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Abstract

A variation of graph coloring known as a t-tone k-coloring assigns a set of t colors to each
vertex of a graph from the set {1, · · · , k} where the sets of colors assigned to any two vertices
distance d apart share fewer than d colors in common. The minimum integer k such that a
graph G has a t-tone k-coloring is known as the t-tone chromatic number. We study the 2-tone
chromatic number in three different graph products. In particular, given graphs G and H,
we bound the 2-tone chromatic number for the direct product G×H, the Cartesian product
G�H, and the strong product G�H.

1 Introduction

Many variations of classic graph k-colorings abound, whereby we take a k-coloring of a graph to
mean an assignment of an element from {1, · · · , k}, called a color, to each of the vertices of the
graph. Gary Chartrand was the first to introduce a t-tone k-coloring, which is an assignment of
t elements from the set {1, · · · , k} to each vertex such that the sets of colors assigned to any two
distinct vertices within distance d share fewer than d colors. This t-tone k-coloring variation can
be viewed as a generalization of classic graph coloring since a 1-tone k-coloring of a graph is simply
a k-coloring.

In an initial investigation of this graph parameter, Fonger, Goss, Phillips, and Segroves [4]
determined the exact value for the 2-tone chromatic number of a tree and a complete multipartite
graph. In 2011, Bickle and Phillips [2] gave general bounds for the t-tone chromatic number of a
graph G in terms of the maximum degree of G. Cranston, Kim, and Kinnersley [3] improved upon
these bounds shortly thereafter. In [1], the problem of determining bounds of the t-tone chromatic
number of the Cartesian product of two graphs is posed. In this paper, we determine bounds on
the 2-tone chromatic number in the direct product, Cartesian product, and the strong product of
two graphs.
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1.1 Definitions and Notation

An undirected graph G = (V,E) is a set of vertices V (G) together with a set of edges E(G) which
are unordered pairs (x, y), or simply xy, of vertices of G. If xy ∈ E(G), we say that x and y
are adjacent. For the purpose of this paper, we consider only simple undirected graphs, meaning
undirected graphs that have no loops.

For any vertex x ∈ V (G), the open neighborhood of x, denoted N(x), is defined to be the set of
all vertices adjacent to x. The closed neighborhood of x is defined to be N [x] = N(x) ∪ {x}. The
degree of x, denoted degG(x), is the cardinality of the open neighborhood of x. We let ∆(G) =
maxx∈V (G) degG(x). A path of length k, denoted Pk, in G between two vertices v0 and vk is a sequence
v0, · · · , vk of k+ 1 distinct vertices of G such that for all i ∈ {0, · · · , k−1}, the edge vivi+1 ∈ E(G).
The distance between vertices u and v, denoted dG(u, v) is the smallest length path between u and
v. When the context is clear, we use the shorthand notation d(u, v).

As stated before, a proper k-coloring of a graph G is an assignment of an element from
{1, · · · , k}, called a color, to each vertex in V (G) such that no two adjacent vertices are assigned
the same color. The chromatic number of G, denoted χ(G), is the minimum number k such that G
has a proper k-coloring. We use Kn to denote the complete graph on n vertices, which is a graph
with n vertices where each vertex has degree n − 1. Given a graph G, a clique is any complete
subgraph of G, and the clique number of G, denoted ω(G), is the cardinality of the maximum clique
of G. For positive integers t and k where t ≤ k, we let [k] represent the set {1, · · · , k} and denote
the family of t-element subsets of [k] by

(
[k]
t

)
. We now give a formal definition of a t-tone k-coloring

of a graph.

Definition 1. Let G be a graph and let t and k be positive integers such that t ≤ k. A t-tone
k-coloring of G is a function f : V (G) →

(
[k]
t

)
such that |f(u) ∩ f(v)| < dG(u, v) for all distinct

vertices u and v. A graph that has a t-tone k-coloring is said to be t-tone k-colorable. The t-tone
chromatic number of G, denoted τt(G), is the minimum k such that G is t-tone k-colorable.

Given a t-tone k-coloring f of G, we call f(v) the label of v and the elements of [k] colors.
Figure 1 depicts a 2-tone 5-coloring of P5 which is, indeed, minimum.

{1,2} {3,4} {1,5} {2,4} {1,3}

Figure 1: A 2-tone 5-coloring of P5

In this paper, we focus on 2-tone k-colorings of three different graph products. First, we consider
the direct product.

Definition 2. Given two graphs G and H, the direct product of G and H, denoted G×H, is the
graph whose vertex set is the Cartesian product V (G)× V (H) and whose edge set is

E(G×H) = {(x1, y1)(x2, y2) | x1x2 ∈ E(G) and y1y2 ∈ E(H)}.
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Figure 2 depicts the direct product of K2 and K3.

Figure 2: K2 ×K3

The next graph we consider is the Cartesian product, which is the motivation behind this
research. We aim to improve upon the upper bound for the 2-tone chromatic number of the
Cartesian product of two graphs given in [1].

Definition 3. The Cartesian product of graphs G and H, denoted G�H, is the graph whose
vertex set is V (G)× V (H) with edge set

E(G�H) = {(x1, y1)(x2, y2)| x1y1 ∈ E(G) and x2 = y2, or x1 = y1 and x2y2 ∈ E(H)}.

Figure 3 depicts the Cartesian product of K2 and K3.

Figure 3: K2 � K3

The last product we consider is the strong product of two graphs.

