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1 Introduction
For a prime p and a positive integer n, it is well-known that there are only finitely many degree
n field extensions of the field Qp of p-adic numbers. When p does not divide n or p = n, the
extensions of Qp have been classified and data associated to these extensions is stored in an
online database of local fields created by John W. Jones and David P. Roberts. When p properly
divides n, the problem of classifying these extensions becomes more complicated. In this case,
such extensions have been classified completely for n ≤ 12.

In our work, we focus on the case n = 14 and p = 2 or p = 7. We use methods established
by Sebastian Pauli and Xavier-François Roblot to find defining polynomials for each of these
extensions up to isomorphism. Employing computational methods similar to those used by Chad
Awtrey to classify degree 12 extensions of Q3, we compute several invariants associated to these
extensions to determine the Galois groups of their defining polynomials. The primary invariants
we use for determining the Galois groups are the subfield content, the size of the automorphism
group, and the parity. In the cases in which these invariants are insufficient to distinguish the
Galois groups, we use resolvent polynomials. Additionally, we present a conjecture about the
number of totally ramified extensions of Qp for a fixed discriminant and certain choices of p and
n.

2 Basic Facts and Notions Regarding Qp

Here we will state, but not prove, several definitions and results about the field of p-adic numbers,
Qp. For a more detailed treatment of the following material, see [4].

Let p be a prime number. The p-order function ordp : Z \ {0} → Z gives the largest t for
which pt divides a given integer. For example, ord2(32) = 5, ord7(98) = 2, and ord11(20) = 0.
By convention ordp(0) =∞. We have the following two properties of ordp for integers a, b:

(i) ordp(ab) = ordp(a) + ordp(b)

(ii) ordp(a+ b) ≥ min{ordp(a), ordp(b)}.

A nonzero rational number a may be factored uniquely into a unit and a product of prime
factors, i.e. a = upe11 · · · perr , where u = ±1, the numbers p1, . . . , pr are primes, and e1, . . . , er
are integers. Thus the domain of ordp may be extended to Q \ {0} by defining ordp(a) to be the
exponent e. For example, ord7(3/49) = −2, and ord13(39/11) = 1. Again it is easy to see that
properties (i), (ii) above hold for rational numbers a, b.

The p-adic absolute value | · |p : Q→ Q can then be defined by the formula |a|p = p− ordp(a)

when a is nonzero, 0 otherwise. This absolute value, which hereafter we designate by | · |, is an
example of a non-Archimedean absolute value.

A non-Archimedean absolute value on a field K is a function | · | : K → R≥0 that satisfies the
following three properties for any a, b, c ∈ K:

(i) |a| ≥ 0 and = 0 if and only if a = 0

(ii) |ab| = |a||b|

(iii) |a+ b| ≤ max{|a|, |b|}

We induce a metric from a non-Archimedean absolute value on K, by defining the distance
between two points to be the absolute value of their difference. There are many interesting
properties that follow from a non-Archimedean absolute value and its induced metric.
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Facts (a, b, c ∈ K and 0 ≤ r ∈ R:
(i) All triangles are isosceles, i.e. |a− b| is equal to |a− c| or |b− c|.
(ii) If |a| 6= |b| then property (iii) above can be replaced by |a+ b| = max{|a|, |b|}.
(iii) An open (resp. closed) ball centered about a point with a fixed radius will also be a

closed (resp. open) set.
(iv) Let B(a, r) denote the open ball with center a and radius r, and let B̄(a, r) be its closure.

For either ball, if b ∈ B(a, r) (resp. B̄(a, r)), then B(a, r) = B(b, r) (resp. B̄(a, r) = B̄(b, r)). In
other words, any point contained in a ball with a fixed center and radius will be the center of
that ball with the same radius.

(v) For a sequence to be Cauchy, it is only necessary that the distance between consecutive
terms go to zero.

(vi) As long as the terms in an infinite series converge to 0 in absolute value, the series will
be Cauchy.

In particular, all of these results hold for Q with respect to the p-adic absolute value |·| := |·|p.
Just as the set of real numbers R is defined to be the completion of Q with respect to the usual
absolute value, the set of p-adic numbers Qp is defined to be the completion of Q with respect to
the p-adic absolute value. It follows that the p-adic absolute value when extended to Qp remains
non-Archimedean, so again all of the above facts hold.

Formally, Qp is the ring C of Cauchy sequences in Q (i.e. {A ∈
∞∏
i=0

Q : lim
n→∞

|A(n+1)−A(n)| =

0}) modded out by the maximal ideal M = {A ∈ C : lim
n→∞

A(n) = 0}. The field Q may be
embedded into Qp via the mapping x → (x, x, x, ...) + M . However, we need not be so formal.
If we regard Q as a subset of Qp, every element of Qp may be described in terms of integers as
follows:

Theorem 2.1. Every element of Qp can be written as an infinite series
∞∑
i=k

aip
i, with each

ai ∈ {0, 1, ..., p− 1} and k ∈ Z. For every p-adic number, the numbers ak, ak+1, ... composing its
series are uniquely determined.

Proof. See [4] pg. 68.

Adding and multiplying elements of Qp, written in the above form, works exactly like adding
and multiplying formal power series in the indeterminate ’p’. The resulting series can then be
rewritten in "base p." (insert example).

The p-order function can be extended to Qp in the obvious way: for a p-adic number, as

A =
∞∑
i=k

aip
i = pk(

∞∑
i=0

ai+kp
i), the sum

∞∑
i=0

ai+kp
i is not divisible by p, so we may define ordp(A)

to be k in this case. We may then extend the p-adic absolute value to Qp by defining |A| to be
p− ordp(A). The extended absolute value on Qp remains non-Archimedean.

In Qp, we have the associated valuation ring Zp = {a ∈ Qp : |a| ≤ 1} = {a ∈ Qp : ordp(a) ≥
0}, and its unique maximal ideal pZp = {a ∈ Qp : |a| < 1} = {a ∈ Qp : ordp(a) > 0}. The names
are fitting: Zp, the set of p-adic integers, is the completion of Z in Qp, and pZp is the ideal
generated by the prime number p in Zp. From Theorem 2.1 it is clear that every p-adic number
may be written as an integral power of p multiplied by some p-adic integer. In later sections
we will investigate non-field integral domains containing Zp, so it will be useful when denoting
principal ideals to mention the ring in which the ideal is generated, as pZp rather than (p).

The quotient ring Zp/pZp is a field, called the residue field of Qp. For a typical ele-

ment
∞∑
i=0

aip
i + pZp, the terms a1p, a2p2 etc. being divisible by p will vanish, leaving just
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a0 ∈ {0, 1, ..., p − 1}. The residue field is thus isomorphic to the integers modulo p, so we
will denote it by Fp.

One last thing to mention is Hensel’s Lemma, named after the mathematician that introduced
p-adic numbers in 1897.

Theorem (Hensel’s Lemma) 2.2. Let f ∈ Zp[X], and let f̄ be the corresponding polynomial
in Fp[X]. Suppose ā = a+ pZp ∈ Fp is such that f̄(ā) = 0 but f̄ ′(ā) 6= 0. Then there exists some
b ∈ Zp such that b+ pZp = a+ pZp and f(b) = 0.

Proof. [4] pg. 70.

3 Finite Dimensional Extensions of Qp

Let L be a finite of a field K of characteristic zero, say [L : K] = n. We have a multiplicative
map NL/K : L→ K, called the norm of L over K, which can be defined in three equivalent ways:

(i) For a ∈ L, let φa : L→ L be given by φa(y) = ay. As a K-linear transformation, φa may
be represented by a matrix A ∈ Matn(K). We then define NL/K(a) to be det(A).

