens ( ) ) ) . t ranspose ( )

#determine i f the s e t I i s a SAGBI b a s i s
def i s S a g b i ( I ) : return reducesToConstant ( ToricGens ( to r i cMat r i x ( I ) , I ) , I )

def sympoly (R, i ) :
n = R. ngens ( )
i f i==n+1:

prod=1
for a in xrange (n ) :

for b in xrange ( a ) :
prod ∗= (R. gens ( ) [ b]−R. gens ( ) [ a ] )

return prod
else :

f = Symmentr ic funct ions (R) . e lementary ( ) [ i ]
return f . expand (n ) (R. gens ( ) )

#return the b a s i s f o r the a l t e r n a t i n g group on the v a r i a b l e s o f R
def sympolys (R) : return [ sympoly (R, i ) for i in xrange (1 ,R. ngens ( )+2) ]

#the l i n e a r a c t i o n o f D on the po lynomia l f
def l i n e a r a c t (D, f ) : return f ( (D ∗ vec to r ( f . v a r i a b l e s ( ) ) ) . l i s t ( ) )

#the b a s i s o f the form t e s t e d by Goebel :
#D a p p l i e d to the b a s i s f o r the a l t e r n a t i n g group
def g o e b e l b a s i s (D,R) : return map(lambda f : l i n e a r a c t (D, f ) , sympolys (R) )

def scan (n , h , output=’ matr i ce s . txt ’ , ord=’ l ex ’ ) :
f = f i l e ( output , ’w ’ )
R = PolynomialRing (QQ, [ ’ x ’+s t r ( x ) for x in xrange (n ) ] , o rder=ord )
for M in MatrixSpace (GF(2∗h+1) ,n ) :

MM = M. apply map (lambda x : ZZ( x)−h)
i f MM. determinant ()==0: continue
i f i s S a g b i ( I d e a l ( g o e b e l b a s i s (MM,R) ) ) :

f . wr i t e ( s t r (MM)+ ’\n\n ’ )

Running sage(3,1) shows that there are 1776 3-dimensional matrices with entries
in {−1, 0, 1}. Below we post a subset of these matrices.
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 1 −1 −1
0 0 −1
−1 −1 −1