Definition 4. The strong product of graphs G and H, denoted G�H, is the graph whose vertex
set is the Cartesian product V (G)× V (H) and whose edge set is

E(G�H) = E(G�H) ∪ E(G×H).

Figure 4 depicts the strong product of K2 and K3.

2 Previous Results

In this section, we state various results that were useful in our research. We give a short proof of
any result that will be used in Section 3. The following theorem shows the monotonicity of t-tone
colorings.
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Figure 4: K2 �K3

Theorem 5. [4] If H is a subgraph of G, then τt(H) ≤ τt(G).

Proof. Let f be a proper t-tone τt(G)-coloring of G. The restriction of f to H must then be a
proper t-tone coloring of H. Thus, τt(H) is no greater than τt(G).

In Section 3, we determine the 2-tone chromatic number of Km ×Kn for any m,n ∈ Z≥2. We
shall use the following result to do so.

Theorem 6. [4] If G = Kn for any positive integer n, then τt(Kn) = tn.

Proof. Notice that each pair of distinct vertices of V (Kn) is adjacent. Therefore, the set of t-element
labels of the n vertices of Kn must be pairwise disjoint, and we have τt(Kn) = tn.

Recall that a k-partite graph is a graph whose vertices can be partitioned into k disjoint sets,
called partite sets, such that no two vertices within the same partite set are adjacent. A complete
k-partite graph, denoted Ka1,··· ,ak , is a k-partite graph with the additional property that any two
distinct vertices contained in different partite sets are adjacent, and whose partite sets are of orders
a1, · · · , ak.

Theorem 7. [4] Let G = Ka1,a2,...,ak denote the complete k-partite graph, with partite sets of orders
a1, a2, . . . , ak. Then

τ2(G) =
k∑
i=1

⌈
1 +
√

8ai + 1

2

⌉
.

Proof. Let G = Ka1,a2,...,ak and let χ(G) = k. Let A1, . . . , Ak denote the color classes of G. Let
|Ai| = ai, for 1 ≤ i ≤ k. Now let f be a proper 2-tone τ2(G)-coloring of G. Notice that for
any pair of distinct vertices u, v ∈ Ai, we have d(u, v) = 2. Hence, |f(v) ∩ f(u)| ≤ 1. So the
number of colors required for the ith partite set is si such that

(
si
2

)
≥ ai. Thus, we get that

si =
⌈

1+
√

8ai+1
2

⌉
. Furthermore, since every element in Ai is adjacent to every element in Aj for all

i 6= j with 1 ≤ i, j ≤ k, they cannot have any colors in common. Therefore, the 2-tone chromatic
number of G is the sum of all such si, as desired.

There is a natural relationship between t-tone colorings and another variation of graph coloring
known as a distance (d, k)-coloring.
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Definition 8. A distance (d, k)-coloring of G is a mapping f : V (G)→ [k] such that if u and v
are two distinct vertices of V (G) where d(u, v) ≤ d, then f(u) 6= f(v). We use χd(G) to denote the
minimum number k such that G has a proper distance (d, k)-coloring.

As stated throughout the literature, determining χd(G) is equivalent to determining the chro-
matic number of the dth power of a graph, defined below.

Definition 9. Given a graph G, the dth power of G, denoted Gd,is defined to be the graph with
V (Gd) = V (G), and for any two distinct vertices u, v ∈ V (Gd), uv ∈ E(Gd) if and only if dG(u, v) ≤
d.

Since the focus of this paper is on 2-tone colorings, we will restrict ourselves to distance (2, k)-
colorings. We now prove equality between χ2(G) and χ(G2).

Theorem 10. For any graph G, χ2(G) = χ(G2).

Proof. Assume that f : V (G) → {1, ..., χ2(G)} is a proper distance (2, χ2(G))-coloring of G. If
uv ∈ E(G2), then dG(u, v) ≤ 2 so f(u) 6= f(v). Thus, f is a proper χ2(G)-coloring of G2, and we
have χ(G2) ≤ χ2(G). In the other direction, assume that g : V (G2) → {1, · · · , χ(G2)} is a proper
χ(G2)-coloring of G2. If dG(u, v) ≤ 2, then uv ∈ E(G2) so g(u) 6= g(v). Thus, g is a distance
(2, χ(G2))-coloring of G, and the result follows.

As noted in Fonger, Phillips and Segroves [4], τ2(G) is related to both χ(G) and χ(G2) in the
following way.

Theorem 11. [4] For any graph G, τ2(G) ≤ χ(G) + χ(G2).

Proof. Let f1 be a chromatic coloring of G using the colors 1, 2, ..., χ(G), and f2 a chromatic coloring
of G2 using the colors χ(G) + 1, ..., χ(G2). Then we define a 2-tone coloring f of G by setting
f(v) = {f1(v), f2(v)}. Then, if u, v are adjacent in G, we have that f1(v), f2(v), f1(u), and f2(u)
are four different colors. Similarly, if d(u, v) = 2 for vertices u and v of G, then f2(u) 6= f2(v), and
so the labels on u and v assigned by f are not the same. Therefore, f is a proper 2-tone coloring
of G using χ(G) + χ(G2) colors.

Bickle and Phillips give an upper bound for τ2(G) in [2] based on ∆(G).

Theorem 12. [2] For any graph G, τ2(G) ≤ [∆(G)]2 + ∆(G).

This bound was improved upon by Cranston, Kim and Kinnersley in [3]. We will reference this
result throughout Section 3 as a comparison to our results.