(ii) Letma ∈ K[X] be the minimal polynomial of a overK. ThenNL/K(a) := (−1)n·deg(µ)ma(0)deg(µ).

(iii) IfK is any algebraic closure ofK, since Char(K) = 0 there are exactly n K-monomorphisms

of L into K, say σ1, ..., σn. Then NL/K(a) :=
n∏
i=1

σi(a). Note that if (and only if) L is Galois

over K, every K-monomorphism of L into K is actually a K-automorphism, so NL/K(a) =∏
σ∈Aut(L/K)

σ(a), where Aut(L/K) is the group of K-automorphisms of L.

For our purposes, we need not worry about the field norm for fields of prime characteristic; we
only use it for finite dimensional extensions of Qp. Note that the composition of norms works out
nicely, i.e. if K ⊆ E ⊆ F are fields for which the norm is defined, then NF/K = NE/K ◦NF/E .

We now assume K is an n-dimensional extension of Qp, and let v1, ..., vn be a basis.
Using the field norm, we may extend the p-adic absolute value to K by defining |a| to be

n

√
|NK/Qp

(a)|. This extended absolute value remains non-Archimedean, and K will still be
complete with respect to this absolute value.

Intuitively since a sequence in K may be written as a1,iv1 + ... + an,ivn with the limit dis-
tributing over addition, there is really one place for a convergent sequence to converge to. Thus
any two absolute values on K which restrict to the p-adic absolute value on Qp must induce the
same topology on K. And since two absolute values ||1 and ||2 on a field K induce the same
topology if and only if there exists a real number δ such that ||1 = ||δ2 (this is not a trivial result,
see F. Gouvea’s book), it is clear that there can only be one absolute value on K which restricts
to the p-adic absolute value on Qp.

Since |a| = p− ordp(a) for a ∈ Qp, we have ordp(a) = − logp |a|, so we can naturally extend the
domain ordp to K \ {0} by defining ordp(a) to be − logp |a|. Thus we have an order-reversing
bijection between the image of the absolute value and the image of the p-order. Moreover, we
have ordp(a) =

ordp(NK/Qp (a))

n . Now the p-order can take on rational values. The following
theorem gives a more precise formulation of the image of ordp.

Theorem 3.1. There exists a divisor e of n such that ordp(K \ {0}) = 1
eZ. In particular, the

norm NK/Qp
is never surjective.
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Proof. ordp is a group homomorphism fromK\{0} to Q, so ordp(K\{0}) is an additive subgroup
of Q. Since for any 0 6= a ∈ K, ordp(a) =

ordp(N(a))
n , it follows that ordp(K \ {0}) ⊆ 1

nZ.
But 1

nZ is a cyclic group generated by 1/n, and its nontrivial subgroups are also cyclic, taking
the form 1

dZ where d is a divisor of n. ordp(K \ {0}) being a nontrivial subgroup of 1
nZ, the

assertion is then obvious.

As in Qp, we have the ring of integers of K, defined to be OK = {a ∈ K : |a| ≤ 1} = {a ∈ K :
ordp(a) ≥ 0}, and its unique maximal ideal MK = {a ∈ K : |a| < 1} = {a ∈ K : ordp(a) > 0}.
Thus a is a unit in OK if and only if ordp(a) = 0. Just as Zp is a complete subspace of Qp, so is
OK of K.

The residue field k := OK/MK contains an isomorphic copy of Fp = Zp/pZp. This can be
conveyed by the following diagram:

Zp ⊂ - OK

Zp/pZp

φ

??
δ OK/MK

ψ

??

ψ
|Z
p

-

Here φ, ψ are the canonical epimorphisms, each of which sends an element to its coset, and δ
is the unique monomorphism such that δ ◦φ = ψ|Zp

. In place of ψ(a) = a+MK or φ(b) = b+Zp
we may write ā or b̄ where appropriate.

There is no trouble in identifying Fp with its isomorphic copy δ(Fp) in k. We will briefly
return to the formality of isomorphic inclusions in section four, but in general we will not dwell
upon it.

Theorem 3.2. The residue field k is finite.

Proof. Since OK is totally bounded (as a closed ball of radius 1) and complete, it is a compact
subspace of K. Note MK is an open set (as an open ball of radius 1). For every a ∈ OK , the
function fa : OK → OK given by fa(b) = a+ b is a homeomorphism, making each coset a+MK

an open set. Since OK is equal to
⋃
a∈OK

a+ MK , k must have only finitely many members by
compactness.

Theorem 3.3. OK is a principal ideal domain.

Proof. Let I be any ideal of OK . By Theorem 3.1, it is possible to choose some π ∈ I such that
ordp(π) is minimal (i.e. |π| is maximal). We claim that πOK = I. If y ∈ I, then |y| ≤ |π|,
meaning yπ−1 ∈ OK . But then y = π(yπ−1), meaning y ∈ πOK .

Any generator of the maximal ideal MK is called a uniformizer of K (sometimes also called
a uniformizer of OK). We will typically denote a uniformizer by $K . Since a principal ideal of
an element is also generated by that element’s associates, and the units of OK are precisely those
members with absolute value 1, it follows that all generators of an ideal have the same absolute
value, i.e. π generates I if and only if |π| is maximal among elements of I.

Corollary 3.4. Every ideal of OK is equal to $d
KOK for some d ∈ N.
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Proof. Let I be an ideal of OK generated by π. Since OK is a local principal ideal domain, the
element $K is up to associates the only irreducible element of OK . Moreover every PID is a
unique factorization domain, so we can write π as $d

Kb for some d ∈ N and unit b. But this just
means that I = πOK = $d

KOK .

By the previous corollary since p ∈ OK , there exists a number eK ∈ N such that the ideal
generated by p is equal to the ideal generated by $eK

K . eK is called the ramification index of
K over Qp. The ramification index is unique because $,$2, $3, ... all have different absolute
values, and elements with different absolute values generate distinct principal ideals.

Lemma 3.5. The following conditions are equivalent for a natural number e ∈ N:

(i) e is the ramification index of K over Qp.

(ii) Let $K generate MK . Then $e
K and p are associates in OK .

(iii) ordp(K \ {0}) = 1
eZ

Proof. Clearly (i) and (ii) are equivalent. For (iii) implies (ii) (from which (i) implies (iii) follows
by uniqueness of the ramification index), note that $K was chosen to have maximal absolute
value strictly less than 1, i.e. minimal p-order strictly greater than 0. Thus ordp($K) = 1/e, since
1/e is the smallest positive number in the image of ordp(K \0). Then ordp($

e
K) = e ·ordp($K) =

1 = ordp(p), so |$e
K | = |p|, making $e

K and p associates in OK .

Thus by Lemma 3.5 and Theorem 3.1, eK must be a divisor of n. When eK = 1, K is called
an unramified extension of Qp, and when eK = n, K is said to be totally ramified. When eK is
divisible by p, K is called a wildly ramified extension of Qp and if p - eK , tamely ramified.

The index of the residue field k over Fp is denoted fK , or just f .

Theorem 3.6. [K : Qp] = eKfK

Proof.

Just as the p-adic numbers have a unique representation as an infinite series, so do the
elements of K.

Theorem 3.7. If 0, c1, ..., cpf−1 ∈ OK are a complete set of coset representatives for k, then

every a ∈ K is equal to an infinite series
∞∑
i=k

ai$
i
K , with each ai ∈ {0, c1, ..., cpf−1}. Furthermore

a is uniquely determined by the elements a0, a1 etc.