 ,

 1 −1 −1
−1 −1 −1

0 0 −1

 ,

 0 1 −1
0 −1 −1
−1 −1 −1

 ,

 0 1 −1
−1 −1 −1

0 −1 −1

 ,

 0 0 −1
1 −1 −1
−1 −1 −1

 ,

 0 0 −1
−1 −1 −1

1 −1 −1

 ,

 0 −1 −1
0 1 −1
−1 −1 −1

 ,

 0 −1 −1
−1 −1 −1

0 1 −1

 ,

 −1 −1 −1
1 −1 −1
0 0 −1

 ,

 −1 −1 −1
0 1 −1
0 −1 −1

 ,

 −1 −1 −1
0 0 −1
1 −1 −1

 ,

 −1 −1 −1
0 −1 −1
0 1 −1

 ,

 1 0 −1
0 0 −1
−1 −1 −1

 ,

 1 0 −1
−1 −1 −1

0 0 −1

 ,

 1 −1 0
0 0 −1
−1 −1 −1

 ,

 1 −1 0
−1 −1 −1

0 0 −1

 ,

 1 −1 −1
0 0 −1
−1 0 −1

 ,

 1 −1 −1
0 0 −1
−1 −1 0

 ,

 1 −1 −1
−1 0 −1

0 0 −1

 ,

 1 −1 −1
−1 −1 0

0 0 −1

 ,

 0 1 0
0 −1 −1
−1 −1 −1

 ,

 0 1 0
−1 −1 −1

0 −1 −1

 ,

 0 1 −1
0 −1 0
−1 −1 −1

 ,

 0 1 −1
0 −1 −1
−1 0 −1

 ,

 0 1 −1
0 −1 −1
−1 −1 0

 ,

 0 1 −1
−1 0 −1

0 −1 −1

 ,

 0 1 −1
−1 −1 0

0 −1 −1

 ,

 0 1 −1
−1 −1 −1

0 −1 0

 ,

 0 0 −1
1 −1 0
−1 −1 −1

 ,

 0 0 −1
1 −1 −1
−1 0 −1

 ,

 0 0 −1
1 −1 −1
−1 −1 0

 ,

 0 0 −1
−1 0 −1

1 −1 −1

 ,

 0 0 −1
−1 −1 0

1 −1 −1

 ,

 0 0 −1
−1 −1 −1

1 0 −1

 ,

 0 0 −1
−1 −1 −1

1 −1 0

 ,

 0 −1 0
0 1 −1
−1 −1 −1

 ,

 0 −1 0
−1 −1 −1

0 1 −1

 ,

 0 −1 −1
0 1 0
−1 −1 −1

 ,

 0 −1 −1
0 1 −1
−1 0 −1

 ,

 0 −1 −1
0 1 −1
−1 −1 0

 ,

 0 −1 −1
−1 0 −1

0 1 −1

 ,

 0 −1 −1
−1 −1 0

0 1 −1

 ,

 0 −1 −1
−1 −1 −1

0 1 0

 ,

 −1 0 −1
1 −1 −1
0 0 −1

 ,

 −1 0 −1
0 1 −1
0 −1 −1

 ,

 −1 0 −1
0 0 −1
1 −1 −1

 ,

 −1 0 −1
0 −1 −1
0 1 −1

 ,

 −1 −1 0
1 −1 −1
0 0 −1

 ,
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 −1 −1 0
0 1 −1
0 −1 −1

 ,

 −1 −1 0
0 0 −1
1 −1 −1

 ,

 −1 −1 0
0 −1 −1
0 1 −1

 ,

 −1 −1 −1
1 0 −1
0 0 −1

 ,

 −1 −1 −1
1 −1 0
0 0 −1

 ,

 −1 −1 −1
0 1 0
0 −1 −1

 ,

 −1 −1 −1
0 1 −1
0 −1 0

 ,

 −1 −1 −1
0 0 −1
1 0 −1

 ,

 −1 −1 −1
0 0 −1
1 −1 0

 ,

 −1 −1 −1
0 −1 0
0 1 −1

 ,

 −1 −1 −1
0 −1 −1
0 1 0

 ,

 1 1 −1
0 −1 −1
−1 0 −1

 ,

 1 1 −1
−1 0 −1

0 −1 −1

 ,

 1 0 0
0 0 −1
−1 −1 −1

 ,

 1 0 0
−1 −1 −1

0 0 −1

 ,

 1 0 −1
0 1 −1
−1 −1 −1

 ,

 1 0 −1
0 0 −1
−1 −1 0

 ,

 1 0 −1
0 −1 −1
−1 1 −1

 ,

 1 0 −1
−1 1 −1

0 −1 −1

 ,

 1 0 −1
−1 −1 0

0 0 −1

 ,

 1 0 −1
−1 −1 −1

0 1 −1

 ,

 1 −1 1
0 0 −1
−1 −1 −1

 ,

 1 −1 1
−1 −1 −1

0 0 −1

 ,

 1 −1 0
0 0 −1
−1 0 −1

 ,

 1 −1 0
0 0 −1
−1 −1 0

 ,

 1 −1 0
−1 0 −1

0 0 −1

 ,

 1 −1 0
−1 −1 0

0 0 −1

 ,

 1 −1 −1
0 1 −1
0 −1 −1

 ,

 1 −1 −1
0 0 1
−1 −1 −1

 ,

 1 −1 −1
0 0 −1
−1 0 0

 ,

 1 −1 −1
0 0 −1
−1 −1 1

 ,

 1 −1 −1
0 −1 −1
0 1 −1

 ,

 1 −1 −1
−1 0 0

0 0 −1

 ,

 1 −1 −1
−1 0 −1

0 1 −1

 ,

 1 −1 −1
−1 −1 1

0 0 −1

 ,

 1 −1 −1
−1 −1 −1

0 0 1

 ,

 0 1 0
0 −1 −1
−1 0 −1

 ,

 0 1 0
0 −1 −1
−1 −1 0

 ,

 0 1 0
−1 0 −1

0 −1 −1

 ,

 0 1 0
−1 −1 0

0 −1 −1

 ,

 0 1 −1
1 0 −1
−1 −1 −1

 ,

 0 1 −1
1 −1 −1
0 −1 −1

 ,

 0 1 −1
1 −1 −1
−1 0 −1

 ,

 0 1 −1
0 −1 0
−1 0 −1

 ,

 0 1 −1
0 −1 0
−1 −1 0

 ,

 0 1 −1
0 −1 −1
1 −1 −1

 ,

 0 1 −1
0 −1 −1
−1 1 −1

 ,

 0 1 −1
0 −1 −1
−1 0 0

 ,

 0 1 −1
0 −1 −1
−1 −1 1

 ,

 0 1 −1
−1 1 −1

0 −1 −1

 ,

 0 1 −1
−1 0 0

0 −1 −1

 ,

 0 1 −1
−1 0 −1

1 −1 −1

 ,

 0 1 −1
−1 0 −1

0 −1 0

 ,

 0 1 −1
−1 −1 1

0 −1 −1

 ,

 0 1 −1
−1 −1 0

0 −1 0

 ,

 0 1 −1
−1 −1 −1

1 0 −1
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