Theorem 13. [3] For any graph G, τ2(G) ≤ d(2 +
√

2)∆(G)e.
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3 New Results

3.1 Direct Product

In this section, we focus on the direct product of two graphs. We restate the definition of the direct
product for ease of reference.

Definition 14. Given two graphs G and H, the direct product of G and H, denoted G ×H, is
the graph whose vertex set is the Cartesian product V (G)× V (H) and whose edge set is

E(G×H) = {(x1, y1)(x2, y2) | x1x2 ∈ E(G) and y1y2 ∈ E(H)}.

Throughout this section, when we consider the direct product of two graphs G and H where
|G| = m and |H| = n, we will represent the vertices of G as x1, · · · , xm and the vertices of H as
y1, · · · , yn. Using this notation, for each i ∈ [m] we define a column Ci as the set of all vertices with
first coordinate xi. Similarly, for each j ∈ [n] we define the row Rj as the set of all vertices with
second coordinate yj . In particular, for i ∈ [m], the ith column is Ci = {(i, j) | j ∈ [n]}. Similarly,
for j ∈ [n] the jth row is the set Rj = {(i, j) | i ∈ [m]}.

In order to find an upper and lower bound of the 2-tone chromatic number of the direct product
of any two graphs G and H, we first considered the direct product of two complete graphs. The
following property follows from the definition of the direct product.

Property 15. For any m,n ∈ Z≥2

V (Km ×Kn) = {(xi, yk) | 1 ≤ i ≤ m and 1 ≤ k ≤ n},

and
E(Km ×Kn) = {(xi, yk)(xj, y`) | i 6= j and k 6= `}.

Note the following consequence of Property 15.

Proposition 16. Let m and n be positive integers such that m ≥ 2 and n ≥ 3. For any two distinct
vertices (xi, yj) and (xi, yk) of V (Km ×Kn), d((xi, yj), (xi, yk)) = 2.

Proof. Let u, v ∈ V (Km ×Kn) be two distinct vertices, and write u = (xi, yj) and v = (xi, yk) for
some 1 ≤ i ≤ m and 1 ≤ j < k ≤ n. Note that u and v are both contained in column Ci. Since
m ≥ 3, there exists a ∈ {1, · · · ,m} such that a 6= i. Thus, xixa ∈ E(Km). Moreover, since n ≥ 3,
there exists b ∈ {1, · · · , n} such that b 6= j and b 6= k. Therefore, yjyb ∈ E(H) and ybyk ∈ E(H).
So (xi, yj)(xa, yb)(xi, yk) is a path in Km ×Kn of length 2. It follows that d(u, v) = 2.

Recall from Section 1 that given a graph G and a t-tone k-coloring f of G, we call f(v) the
label of v and the elements of [k] colors. Additionally, for any set of vertices A ⊆ V (G), we define
the set of colors contained in the labels associated with A to be

c(A) = {c ∈ [k] | c ∈ f(v) for some v ∈ A}.
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Theorem 17. If m,n ∈ N where 2 ≤ m ≤ n and t = 1+
√

1+8n
2

, then

τ2(Km ×Kn) ≥ min

{
mdte,m+ n,mbtc+ n− btc(btc − 1)

2

}
.

Proof. First consider the case where m = n = 2. Since K2 ×K2
∼= 2K2,

τ2(K2 ×K2) = 2τ2(K2) = 4.

One can easily verify that this is the minimum of the three functions.

Now consider all other cases where m ≥ 2, n ≥ m and n 6= 2. Let f be a minimum 2-tone
k-coloring of Km×Kn. For each 1 ≤ i ≤ m, define Ai as the set of all vertices v ∈ Ci such that for
each a ∈ f(v), there exists a vertex w ∈ Ci with w 6= v and a ∈ f(v) ∩ f(w). Note the following
consequence of this partition of each Ci. Fix i ∈ {1, · · · ,m} and let v and w be distinct vertices of
Ai as described above. That is, for some a ∈ f(v) we have a ∈ f(v) ∩ f(w). This implies that for
all j ∈ {1, · · · ,m} such that j 6= i and for any u ∈ Aj, a 6∈ f(u) since u is adjacent to at least one
of v or w by Property 15. Therefore, the set of colors contained in the labels associated with Ai is
disjoint from the set of colors contained in the labels associated with Aj. That is, c(Ai)∩ c(Aj) = ∅.

For each 1 ≤ i ≤ m, let si = |c(Ai)|. We may assume that min1≤i≤m si = s` for some
` ∈ {1, · · · ,m}. Thus, the number of distinct colors contained in the labels associated with ∪mi=1Ai
is at least ms`. Furthermore, for each (x`, yj) ∈ C`\A`, there exists a color a ∈ f((x`, yj)) such
that a is not contained in any other label associated with C`. So for each 1 ≤ i ≤ m, a 6∈ c(Ai) by
definition of Ai. Since f is a proper 2-tone k-coloring of Km×Kn, we know that k ≥ ms`+ |C`\A`|.
We now determine the minimum k based on the value of |C`\A`|.