Proof. (do later)

Let φ ∈ Aut(K/Qp). Since | · | ◦ φ is also an absolute value on K which restricts to the
p-adic absolute value on Qp, the uniqueness of such an absolute value gives us |φ(a)| = |a| for
all a ∈ K. In particular, since the Galois group of a splitting field of an irreducible polynomial
acts transitively on its roots, all the roots of an irreducible polynomial have the same absolute
value and p-order. This is a very useful fact which we will mention many times in the proceeding
discussion.

Lemma 3.8. If f ∈ Zp[X] is monic with f = gh for some monic polynomials g, h ∈ Qp[X], then
g, h ∈ Zp[X].
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Proof. Every element of Qp can be written as pmu for some m ∈ Z and u ∈ Zp, so let a, b ∈ Z be
such that g0 := pag and h0 := pbh are in Zp[X] with some coefficient in both g0 and h0 having
p-order zero.

For this to happen, we cannot have a < 0 or b < 0. If, say, a < 0, then |pa| > 1, meaning
the leading coefficient of g0 = pag has absolute value strictly greater than one, since g is monic.
This contradicts the assumption that g0 ∈ Zp[X]. Thus a, b and hence a+ b are greater than or
equal to 0.

But we also cannot have a+ b > 0. In this case all the coefficients of pa+bf are divisible by p,
so the corresponding polynomial pa+bf is zero in Fp. On the other hand since at least one of the
coefficients of g0, h0 has p-order zero, g0 and h0 and hence g0h0 = g0h0 are nonzero in Fp[X].

Thus a+ b = 0, and it follows that 0 = a = b. Then g0 = g and h0 = h, i.e. g, h ∈ Zp[X].

For rings R ⊆ S, an element b ∈ S is integral over R if it is the root of a monic polynomial in
R[X]. The integral closure R′ of R in S is the set of elements of S which are integral over R. R
is called integrally closed in S if it is its own integral closure, i.e. if b ∈ S is the root of a monic
polynomial in R[X], then b ∈ R.

Theorem 3.9. OK is the integral closure of Zp in K.

Proof. First, every element in OK is integral over Zp. For suppose a ∈ OK with minimal (monic)
polynomial ma ∈ Qp[X]. Let K ′ be a normal closure of K over Qp, so that ma splits completely
in K ′[X] with roots a, a′, a′′, .... Since a has absolute value no greater than 1, so do all the rest
of the roots a′, a′′, ... Now the coefficients of ma are additive and multiplicative combinations of
the roots of ma, so they all have absolute value ≤ 1 as well. But these coefficients are in Qp, so
they must be in Zp.

Conversely suppose a ∈ K is the root of a monic polynomial f ∈ Zp. It is required to show
that a ∈ OK . Let ma ∈ Qp[X] be the minimal polynomial of a over Qp. ma divides f , so by
Lemma 3.8 we have ma ∈ Zp[X]. Now the constant coefficient of ma is ±1 times the product of
the roots of ma. This latter coefficient having absolute value less than or equal to 1, there must
be a root of ma with absolute value less than or equal to 1. But all the roots of µ have the same
absolute value, so |a| ≤ 1, i.e. a ∈ OK .

Hensel’s Lemma, stated in section two, can be given in much greater generality. We give a
generalization which will be sufficient for our treatment of p-adic extensions in the sequel. [4]
gives a nice proof of the original lemma, and the version stated below can be proved in exactly
the same way.

Theorem 3.10 (Hensel’s Lemma) 1. If f ∈ K[X], a ∈ K with f̄(a + MK) = 0 and f̄ ′(a +
MK) 6= 0, then there exists some b ∈ K with a+ MK = b+ MK and f(b) = 0.

4 Intermediate Fields in the Preceding Discussion
We can extend the p-order on Qp to any finite dimensional extension K of Qp by defining ordp(a)

for a ∈ K to be
ordp(NK/Qp (a))

n , where n = [K : Qp]. However, it is often useful to modify this
extended p-order in such a way as to produce a new discrete valuation function taking on integer
values. In particular, the discussion of ramification groups in section 9 would be more complicated
without this rescaling Here we will investigate the rescaling of the p-order function in a fairly
general setting. We let L0 = Qp ⊆ L1 ⊆ · · ·Ls be a finite chain of finite dimensional field
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extensions of Qp. We suppose ni is the dimension [Li : Li−1]. Thus Ls is n1 · · ·ns-dimensional
over Qp.

We already know how to extend the p-order function from L0 to any Lt for 1 ≤ t ≤ s. The
extension can be done directly, as above, or one field at a time. For example, given that we have
already extended the function ordp to the field L1, we might emulate the definition above and
extend ordp from L1 to L2 by the defining ordp(a) for a ∈ L2 to be ordp(NL2/L1

(a))

n2
. But this

is the same as defining the extension from Qp to L2 directly, since ordp(a) =
ordp(NL2/L0

)(a)

n1n2
=

1
n2

ordp(NL1/L0
◦NL2/L1

(a))

n1
=

ordp(NL2/L1
(a))

n2
.

For each field Li, we have the local principal ideal domain OLi
and its unique maximal

ideal MLi . As we have seen, each maximal ideal MLi will be generated by an element $Li in
OLi whose p-order is nonzero and minimal. Moreover there must exist a natural number eLi

such that $eLi

Li
is an associate of (that is, has the same p-order as) the element p ∈ Zp. Thus

ordp($Li
) = 1

eLi
.

This is all done with respect to the base field L0 = Qp. If we begin with a different base field
Lt, with maximal ideal MLt

= ($Lt
), and an extension field Lv with v > t, then since OLv

is
a PID, there exists some exponent e such that ($e

Lv
) = ($Lt

). This extends the definition of
the ramification index to different base fields, from which we can in the obvious fashion define
totally ramified, unramified, and tamely ramified extensions in greater generality. Since the
ramification index is evidently dependent on both the base field and the extension field, we will
denote the aforementioned e by eLv/Lk

. When the base field is L0 = Qp, we will not mention
the base field and only the extension field, as we have done thus far. Notice in this case that
ordp($

eLv/Lk

Lv
) = ordp($Lt

), or eLv

eLk
= eLv/Lk

.
The relationship of the various residue fields can be expressed in the following commutative

diagram:

Zp - OL1
- OL2

- OL3
- · · · - OLs

Zp/pZp

ψ0

? δ0- OL1/ML1

ψ1

? δ1-

ψ 1|Z
p

-

OL2/ML2

ψ2

? δ2-

ψ 2|O
L
1

-

OL3/ML3

ψ 3|O
L
2

-

· · ·
δs−1- O∫/Ms

Here ψi is the canonical epimorphism, and δi is the unique monomorphism satisfying δi◦ψiψi+1
|MLi

.
Now each ki = OLi

/MLi
is a field, and we already know the relationship [Li : Qp] = eLi

[ki :
Fp]. But from the fact that the ramification index is multiplicative we can generalize this fact,
since eLi/Li−1

[ki : ki−1] =
eLi

eLi−1

[ki:Fp]
[ki−1:Fp]

=
[Li:Qp]

[Li−1:Qp]
= [Li : Li−1] = ni. Now from this latter

relationship, it is easy to see that δi is an isomorphism if and only if [ki+1 : ki] = 1 if and only
if eLi+1/Li

= ni+1. Thus, δi is an isomorphism if and only if Li+1 is a totally ramified extension
of Li.

The latter embedding δi is the "standard" way of embedding one residue field in the next.
If however, we would like to skip over a few residue fields, for example to embed kt in kt+w, we
may prefer a similar construction, as below:
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Ot - Ot+w

Ot/Mt

ψt

? ∆- Ot+w/Mt+w

ψt+w

?