Case 1: Assume that |C`\A`| = n. Thus, A` = ∅ and s` = 0. Let j represent the number of
columns such that si > 0 for some i ∈ {1, · · · ,m}. Since s` = 0, m − j ≥ 1 or equivalently
m ≥ j + 1. Let A = {Ci | i ∈ {1, · · · ,m} and si = 0 }. For indexing purposes, we
shall write A = {Cα(1), · · · , Cα(m−j)} where α(i) ∈ {1, · · · ,m} for 1 ≤ i ≤ m − j. Since
m − j ≤ m ≤ n, there exists a set W = {vα(1), · · · , vα(m−j)} such that vα(i) ∈ Cα(i) for each
α(i) and if α(i) 6= α(j), then vα(i) and vα(j) are contained in different rows. This implies
that the induced subgraph of W is a clique, and it follows that |f(vα(i)) ∩ f(vα(j))| = 0
when α(i) 6= α(j). Furthermore, the n − (m − j) remaining vertices (x`, yj) ∈ C`\A` where
Rj ∩ W = ∅ contain at least n − (m − j) colors that are not contained in c(W ). Thus,
c(B) ≥ 2(m− j) + n− (m− j).
Finally, for each column Ci where si > 0, we know that si ≥ 2. Thus,

k ≥ 2(m− j) + n− (m− j) + 2j

= m+ n+ j

≥ m+ n.

Case 2: Assume that |C`\A`| = 0. It follows that A` = C` and |A`| = n. Furthermore, since s`
represents the number of distinct colors contained in the labels associated with A`, we know
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that s` ≥ 2. Using the same argument as in Theorem 7 and the fact that any two distinct
vertices u, v ∈ A` satisfy d(u, v) = 2, we know that

(
s`
2

)
≥ n. Using the quadratic formula,

this implies that s` ≥
⌈

1+
√

1+8n
2

⌉
. Consequently, k ≥ m

⌈
1+
√

1+8n
2

⌉
.

Case 3: Assume that n > |C`\A`| > 0. If
(
s`
2

)
> n, then clearly k ≥ m

⌈
1+
√

1+8n
2

⌉
. So assume(

s`
2

)
≤ n, or equivalently 2 ≤ s` ≤

⌊
1+
√

1+8n
2

⌋
. We have n = |C`| = |A`| + |C`\A`|, which

implies |C`\A`| = n− |A`|. As in Case 1, we know
(
s`
2

)
≥ |A`|. Thus,

n−
(
s`
2

)
≤ n− |A`|

=⇒ n−
(
s`
2

)
≤ |C`\A`|.

Therefore,

ms` + |C`\A`| ≥ ms` + n−
(
s`
2

)
= ms` + n− s`(s` − 1)

2
.

So we consider the function g(s) = ms + n − s(s−1)
2

over the interval 2 ≤ s ≤
⌊

1+
√

1+8n
2

⌋
.

One can easily verify that g′(s) = m − s + 1
2

and g′′(s) = −1. Thus, g is concave down

for all values of 2 ≤ s ≤
⌊

1+
√

1+8n
2

⌋
, and over this interval g has a local maximum when

s = m + 1
2
. Therefore, the local minimums for g occur when s = 2 and s =

⌊
1+
√

1+8n
2

⌋
.

Letting t = 1+
√

1+8n
2

, it follows that

k ≥ ms` + |C`\A`|

≥ min
s

ms+ n− s(s− 1)

2

s.t. 2 ≤ s ≤
⌊

1 +
√

1 + 8n

2

⌋
≥ min

{
2m+ n− 1,mbtc+ n− btc(btc − 1)

2

}
.

Since 2m+ n− 1 > m+ n and f is assumed to be a minimum 2-tone coloring, we shall take

min
{

2m+ n− 1,mbtc+ n− btc(btc−1)
2

}
= mbtc+ n− btc(btc−1)

2
.

Note that these cases sometimes overlap. For example,
(
s
2

)
= n implies that btc = dte = t and

n− btc(btc−1)
2

= 0, resulting in mdte = mbtc+ n− btc(btc−1)
2

. In any case, we have

τ2(Km ×Kn) ≥ min

{
mdte,m+ n,mbtc+ n− btc(btc − 1)

2

}
.
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Theorem 18. If m,n ∈ N where 2 ≤ m ≤ n and t = 1+
√

1+8n
2

, then

τ2(Km ×Kn) = min

{
mdte,m+ n,mbtc+ n− btc(btc − 1)

2

}
.

Proof. From Theorem 17, all that remains to be shown is that

τ2(Km ×Kn) ≥ min

{
mdte,m+ n,mbtc+ n− btc(btc − 1)

2

}
.

Given m,n ∈ N where 2 ≤ m ≤ n and t = 1+
√

1+8n
2

, we shall construct different 2-tone colorings

which depend on the value of min
{
mdte,m+ n,mbtc+ n− btc(btc−1)

2

}
.

Case 1: First assume that min
{
mdte,m+ n,mbtc+ n− btc(btc−1)

2

}
= mdte. Choose m pairwise dis-

joint sets each containing dte distinct colors, and denote each set of colors Si for 1 ≤ i ≤ m.
Since

(dte
2

)
≥ n, for each 1 ≤ i ≤ m there exist n distinct combinations containing two colors

from the set Si. Thus, we may define f : V (Km ×Kn)→
(

[dte]
2

)
to be any mapping such that

for each 1 ≤ i ≤ m the restriction of f to the set of vertices in Ci is an injective mapping to the
set of combinations containing two colors from the set Si. Figure 5 illustrates this particular
2-tone coloring for K2 ×K6. To see that f is a proper 2-tone coloring of Km ×Kn, let u and
v be distinct vertices of V (Km ×Kn). If u and v are not contained in the same column, then
f(u) ∩ f(v) = ∅. So assume u, v ∈ Ci for some i ∈ {1, · · · ,m}. Since d(u, v) = 2, we must
show that |f(u) ∩ f(v)| ≤ 1. However, this follows from the fact that f does not assign any
label to more than one vertex of Ci. Therefore, f is a proper 2-tone coloring.