ψ t+
w|O

t -

Here ∆ is the unique monomorphism satisfying ∆ ◦ψt = ψt+w|Mt
. As above, we can argue that

∆ is an isomorphism if and only if Lt+w is a totally ramified extension of Lt. But the map ψt+w|Mt

can be found in the first diagram above, so by uniqueness we have ∆ = δt+w−1 ◦ · · · ◦ δt+1 ◦ δt.
Since ∆ is an isomorphism if and only if each δi is an isomorphism, we have:

Theorem 1. kt+w is a totally ramified extension of kt if and only if ki+1 is a totally ramified
extension of ki for t ≤ i < t+ w.

Now for s ≥ t ≥ 1, we define the "Lt-order" νLt
: Lt → Q by νLt

= eLt
ordp. It is easy to see

this gives a new valuation on Lt. Since ordp(Lt) = 1
eLt

Z, νLt(Lt) will take on integer values for
a ∈ Lt. In particular where ($Lt

) = MLt
, νLt

($Lt
) = eLt

ordp($Lt
) = eLt

1
eLt

= 1.
Let t ≤ v ≤ s. As with ordp, we can extend the domain of νLt

to Lv by defining νLt
(a) =

νLtNLv/Lt
(a)

[Lv:Lt]
=

νLtNLv/Lt
(a)

nv···nt+1
.

We can of course rescale νLt
to a new valuation νLv

in the same way we rescaled ordp to νLt
.

But the question remains as to whether such a rescaling from νLt
to νLv

(that is, by defining
νLv to be eLv/Lt

νLt) would give the same valuation as a rescaling such as we have done above
from ordp to νLv . In fact, this is true by the multiplicativity of the ramification index, since
eLv/Lt

νLt
= eLv/Lt

eLt
ordp = eLv

ordp.
In general for an extension Lt, when 0 ≤ w ≤ t everything we have defined up to this point

in the context of local fields-the ring OLw
, the ideal MLw

, the uniformizer $Lw
, the ramification

index-can be alternatively and equivalently defined in terms νLt instead of ordp.
The ring OLw (resp. the maximal ideal MLw) can be defined as the set of members of Lw

with nonnegative p-order (resp. positive p-order). But ordp and νLt
are each either nonnegative

or positive wherever the other is, so we can also define OLw
(resp. MLw

) to be the set of members
of Lw with nonnegative (resp. positive) Lt-order.

Suppose ordp and νLt
have their domains extended maximally to Ls. Multiplication by

eLt gives a bijective order-preserving correspondence between the image of the p-order function
and the image of the Lt-order function. In particular, whereas one might expect a uniformizer
$Lw

which generates MLw
(or any generator of an ideal I ⊆ OLw

) to have to be defined in some
strange fashion without the use of the p-order function or the p-adic absolute value, it is sufficient
to take a member of the ideal with minimal Lt-order. Minimal Lt-order bijectively corresponds
to minimal p-order.

For 0 ≤ w ≤ v ≤ s, the ramification index eLv/Lw
was defined to be the unique natural

number such that in the ring OLv , the ideals ($
eLv/Lw

Lw
) and ($Lv ) are equal. Recall the result

that ordp(Lv) = 1
eLv

Z. We have a completely analogous result when we rescale the p-order:

Theorem 4.1. νLw
(Lv) = 1

eLv/Lw
Z.

Proof. We have νLw
(Lv) = eLw

ordp(Lv) = eLw

1
eLv

Z = 1
eLv/Lw

Z.
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5 The Discriminant and the Resolvent
Let L be an m-dimensional extension of K, where K is a finite dimensional extension of Qp.
Lemma 3.8 and Theorem 3.9 can be generalized with no difficulty to yield:

Theorem 5.1. OL is the integral closure of OK in L.

Let σ1, ..., σm be all the embeddings of L into a fixed algebraic closure Qp containing K. If
a1, ..., am is any collection of m elements of OL, we define the discriminant of a1, ..., am to be
∆2, where ∆ is the determinant of the matrix: σ1(a1) · · · σ1(am)

...
...

...
σm(a1) · · · σm(am)


Since switching rows or columns changes the determinant by a factor of −1, the discriminant

of an unordered collection of m members of OL is well defined up to parity.
An integral basis of OL over OK is a basis for OL over OK , i.e. a collection of elements in

OL of which every member of OL is a unique OK-linear combination.

Lemma 5.2. There exists an integral basis of OL over OK , and the number of elements in any
integral basis is m.

Proof. See [6], pg. 6 - 7.

Now let v1, ..., vm be an integral basis for OL over OK . We define the field discriminant
Disc(L/K) to be the ideal in OL generated by Disc(v1, ..., vm).

This notion is well defined regardless of a choice of integral basis.

Theorem 5.3. Suppose v1, ..., vn and w1, ..., wm are integral basis of OL over OK . Then
Disc(v1, ..., vn) and Disc(w1, ..., wn) have the same p-order.

Proof. Each wi is an OK linear combination of v1, ..., vm, so where W = [w1 · · · wm]t and
V = [v1 · · · vm]t, we have a matrix X ∈MLm(OK) with W = XV . Similarly we have a matrix
X ′ ∈MLm(OK) going the other way, as V = X ′W . ThenX ′ = X−1 (in particularX is invertible
inMLm(OK)) whence Det(X) is a unit in OK . Moreover, for any linear combination of v1, ..., vm
forming a basis element wi, the same linear combination of σj(v1), ..., σj(vm) will equal σj(wi)
for any 1 ≤ j ≤ m, from which it follows that Disc(w1, ..., wm) = Det(X)2Disc(v1, ..., vm). But
then these two discriminants have the same p-order (or K-order, L-order, it doesn’t matter), so
being associates in OL they must generate the same principal ideal.

Where f is a polynomial in any field, and r1, ..., rdeg(f) are all its roots (with multiplicity) in
some fixed algebraic closure of the field, we have the polynomial discriminant Disc(f) defined
as
∏
i 6=j

(ri − rj).

A power integral basis of OL over OK is an integral basis of the form 1, a, a2, ..., am−1.

Theorem 5.4. Suppose L is Galois over K. If 1, a, a2, ..., am−1 is a power integral basis for OL
over OK and µ ∈ K[X] is the minimal polynomial of a over K (note that µ will be in OK [X] by
Theorem 5.1), then the field discriminant Disc(L/K) and the ideal in OL generated by Disc(µ)
are equal.

11



Proof. For every σi ∈ Aut(L/K), we have σi(aj) = σi(a)j . Now the matrix ∆

 1 σ1(a) σ1(a)2 · · · σ1(a)m

...
...

...
1 σm(a) σm(a)2 · · · σm(a)m


is such that the ideal generated by Det(∆)2 is Disc(K/F ). But the determinant of ∆ is∏

i<j

(σi(a) − σj(a)), whence Det(∆)2 =
∏
i 6=j

(σi(a) − σj(a)). But σ1(a), ..., σn(a) are precisely all

the roots of µ, so this latter square is just Disc(µ).

Theorem 5.5. Where a1, ..., am are, counting multiplicity, all the roots of a polynomial f , then

Disc(f) =
m∏
i=1

f ′(ai).

Proof. Since f(x) =
m∏
i=1

(x−ai), we have f ′(x) =
m∑
j=1

∏
i 6=j

(x−ai), whence for each root at we have

f ′(at) =
∏
i 6=t

(at − ai).

Then Disc(f) =
∏
i 6=j

(ai − aj) =
m∏
i=1

∏
j 6=m

(ai − aj) =
m∏
i=1

f ′(ai).