{1,2}

{2,3}

{1,3}

{1,4}

{2,4}

{3,4}

{5,6}

{6,7}

{5,7}

{5,8}

{6,8}

{7,8}

Figure 5: K2 ×K6
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Case 2: Next, assume that min
{
mdte,m+ n,mbtc+ n− btc(btc−1)

2

}
= m + n. Let f1 be a proper

coloring of Km and f2 be a proper coloring of Kn defined as follows:

f1 : V (Km)→ [m]

xi 7→ i

f2 : V (Kn)→ {m+ 1, · · · ,m+ n}
yk 7→ k +m.

Define the following function on V (Km ×Kn):

g : V (Km ×Kn)→
(

[m+ n]

2

)
(xi, yk) 7→ {f1(xi), f2(yk)}.

Figure 6 illustrates a particular 2-tone coloring of this type for K2 ×K3.

{1,2}

{1,3}

{1,4}

{2,5}

{3,5}

{4,5}

Figure 6: K2 ×K3

We claim g is a proper 2-tone coloring of Km × Kn. Clearly |g((x, y))| = 2 for all (x, y) ∈
V (Km × Kn). Let (xi, yk) and (xj, y`) be two distinct vertices of V (Km × Kn) where 1 ≤
i, j ≤ m and 1 ≤ k, ` ≤ n. Then g((xi, yk)) = {i, k + m} and g((xj, y`)) = {j, ` + m}. If
(xi, yk) and (xj, y`) are adjacent, then i 6= j and k 6= `. Thus, |g((xi, yk)) ∩ g((xj, y`))| = 0. If
d((xi, yk), (xj, y`)) = 2, then either i 6= j or k 6= `. In any case, |g((xi, yk)) ∩ g((xj, y`))| ≤ 1.
Therefore, g is a proper 2-tone coloring of Km×Kn, and we may conclude that τ2(Km×Kn) ≤
m+ n.

Case 3: Assume that min
{
mdte,m+ n,mbtc+ n− btc(btc−1)

2

}
= mbtc + n− btc(btc−1)

2
. Note that t =

1+
√

1+8n
2

is the only positive solution to
(
t
2

)
= n. Therefore, btc satisfies

(btc
2

)
≤ n. Let s =

(btc
2

)
and consider the subgraph H of Km×Kn induced by the set {(xi, yj) | 1 ≤ i ≤ m, 1 ≤ j ≤ s}.
Thus, H ∼= Km ×Ks. As in Case 2, choose m pairwise disjoint sets of btc distinct colors and
denote each set Si for 1 ≤ i ≤ m. Define f1 : V (H)→

(
[btc]

2

)
to be any mapping such that for
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each 1 ≤ i ≤ m, the restriction of f1 to the set of vertices of Ci is an injective mapping to the
set of combinations containing two colors from the set Si. A similar argument as in Case 2
can be used to show that f1 is a proper 2-tone coloring of H.

Next, choose n− s distinct colors each of which are not contained in the set ∪mi=1Si, and label
these colors {ts+1, · · · , tn}. Additionally, for each i ∈ {1, · · · ,m}, choose one color from the
set Si and call it ci.

Notice that V (Km ×Kn)\V (H) = {(xi, yj) | 1 ≤ i ≤ m, s+ 1 ≤ j ≤ n}. Define

f2 : V (Km ×Kn)\V (H)→
(

[m+ n− s]
2

)
(xi, yj) 7→ {ci, tj}.

We claim that f2 is a proper 2-tone coloring of (Km × Kn)\H. To see this, let (xi, yk) and
(xj, y`) be two distinct vertices of V (Km × Kn)\V (H) for some 1 ≤ i, j ≤ m and s + 1 ≤
k, ` ≤ n. If (xi, yk) and (xj, y`) are adjacent, then i 6= j and k 6= `. Since Si and Sj are two
disjoint sets of colors, we know that ci 6= cj. Moreover, we know that tk 6= t` since k 6= `.
Thus, |f2((xi, yk)) ∩ f2((xj, y`))| = 0. If d((xi, yk), (xj, y`)) = 2, then either i 6= j or k 6= `.
It follows that |f2((xi, yk)) ∩ f2((xj, y`))| ≤ 1. Therefore, f2 is a proper 2-tone coloring of
(Km ×Kn)\H.

Now define g : V (Km ×Kn)→
(

[mbtc+n−s]
2

)
such that

g(u) =

{
f1(u) if u ∈ V (H)

f2(u) otherwise.

Figure 7 illustrates a particular 2-tone coloring of this type for K2 ×K11.

To see that g is a proper 2-tone coloring, we only need to consider when u ∈ V (H) and
v 6∈ V (H). Write u = (xi, yk) and v = (xj, y`) for some i, j ∈ {1, · · · ,m}, k ∈ {1, · · · , s}, and
` ∈ {s + 1, · · · , n}. By definition g(v) = {cj, t`}, and we know t` 6∈ g(u) since u ∈ V (H). So
if u and v are located in the same column, then |g(u) ∩ g(v)| ≤ 1. If u and v are not located
in the same column, then i 6= j and cj 6∈ g(u) since cj 6∈ Si. It follows that |g(u) ∩ g(v)| = 0.

Therefore, g is a proper 2-tone coloring of Km ×Kn using mbtc+ n−
(btc

2

)
colors.

Using similar ideas found in Theorems 17 - 18, we can bound the value of τ2(G×H) given any
graphs G and H. We make use of the following general lower bound given in [4].

Theorem 19. [4] Let G be a graph and let ∆(G) = d. Then

τ2(G) ≥
⌈√

8d+ 1 + 5

2

⌉
.
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{6,11}

Figure 7: K2 ×K11

Theorem 20. Given two graphs G and H,

max

{⌈
5 +

√
1 + 8∆(G)∆(H)

2

⌉
, τ2(Kω(G) ×Kω(H))

}
≤ τ2(G×H) ≤ χ(G2) + χ(H2).

Proof. We first show that for any graphs G and H, we have τ2(G×H) ≤ χ(G2) + χ(H2). Assume
χ2(G) = k1 and χ2(H) = k2. Let f1 : V (G) → {1, ..., k1} be a distance-2 coloring of G, and let
f2 : V (H)→ {k1 + 1, ..., k1 + k2} be a distance-2 coloring of H. Define

g : V (G×H)→
(

[k1 + k2]

2

)
such that

(x, y) 7→ {f1(x), f2(y)} for all x ∈ V (G) and y ∈ V (H).

We claim that g is a proper 2-tone coloring of G × H. Clearly |g((x, y))| = 2 for all (x, y) ∈
V (G × H). Let (u, v) and (w, z) be two distinct vertices of V (G × H). If (u, v) and (w, z) are
adjacent, then uw ∈ E(G) and vz ∈ E(H). It follows that f1(u) 6= f1(w) and f2(v) 6= f2(z). Since
the range of f1 is disjoint from the range of f2 as mappings, we have |g((u, v)) ∩ g((w, z))| = 0.

If dG×H((u, v), (w, z)) = 2, then there exists a vertex (x, y) ∈ V (G×H) such that uxw is a path
in G and vyz is a path in H. Since dG(u,w) ≤ 2 and dH(v, z) ≤ 2, we know that f1(u) 6= f1(w)
and f2(v) 6= f2(z). Thus, |g((u, v)) ∩ g((w, z))| = 0, and we may conclude that g is a proper 2-tone
coloring of G×H.

12



Next, we show that max

{⌈
5+
√

1+8∆(G)∆(H)

2

⌉
, τ2(Kω(G) ×Kω(H))

}
≤ τ2(G × H). We shall

assume that ω(G) is the clique number of G, and ω(H) is the clique number of H. By definition
of the direct product, Kω(G) ×Kω(H) is a subgraph of G ×H. Thus, τ2(Kω(G) ×Kω(H)) ≤ τ2(G ×
H). On the other hand, we know ∆(G × H) = ∆(G)∆(H). So by Theorem 19, we know that⌈

5+
√

1+8∆(G)∆(H)

2

⌉
≤ τ2(G×H). Therefore,

max

{⌈
5 +

√
1 + 8∆(G)∆(H)

2

⌉
, τ2(Kω(G) ×Kω(H))

}
≤ τ2(G×H).

It should be noted that there exist graphs G and H such that the upper bound in Theorem 20
is better than applying Theorem 13. For example, consider the graph P3×P4 in Figure 8. One can
easily verify that the labeling shown in Figure 8 is in fact a 2-tone coloring. Thus, τ2(P3 × P4) ≤ 5
which is an improvement from the bound given in Theorem 13 of

τ2(P3 × P4) ≤
⌈
(2 +

√
(2))∆(P3 × P4)

⌉
=

⌈
(2 +

√
2)4
⌉

= 14.

4

6

5

4

1 2 3

{1,4} {2,4} {3,4}

{1,5}
{2,5}

{3,5}

{1,6}
{2,6}

{3,6}

{1,4} {2,4} {3,4}

Figure 8: A 2-tone coloring of P3 × P4
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3.2 Cartesian Product

We now focus on the Cartesian product of two graphs. We restate the definition of this product
below for ease of reference.

Definition 21. The Cartesian product of graphs G and H, denoted G�H, is the graph whose
vertex set is V (G)× V (H) with edge set

E(G�H) = {(x1, y1)(x2, y2)| x1y1 ∈ E(G) and x2 = y2, or x1 = y1 and x2y2 ∈ E(H)}.

In this particular product, we have an obvious lower bound for the 2-tone chromatic number
of G�H.

Theorem 22. Given two graphs G and H,

max{τ2(G), τ2(H)} ≤ τ2(G�H).

Proof. This follows from the fact that G and H are both subgraphs of G�H.

In terms of an upper bound, it is stated in [1] that τ2(G�H) ≤ τ2(G)τ2(H), but that this
bound could be improved. We give an upper bound for τ2(G�H) in terms of max{χ(G2), χ(H2)}
depending on the parity of this value.

Theorem 23. Given two graphs G and H where max{χ(G2), χ(H2)} = χ(G2),

τ2(G � H) ≤

{
2χ(G2) if χ(G2) is odd

2(χ(G2) + 1) otherwise.

Proof. Assume that max{χ(G2), χ(H2)} = χ(G2). If χ(G2) is an even integer, then we will let
k = χ(G2) + 1. Otherwise, we will let k = χ(G2). Let f1 : V (G) 7→ [k] be a proper distance
(2, k)-coloring of G, and let f2 : V (H) 7→ [k] be a proper distance (2, k)-coloring of H.