Let f ∈ Zp[X] be monic and irreducible over Qp[X] with A = {α1, ..., αn} the set of all its
roots. Let L be a splitting field of f over Qp, and G = Aut(L/Qp).

Now any subgroup H of Sn acts on Qp[X1, ..., Xn], the action given by σh(x1, ..., xn) =
h(xσ(1), ..., xσ(n)). Thus for any polynomial h in n ordered indeterminates we may talk about
the stabilizer SH of h in H. It is of course possible to choose a set of coset representatives
s1, ..., sm of H/SH such that {s1h, ..., smh} is equal to the orbit of h.

We now define the resolvent of f with respect to h in H, denoted RH(h, f)(x), to be the

polynomial
m∏
i=1

(x− sih(α1, ..., αn)). The coefficients of RH(h, f) are fixed by any member of H,

and hence by any member of G, whence RH(h, f) ∈ Qp[X].

Theorem 5.6. R(h, f) has a root in Qp if and only if G is contained in a conjugate of SH as a
subgroup of Sn.

From the preceding theorem we obtain a general method to find the Galois group of an
irreducible f ∈ Zp[X]:

For each maximal transitive subgroup M of Sn, let h ∈ Z[X1, ..., Xn] be a polynomial whose
stabilizer is M . Compute RSn(h, f) and check whether it has ax root in Qp. If it does, G will
be contained in a conjugate of M and we can move on. If it does not, check the next maximal
transitive subgroup of Sn.

If none of the resolvents we calculated in terms of the maximal transitive subgroups of Sn
have roots in Qp, we can conclude that G = Sn.

If, however, G was found to be contained in some conjugate (liz., isomorphic copy) of M ,
then repeat the process for M : for each maximal transitive subgroup N of M , find a polynomial
h ∈ Z[X1, ..., Xn] whose stabilizer in M is N . Compute RM (h, f) and check whether it has a
root in Qp. If it does, G will be contained in a conjugate of N . If it does not, check the next
maximal transitive subgroup of M .
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If none of the resolvents we calculated in terms of the maximal transitive subgroups of M
have roots in Qp, we can conclude G = M .

Repeating this process we find smaller and smaller candidates for G until we find it.
This process would theoretically allow us to compute any Galois group. Unfortunately, this

method is not very practical, as we must find the roots of the polynomial which is in general
pretty hard. However, there is another method, using linear resolvents which is not guaranteed
to give us a complete solution for the Galois group, but allows us to rule out several possibilties.

A linear resolvent is a resolvent with respect to a polynomial of the form c1x1 + ...+ crxr ∈
Z[X1, ..., Xr, ..., Xn].

Now for r ≥ 2, let Wr be the set of subsets of {1, 2, ..., n} with cardinality r. Sn acts on Wr,
the action given by σ{a1, a2, ..., ar} = {σ(a1), σ(a2), ..., σ(ar)}.

Every subgroup of Sn, as H, also acts on Wr, and induces a partition thereon, as S, T, V etc.
where S ∪ T ∪ V · · · = Wr and

(
n
r

)
= |Wr| = |S|+ |T |+ |V |+ .... We then define the r-partition

length of H in Sn to be the multiset (|S|, |T |, |V |, ...).
If a resolvent has multiple roots, it is possible to apply a Tschirnhausen transformation to

obtain a new resolvent which has distinct roots (in particular, the resolvent will be squarefree
as a product of irreducibles). For more information about Tschirnhausen transformations, see
(some source).

Theorem 5.7. For r ≥ 2, let R be the linear resolvent RSn
(x1 + ...+xr, f). If R has a multiple

root, apply a Tschirnhausen transformation to R so that all its roots are distinct, and relabel R.
Factor R in Qp[X] as a product of irreducibles, as µ1 · · ·µt. Then the r-partition length of G is
(deg(µ1), ...,deg(µt)).

Thus by calculating, for various (small) r the r-partition length of the transitive subgroups
of Sn and the factorization of linear resolvents of f with respect to x1 + ...+ xr, it is possible to
rule out several Galois groups with different partition lengths.

6 Unramified Extensions
In this section we show that for every positive integer n there is a unique unramified extension
of Qp having degree n.

Theorem 6.1. Let K be a finite dimensional extension of Qp with residue field k. There is a
bijection

{L/K finite and unramified} ←→ {l/k finite}
where L 7→ l = OL/mL. Additionally this satisfies

1. If L1 and L2 are finite unramified extensions of K with residue fields l1 and l2 then L1 ⊆ L2

if and only if l1 ⊆ l2.

2. Aut(L/K) ∼= Aut(l/k) under σ 7→ σ|OL
.

Proof. Let p = char(k). The proof is broken into several steps.

Step 1: Let m be a positive integer not divisible by p. Then the irreducible factors of xm − 1 in
k[x] are the reductions modulo MK of the irreducible factors of xm − 1 in OK [x].

Proof of Step 1: Write xm − 1 = gn1
1 (x)...gnr

r (x) ∈ OK [x] for irreducible g1(x), ..., gr(x). Let
gi(x) be the reduction of gi(x) modulo mK . We need to show that gi(x) is still irreducible. Note
that since gcd(p,m) = 1, xm − 1 is separable in k[x] and hence so is each gi.
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Let f ∈ k[x] be a monic irreducible factor of gi and let f ∈ Ok[x] be a monic polynomial such
that f modulo mK is f . Note that f is irreducible because otherwise f would be reducible. Let
α be any root of f and set E = K(α). We have

[E : K] = deg(f) = deg(f) ≤ deg(gi) = deg(gi).

We know that f(α) = 0 so gi(α) = 0 where we think of α as being in the residue field of E.
Now because gi is separable, we can apply Hensel’s lemma to get a root β ∈ OE of gi. This gives
K(β) ⊆ E. We have

deg(gi) = [K(β) : K] ≤ [E : K] ≤ deg(gi).

Hence deg(gi) = [E : K]. Thus deg(f) = deg(gi), so gi is irreducible.

Step 2: Let l/k be a separable extension of degree n. Then there exists a unique unrami-
fied extension Kn/K that is finite and has residue field l.

Proof of Step 2: Since l is finite there exists α such that l = k(α). Let m = |l| − 1. Then α
is a root of xm− 1 ∈ k[x] since l× is a cyclic group of order m. Let f be the minimal polynomial
of a over k. This means f is some irreducible factor of xm − 1 in k[x]. By step 1 there is some
irreducible factor f ∈ OK [x] of xm − 1 which reduces to f modulo MK . Let β be any root of f
and set Kn = K(β). Then

[Kn : K] = deg(f) = deg(f) = [l : k] = n.

Because β ∈ OKn
/mk then k(β) ⊆ OKn

/Mk. It follows that

n ≥ f(Kn/K) = [OKn/mk : k] ≥ [k(β) : k] = n.

Hence f(Kn/K) = n so Kn/K is unramified and l = OKn
/mk since they are both extensions of

k of the same degree.
Now we just need to prove uniqueness. Suppose L/K is such that the residue field of L is l.

Since f has a a root α ∈ l and f is separable then f has a root α ∈ OL by Hensel’s lemma. Thus
K(α) ⊆ L and K(α) ∼= Kn. If L is unramified, then n = [L : K], thus L = K(α) ∼= Kn. This
completes the uniqueness part.

A similar argument will give us part 1 of the theorem. Let L1, L2 be finite unramified
extensions ofK with residue fields l1, l2 respectively. First suppose L1 ⊆ L2. It is straightforward
to show that l1 ⊆ l2: define the map φ : OL1 → OL2/ML2 by x 7→ x + ML2 . Then since
ML1 ⊆ML2 we get that ML1 ⊆ ker(φ). Now suppose x ∈ OL but x /∈ML1 . Then x is a unit, so
x /∈ML2

. Hence x /∈ ker(φ), so ker(φ) = ML1
. By the the first isomorphism theorem for rings,

we can conclude
im(φ) ∼= (OL1

/ML1
).

This gives us l1 ⊆ l2.
To go the other direction, suppose l1 ⊆ l2. Then there exist α, β ∈ l2 such that l1 = k(α) and

l2 = k(β). Let f1, f2 be the minimal polynomials of a and β respectively. By Hensel’s lemma
we can find α, β ∈ OL2

such that f1(α) = 0 and f2(β) = 0. Since f1 and f2 are necessarily
irreducible, we get that [L1 : K] = [K(α) : K] = deg(f1) and [L2 : K] = [K(β) : K] = deg(f2).
Furthermore these two extensions are unramified, and by the uniqueness of such unramified ex-
tensions we get that L1

∼= K(α) and L2
∼= K(β). Clearly since L2

∼= K(β) then α ∈ K(β). It
follows that K(α) ⊆ K(β), so L1 ⊆ L2.
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Step 3: Let l/k be a finite separable extension of degree n. Then Aut(Kn/K) ∼= Aut(l/k)

Proof of Step 3: Let f and f be as in step 2. By Hensel’s lemma any root of f in l lifts to a root
of f in OKn

. Let α1, ..., αn be the roots of f and let α1, ...αn be the roots of f such that αi is the
reduction of αi modulo MKn

. Consider the map Aut(Kn/K)→ Aut(l/k), σ 7→ { the image of σ
in Aut(l/k)}. To see that this is well-defined, suppose x ≡ y (mod ML). Then x − y ∈ ML.
Because σ preserves the valuation, then σ(x) − σ(y) ∈ ML. Hence σ(x) = σ(y) if x = y.
Now let σ ∈ Aut(Kn/K) such that σ 6= id. Then there exist some i, j with i 6= j such that
σ(αi) = σ(αj). This is because Kn = K(αp) for some 1 ≤ p ≤ n and such a σ is uniquely
determined by where it sends αj . Then σ(αi) = σ(αi) = αi 6= aj . Hence σ 6= id. So the kernel
of the map Aut(Kn/K)→ Aut(l/k) is {id}. Thus this map is injective. Now since both Galois
groups have order n, we can conclude that this map is a bijection. It is clear that this map is a
homomorphism, so we can now conclude the two Galois groups are isomorphic.

Lemma 6.2. Let K be a finite extension of Qp. If L1, L2 are finite dimensional extensions of
K with L1 an unramified extension of K, then L1L2 is an unramified extension of L2.

Proof. Let l1, l2 be the residue fields of L1, L2 and let l′ be the residue field of L1L2. Set l1 = k(ᾱ)
for some α ∈ OL1

. Let f ∈ L1[X] be the minimal polynomial of α over K, with f̄ ∈ k[X]. Note
[l : k] ≤ deg(f̄) = deg(f) = [K(α) : K] ≤ [L1 : K], which is equal to [l1 : k] since L/K is
unramified. Thus L1 = K(α) and f̄ ∈ k[X] is the minimal polynomial of ᾱ over K.

This gives L1L2 = K(α)L2 = L2(α). It is left to show L1L2/L2(α) is unramified. Let
g ∈ L2[X] be the minimal polynomial of α over L2. Since g divides f , ḡ divides f̄ , so ḡ is
separable and irreducible by Hensel’s Lemma.

Thus for l′ = OL1L2
/ML1L2

, [l′ : l2] ≤ [L2(α) : L2] = deg(g) = deg(ḡ) = [l2(α) : l2] ≤ [l′ : l2].
Then [l′ : l2] = [L2(α) : L2], so we are done.

Corollary 6.3. A compositum of finitely many unramified extensions of Qp is an unramified
extension of Qp.

Proof. Obvious from the preceding lemma, and from the multiplicativity of ramification indices.

7 Totally Ramified Extensions
Let K be a finite dimensional extension of Qp, and $K a uniformizer for OK . A polynomial
a0 +a1x+ ...+amx

m ∈ OK [X] is called an Eisenstein polynomial if $ - am, $ | a1, ..., am−1, and
$2 - a0. This generalizes the "Eisenstein criterion," seen in abstract algebra or number theory,
which can determine if a polynomial in Q[X] is irreducible. Indeed, any Eisenstein polynomial
is irreducible in K[X] by the same argument. The notion of adjoining a root of an Eisenstein
polynomial to Qp will be very useful in classifying totally ramified extensions. An extension
L/K is called an Eisenstein extension if L can be obtained by adjoining a root of an Eisenstein
polynomial of OK [X] to K.

As an example of the previous definition, note that the polynomial x2−3 ∈ Z3[x] is Eisenstein.
Hence the extension Q3(α)/Q3 where α is a root of x2 − 3 is an Eisenstein extension. Now we
show that any Eisenstein extension is totally ramified.

Theorem 7.1. Suppose L/K is Eisenstein. Then L is totally ramified over K.
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Proof. Let f(x) = anx
n+an−1x

n−1 + ...+a0 ∈ OK [x] be an Eisenstein polynomial, and α ∈ OK
a root of f such that L = K(α). Let α = α1, α2, ..., αn be all the roots of f , $K a uniformizer
of K, and $L a uniformizer of L. It is required to show that eL/K = 1, where |$eL/K

L | = |$K |.

Since all the roots of f have the same absolute value, |α|n =
n∏
i=1

|αi| = |a0|, with |a0| = |$K |

by hypothesis. Since α ∈ OL, there exists some m ∈ N with |$L|m = |α|. Then |$K |
m

eL/K =

|$L|m = |α| = |$K |
1
n , or mn = eL/K . But eL/K ≤ n, so we must conclude m = 1, i.e.

n = eL/K .

Theorem 7.2. If a finite extension L/K is totally ramified then L/K is Eisenstein.

Proof. Let L/K be totally ramified with [L : K] = n. Let $L be a uniformizer of L. Consider the
intermediate field L1 = K($L). Since L/Qp is totally ramified then L1/Qp is totally ramified.
Let $L1 be a uniformizer of L1. Since $L ∈ L1 it follows that |$L1 | = |$L|. Because L/K
is totally ramified then |$K | = |$L|n. We also have |$K | = |$L1 |[L1:K] = |$L|[L1:K]. Hence
[L1 : K] = n, so L1 = L.

Now let f(x) = xn + an−1x
n−1 + ...+ a0 ∈ OK [x] be the minimal polynomial of $L over K.

Let $L = $1, ..., $n be the roots of f . All these roots have absolute value equal to |$L| < 1.
Hence |ai| < 1 since the ai’s are symmetric polynomials in the $i. So ai ∈ MK . Also, since
L/Qp is totally ramified,

|a0| =
n∏
i=1

|$i| = |$L|n = |$K |.

Hence a0 is not divisible by $2
K , so f is Eisenstein.

Corollary 7.3. A finite extension L/K is totally ramified if and only if L/K is Eisenstein.

Thus in order to classify totally ramified extensions of Qp, we need only consider those
extensions obtained by adjoining a root of an Eisenstein polynomial to Qp.

We will see toward the end of this section that it is always possible to split up a finite extension
L/Qp into an unramified extension and then a totally ramified extension Qp ⊆ Lur ⊆ L. The
unramified extension is easy to classify, since there is a unique unramified extension of every
degree. Thus, to classify extensions of Qp it is left to focus on the totally ramified extensions of
the unramified extensions of Qp. To study these extensions, we will use a very useful tool known
as Krasner’s Lemma.