Define g : V (G�H) 7→
(

[2k]
2

)
such that

(x, y) 7→ {f1(x) + f2(y) (mod k), (f2(y)− f1(x) (mod k)) + k}.

We will first show that g assigns two distinct colors to each vertex of G�H. Let (x, y) ∈
V (G�H) and write g((x, y)) = {a, b}. Since a = f1(x) + f2(y) (mod k), it follows that a ∈ [k]. On
the other hand, b = (f2(y)− f1(x) (mod k)) + k so b ∈ {k + 1, · · · , 2k}. Thus, |g((x, y))| = 2.

Next, we show that g satisfies the distance criteria for 2-tone colorings. Let (u, v) and (w, z)
be two distinct vertices of V (G�H).

14



Case 1: Suppose that dG�H((u, v)(w, z)) = 1. Then either u = w and dH(v, z) = 1 or v = z and
dG(u,w) = 1. If u = w and dH(v, z) = 1, then we know that f1(u) = f1(w) and f2(v) 6= f2(z).
This implies that

f1(u) + f2(v) 6≡ f1(w) + f2(z) (mod k).

Moreover,
f2(v)− f1(u) 6≡ f2(z)− f1(w) (mod k)

=⇒ (f2(v)− f1(u) (mod k)) + k 6= (f2(z)− f1(w) (mod k)) + k.

So |g((u, v)) ∩ g((w, z))| = 0.

A similar argument shows that |g((u, v)) ∩ g((w, z))| = 0 if v = z and dG(u,w) = 1.

Case 2: Suppose that dG�H((u, v)(w, z)) = 2. Then exactly one of the following will be true.

(a) u = w and dH(v, z) = 2, or

(b) v = z and dG(u,w) = 2, or

(c) dG(u,w) = 1 and dH(v, z) = 1.

In the case of either (a) or (b), a similar argument as in Case 1 shows |g((u, v))∩g((w, z))| = 0.
So assume dG(u,w) = 1 and dH(v, z) = 1. It follows that f1(u) 6= f1(w) and f2(v) 6= f2(z). If
|g((u, v)) ∩ g((w, z))| ≤ 1, we are done. So suppose that g((u, v)) = g((w, z)). Thus,

(f2(v)− f1(u) (mod k)) + k = (f2(z)− f1(w) (mod k)) + k

=⇒ f2(v)− f1(u) ≡ f2(z)− f1(w) (mod k)

=⇒ f2(v)− f2(z) ≡ f1(u)− f1(w) (mod k). (1)

Moreover,

f1(u) + f2(v) ≡ f1(w) + f2(z) (mod k)

=⇒ f1(u)− f1(w) ≡ f2(z)− f2(v) (mod k)

=⇒ f2(v)− f1(z) ≡ f2(z)− f2(v) (mod k) from (1)

=⇒ 2f2(v) ≡ 2f2(z) (mod k).

However, this cannot happen since f2(v) 6≡ f2(z) (mod k) and gcd(2, k) = 1. Thus, |g((u, v))∩
g((w, z))| ≤ 1.

Although the upper bound in Theorem 23 does not involve τ2(G) or τ2(H), it should be noted
that there are graphs for which the upper bound is best possible. For example, consider the graph
P3�P3. We know τ2(P3) = 5 and χ(P 2

3 ) = 3. Moreover, P3�P3 contains a cycle of length 4 and
since τ2(C4) = 6, it must be the case that 6 ≤ τ2(P3�P3). Figure 9 shows a proper 2-tone coloring
using only 6 colors. Thus, τ2(P3�P3) = 2χ(G2) = 6.

15



3

2

1

1 2 3

{3,6} {1,5} {2,4}

{1,4}
{2,6}

{3,5}

{2,5} {3,4} {1,6}

Figure 9: A 2-tone coloring of P3�P3

3.3 Strong Product

The last graph product that we consider is the strong product G�H. We restate the definition of
this product below for ease of reference.

Definition 24. The strong product of graphs G and H, denoted G�H, is the graph whose vertex
set is the Cartesian product V (G)× V (H) and whose edge set is

E(G�H) = E(G�H) ∪ E(G×H).

Using similar ideas to those found in Sections 3.1 and 3.2, we have the following upper and
lower bounds for τ2(G�H).

Theorem 25. Given two graphs G and H,

max{τ2(G×H), τ2(G�H)} ≤ τ2(G�H) ≤ min{τ2(G)χ(H2), χ(G2)τ2(H)}.

Proof. Note that G�H and G × H are both subgraphs of G � H. Thus, max{τ2(G�H), τ2(G ×
H)} ≤ τ2(G�H) by Theorem 5.

Next, we will prove that τ2(G�H) ≤ min{τ2(G)χ(H2), χ(G2)τ2(H)}. Without loss of generality,
we may assume τ2(G)χ(H2) ≤ χ(G2)τ2(H). Let f1 be a proper 2-tone coloring of G using the
colors {1, 2, ...τ2(G)}. Let f2 be a proper distance (2, k)-coloring of H using the colors {1, τ2(G) +
1, 2τ2(G) + 1, ..., (k − 1)τ2(G) + 1} where k = χ(H2). Define g : V (G�H)→

(
[kτ2(G)+1]

2

)
such that

for each (x, y) ∈ V (G�H) and for each c ∈ f1(x), we have c+ f2(y) ∈ g((x, y)).