Krasner’s Lemma 7.4. Let K be a finite extension of Qp, and K an algebraic closure of K. If
there exists α, β ∈ K such that |α− β| < |α− σ(α)| for all σ ∈ Aut(K/K) such that σ(α) 6= α,
i.e., β is closer to α than any of α’s nontrivial Galois conjugates, then K(α) ⊆ K(β) .

Proof. Take σ ∈ Aut(K/K) such that σ(β) = β. We would like to show that σ(α) = α, in
which case we would have that Aut(K/K(β))⊆ Aut(K/K(α)) and the Fundamental Theorem
of Galois Theory would give us that K(α) ⊆ K(β).

By the previous lemma,

|α− β| = |σ(α− β)|
= |σ(α)− σ(β)|
= |σ(α)− β|
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Now,

|σ(α)− α| = |(σ(α)− β) + (β − α)|
≤ max{|σ(α)− β|,|α− β|}.

Since |σ(α) − β| = |α − β|, we must have that |σ(α) − α| ≤ |α − β|. However, β is closer to α
than any of α’s nontrivial Galois conjugates, so σ must act trivially on α, i.e. σ(α) = α.

Definition 7.5. For α,β ∈ K, β belongs to α if |α− β| < |σ(α)− α| for all σ ∈ Gal(K/K).

Krasner’s Lemma says if β belongs to α, then K(α) ⊆ K(β).
We now define a metric on K[X]. For f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 ∈ K[x], we

define ‖f‖ to be maxi |ai|.

Lemma 7.6. Let f(x) = xn + an−1x
n−1 + · · · + a0 ∈ K[x] be irreducible and take α ∈ K such

that f(α) = 0. Then, there exists a constant cf > 0 such that if g(x) ∈ K[x] with ‖g − f‖ ≤ cf ,
then g(x) has a root β that belongs to α. Also, g(x) is irreducible, deg g(x) = deg f(x), and
K(α) = K(β).

Proof. Pick cf such that
cf < min (1, ‖f(x)‖) (1)

cf < min
σ(α)6=α

(c−11 |σ(α)− α)|np ) (2)

where c1 = max
0≤m≤n−1
0≤j≤n−1

‖f(x)‖
m

n−j . Now, take g(x) ∈ K[x] monic such that ‖g(x)− f(x)‖ ≤ cf . If

deg g(x) 6= n, then we have ‖g(x)− f(x)‖ ≥ 1. However, since cf ≤ 1 by equation (1), we must
have deg g(x) = n

Now,

‖g(x)‖ = ‖f(x) + (g(x)− f(x))‖
≤ max (‖f(x)‖, ‖f(x)− g(x)‖)
≤ ‖f(x)‖

where the first inequality comes from the non-archimedean absolute value, and the second in-
equality is because ‖g(x)− f(x)‖ ≤ cf < ‖f(x)‖.

Write g(x) = xn + bn−1x
n−1 + · · ·+ b0 and take β0 ∈ K with g(β0) = 0. Then,

|βn0 | =

∣∣∣∣∣
n−1∑
i=0

biβ
i
0

∣∣∣∣∣
≤ max

0≤i≤n−1
|bi||β0|i.

Let j be such that |bj ||β0|j is maximal. So, |β0|n ≤ |bj ||β0|j . Note |β0|n−j ≤ |bj | ≤ ‖g(x)‖; for
if β0 6= 0 then we can divide through by β0, and if β0 = 0 this result is clearly true. As we
saw earlier ‖g(x)‖ ≤ ‖f(x)‖, so if we take roots and combine the last two inequalities, we get
|β0| ≤ ‖f(x)‖

1
n−j .
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Let f(x)− g(x) =

n−1∑
m=0

cmx
m. Since g(β0) = 0,

|f(β0)| = |f(β0)− g(β0)|
≤ max

0≤m≤n−1
|cm||β0|m

≤ cf max
0≤m≤n−1

|β0|m

≤ cf max
0≤m≤n−1

‖f(x)‖
m

n−j

< min
σ(α)6=α

|σ(α)− α|n

where the last inequality comes from defining equation (2) of cf .
Let α = α1, α2, . . . , αn be the roots of f(x). So |(β0 − α1) . . . (β0 − αn)| = |f(β0)| <

min
σ(α)6=α

|σ(α) − α|np . Suppose i minimizes |β0 − αi|. Then, |β0 − αi| < |σ(α) − α| for all σ

such that σ(α) 6= α
The group Aut(K/K) acts transitively on the roots of irreducible polynomials, so there exists

σi ∈ Aut(K/K) such that σi(αi) = α. Let βi = σi(β0). Then, for all σ ∈ Aut(K/K) such that
σ(α) 6= α we have

|βi − α| = |σi(βi − α)|
= |σi(βi)− σi(α)|
= |β0 − αi|
< |σ(α)− α|

So, βi belongs to α. Krasner’s Lemma gives K(α) ⊆ K(βi). Since f(x) is irreducible we have,

deg f(x) = [K(α) : K]
≤ [K(βi) : K[
≤ deg g(x).

Since deg f(x) = deg g(x) we must have K(α) = K(βi).

Corollary 7.7. Take f(x), g(x), cf as in the previous lemma. Then every root of g(x) belongs to
exactly one root of f(x). So the roots of f(x) generate the same extensions as the roots of g(x).

Proof. Let α be a root of f(x) and let β be a root of g(x), β’s existence is guaranteed by the
previous lemma. Let β = β1, β2, . . . , βn be the roots of g(x).

First, let’s show every root of g(x) belongs to at least one root of f(x). Since g(x) is ir-
reducible, and the Galois group acts transitively on the roots of irreducible polynomials, there
exists σi ∈Gal(K/K) such that σi(β) = βi. So

|σi(α)− βi| = |σi(α)− σi(β)|
= |α− β|
< |αi − α| for all i 6= 1.
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The last inequality is because β belongs to α and the collection of αi’s such that i 6= 1 is the
collection of non-trivial Galois conjugates of α. So, βi belongs to σi(α).

Now, suppose β belongs to α and αk 6= α. We may write αk = τ(α) for some τ ∈ Aut(K/K).
By the non-Archimedean property, we get |τ(α)−α| ≤ max{|τ(α)− β|, |β − α|}. Since β belongs
to α, we know |α− β| < |τ(α)− α|. Also, since β belongs to τ(α) we have

|τ(α)− β| < |α− τ−1(α)|
= |τ(α− τ−1(α))|
= |τ(α)− α|

Thus we have |τ(α) − α| ≤ max{|τ(α)− β|, |β − α|} < |τ(α) − α|. Thus, we can not have
a root of f(x) belonging to two roots of g(x). Since we know that deg g(x) = deg f(x) and
both polynomials are irreducible and separable, we must have that each root of g(x) belongs to
one and only one root of f(x). The facts about the field extensions follows from the previous
lemma.

Now, using these tools, we can show that there are only finitely many totally ramified (equiv-
alently Eisenstein) extensions of K

Lemma 7.8. There are only finitely many Eisenstein extensions of K having a fixed degree n.

Proof. Let A = MK × · · · ×MK × (MK \$OK), where $ is a uniformizer for OK and there are
n−1 copies of MK . We have a bijection from A to the set of all Eisenstein polynomials of OK [x]
of degree n by mapping each n-tuple (an−1, ..., a0) to the polynomial a0 + ...+ an−1x

n−1 + xn ∈
OK [X].