We show that g is a proper 2-tone coloring of G � H. Let (u, v) and (w, z) be vertices of
V (G�H).

16



Case 1: Assume that dG�H((u, v), (w, z)) = 1. By definition of the strong product, exactly one of the
following will be true.

1) dG(u,w) = 1 and v = z,

2) u = w and dH(v, z) = 1, or

3) dG(u,w) = 1 and dH(v, z) = 1.

We show that |g((u, v)) ∩ g((w, z))| = 0 in each of the above cases.

1) Assume dG(u,w) = 1 and v = z. Since f1 is a proper 2-tone coloring of G, f1(u) ∩
f1(w) = ∅. Thus, we can write f1(u) = {c1, c2} and f1(w) = {c3, c4} where ci 6= cj
for 1 ≤ i < j ≤ 4. Since f2(v) = f2(z), we know for i ∈ {1, 2} and j ∈ {3, 4} that
ci + f2(v) 6= cj + f2(z). Therefore, |g((u, v)) ∩ g((w, z))| = 0.

2) Assume u = w and dH(v, z) = 1. Since f2 is a proper distance (2, k)-coloring of H,
f2(v) 6= f2(z) and we may write f2(v) = iτ2(G) + 1 and f2(z) = jτ2(G) + 1 for some
0 ≤ i < j ≤ k − 1. Let f1(u) = {c1, c2} where c1 6= c2. Thus,

g((u, v)) = {c1 + iτ2(G) + 1, c2 + iτ2(G) + 1}

and
g((w, z)) = {c1 + jτ2(G) + 1, c2 + jτ2(G) + 1}.

It is clear that c1 + iτ2(G) + 1 6= c1 + jτ2(G) + 1 since i < j. Similarly, c2 + iτ2(G) + 1 6=
c2 + jτ2(G) + 1. Note that if c1 + iτ2(G) + 1 = c2 + jτ2(G) + 1, then

c1 − c2 = (j − 1)τ2(G).

We know that c1 − c2 6= 0 since i < j. On the other hand, c1 − c2 cannot be a multiple
of τ2(G) since 1 ≤ c1, c2 ≤ τ2(G). Therefore,

c1 + iτ2(G) + 1 6= c2 + jτ2(G) + 1,

and a similar argument shows that

c2 + iτ2(G) + 1 6= c1 + jτ2(G) + 1.

Thus, |g((u, v)) ∩ g((w, z))| = 0.

3) Assume dG(u,w) = 1 and dH(v, z) = 1. It follows that f1(u) ∩ f1(w) = ∅ and f2(v) 6=
f2(z). As before, let f1(u) = {c1, c2} and f1(w) = {c3, c4} where ca 6= cb when 1 ≤ a <
b ≤ 4. Also, write f2(v) = iτ2(G) + 1 and f2(z) = jτ2(G) + 1 for some 0 ≤ i < j ≤ k− 1.
Thus,

g((u, v)) = {c1 + iτ2(G) + 1, c2 + iτ2(G) + 1}

and
g((w, z)) = {c3 + jτ2(G) + 1, c4 + jτ2(G) + 1}.
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Again, we see that c1+iτ2(G)+1 6= c2+iτ2(G)+1 since c1 6= c2. Similarly, c3+jτ2(G)+1 6=
c4 + jτ2(G) + 1 since c3 6= c4. Furthermore, for any a ∈ {1, 2} and b ∈ {3, 4}, we know

ca + iτ2(G) + 1 6= cb + jτ2(G) + 1

since ca − cb cannot be a multiple of τ2(G). Therefore, |g((u, v)) ∩ g((w, z))| = 0.

Case 2: Assume that dG�H((u, v), (w, z)) = 2. Necessarily, dG(u,w) ≤ 2 and dH(v, z) ≤ 2. Thus,
|f1(u)∩ f1(w)| ≤ 1 so there exist a ∈ f1(u) and b ∈ f1(w) such that a 6= b. Furthermore, since
dH(v, z) ≤ 2, we may assume there exist 0 ≤ i < j ≤ k − 1 such that f2(v) = iτ2(G) + 1 and
f2(z) = jτ2(G) + 1. We have already seen that this implies a + iτ2(G) + 1 6= b + jτ2(G) + 1
since i < j and 1 ≤ a, b ≤ τ2(G). Therefore, |g((u, v)) ∩ g((w, z))| ≤ 1.

Note that for P3 � P3, we can find a 2-tone 6-coloring as shown in Figure 10. This coloring is
best possible since P3 � P3 contains C4 and τ2(C4) = 6. However, in this case Theorem 25 gives
bounds of

5 = max{τ2(P3�P3), τ2(P3 × P3)} ≤ τ2(P3 � P3) ≤ min{τ2(G)χ(H2), χ(G2)τ2(H)} = 15.

This alone shows that perhaps a better upper bound exists in terms of other graph properties. On
the other hand, K3�K3 ≡ K9 so we know τ2(K3�K3) = 18 as seen in Figure 11. In this particular
case, we have

6 = min{τ2(K3�K3), τ2(K3 ×K3)} ≤ τ2(K3 �K3) ≤ min{τ2(G)χ(H2), χ(G2)τ2(H)} = 18,

which shows the upper bound in Theorem 25 is sharp.
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Figure 10: P3 � P3
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Figure 11: K3 �K3
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