We can make A a metric space by defining ‖(an−1, . . . , a0)‖ = max
i
|ai|. This metric coincides

with the product topology on A, and the aforementioned bijection gives a homeomorphism
between A and the metric subspace {f ∈ K[X] : f is monic, deg(f) ≤ n} . For a ∈ A denote the
corresponding polynomial by fa.

For each a ∈ A there exists a neighborhood Ua ⊆ A such that if b ∈ Ua, then the roots of fb
and fa generate the same extension, where Ua = {x ∈ A : ‖x − a‖ < cfa} for cfa as defined in
Lemma 3.

Now, MK is closed in OK , which is compact, so MK is compact. Note $2OK = {x ∈MK :
|x| < |$|}, so $2OK is open in MK . Thus its complement, MK \$2OK is a closed subset of
the compact set MK , so MK \$2OK is compact. A product of compact spaces is compact, so A
is compact. So A = ∪Ua1 ∪ · · · ∪Uas for some a1, ..., as ∈ K, and so all the Eisenstein extensions
of K are generated by the roots of fa1 , . . . , fas

Theorem 7.9. If L is finite dimensional over Qp, let K be the composite of all the unramified
extensions of Qp contained in L. Then K is an unramified extension of Qp, and L is a totally
ramified extension of K.

Proof. See [3] pg. 39.

Corollary 7.10. For every n ≥ 1, there are finitely many fields which are n dimensional over
Qp.

Proof. For every positive nonunit divisor d of n, there is exactly one unramified extension Kd

of Qp having dimension d. And by the previous theorem, there are only finitely many totally
ramified extensions of Kd which have dimension n/d over Kd.

Since every n dimensional extension L of Qp can be broken up into an unramified extension
K/Qp and a totally ramified extension L/K, the assertion is obvious.
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8 Tamely Ramified Degree Fourteen Extensions of Qp

For n > 1 and e a divisor of n not divisible by p, Awtrey cites a general method for counting up
to isomorphism the number of n-dimensional extensions of Qp which have ramification index e:

Fixing e determines the dimension f = n/e of the residue field. Let g = (e, pf − 1). Since
Z acts on Z/gZ by multiplication, the latter group may be partitioned into orbits under multi-
plication by p. Then there are as many nonisomorphic n-dimensional extensions of Qp having
ramification index e as there are orbits.

When p is not 2 or 7, all degree 14 extensions of Qp are tamely ramified. We give a count of
the number of such extensions based on p being congruent to 1, 3, 5, 9, 11 or 13 modulo 14.

We divide this count into cases based on the four possibilities for (e, f).

I . There is up to isomorphism only one unramified extension of Qp for each degree n, so
there is nothing to prove when e = 1.

II . If e = 2 and f = 7, we have g = (2, p7− 1) = 2. p being nonzero modulo 2, multiplication
by p induces only two orbits of Z/gZ: {0} and {1}, so there are two nonisomorphic degree 14
extensions of Qp with ramification index 2.

III. If e = 7 and f = 2, we have g = (7, p2 − 1), so g will be 7 when p2 ≡ 1 (mod 7), and 1
otherwise.

When p ≡ 3, 5, 9 or 11 modulo 14 (and therefore modulo 7), p2 is evidently not congruent to
1, so g = 1. But then Z/gZ is the trivial group, so multiplication by p induces only one orbit,
yielding up to isomorphism only one extension.

When p ≡ 1, we have g = 7. But then multiplication by p puts each element of Z/gZ into its
own orbit, yielding 7 extensions.

Finally when p ≡ 13, we have p ≡ −1 (mod 7) and g = 7. Multiplication by p induces the
orbits {0}; {1, 6}; {2, 5}; {3, 4} of Z/gZ, so we have 4 extensions.

IV. If e = 14 and f = 1, g = (14, p − 1). When p is of the form 14k + 1, g is 14. Then
multiplication by p sorts the elements of Z/gZ into trivial orbits, giving 14 extensions.

When p is of the form 14k plus 3, 5, 9, 11 or 13, g is clearly equal to 2. By the same reasoning
in II above, there are only 2 extensions.

Putting the above material together we deduce:

Theorem 8.1. The number of nonisomorphic degree 14 extensions of Qp is 24 when p ≡ 1 (mod
14), 6 when p ≡ 3, 5, 9 or 11, and 8 when p ≡ 13.

The subcase where p is congruent to unity modulo the degree of the extension merits special
attention. When n is of the form 2q for some odd prime q, and p is a prime number ≡ 1 (mod 2q),
it is easy to see that the exact same arguments as above give us the following: up to isomorphism
the number of 2q-dimensional extensions of Qp is 1 + 2 + q + 2q.

More generally fixing a prime number p, we say that a natural number n is p-adically perfect
if up to isomorphism the number of n-dimensional extensions of Qp is

∑
d|n

d.

It has been observed that there are many more wildly ramified extensions up to isomorphism
than there are tamely ramified. It seems apparent that when p divides n, the number of degree
n extensions of Qp up to isomorphism should be greater than

∑
d|n

d. Exact formulas (source)
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are known detailing the number of extensions up to isomorphism of Qp of a fixed degree and
ramification index, but working with these formulas to obtain a suitable lower bound on the
number of extensions up to isomorphism in the wildly ramified case has been difficult. For the
time being, all that can be done is to state the following conjecture:

Conjecture 8.2. If n is p-adically perfect, then p cannot divide n.

The following theorem along with the previous conjecture would completely characterizes
p-adically perfect numbers:

Theorem 8.3. Suppose p does not divide n. Then n is p-adically perfect if and only if p ≡ 1
(mod n).

Proof. First suppose p ≡ 1 (mod n). Let e be any divisor of n. We have g = (e, pn/e − 1) = e
since pn/e is congruent to unity modulo n, and therefore modulo e. But also p ≡ 1 (mod e), so
multiplying all the elements of Z/gZ by p only sorts each element into its own orbit.

Thus there are e nonisomorphic n-dimensional extensions of Qp with ramification index e,
meaning there are

∑
e|n
e nonisomorphic extensions in total.

Conversely suppose n is p-adically perfect. Resolve n into prime factors, as AαBβCγ etc.
Now for each divisor d of n, the number of orbits of Z/gZ where g = (d, pn/d − 1) is ≤ g,

which is ≤ d. Thus for n to be p-adically perfect there must be exactly d nonisomorphic degree
n extensions of Qp with ramification index d. Otherwise the sum over d | n of the number of
nonisomorphic extensions with ramification index d will be strictly less than

∑
d|n

d.

For this to happen, we must first have g = d. Second, multiplication of Z/gZ by p must sort
each element into its own orbit, i.e. p must be congruent to unity modulo d = g.

Then p ≡ 1 modulo Aα, Bβ , Cγ etc. and hence modulo their product n.

When p ≡ −1, a similar but more complicated result can be deduced:

Theorem 8.4. If p is an odd prime congruent to −1 (mod n) with n even, then the number of
n dimensional extensions of Qp up to isomorphism is

∑
d|n

ord2(d)<ord2(n)

⌈
d+ 1

2

⌉
+

∑
d|n

ord2(d)=ord2(n)

2

.

Proof. Since p is odd, n is even, so we may write n = 2epe11 · · · pess . Let d be any divisor of n with
ord2(d) < e. Then g = (d, pn/d − 1) is equal to d since n/d is even, ensuring pn/d ≡ (−1)n/d = 1
(mod n) and therefore modulo d. Also p ≡ −1 (mod d), so multiplication by p sorts Z/gZ into
the orbits {0}; {1, d− 1}; {2, d− 2} etc.

Thus there are d+1
2 orbits if d is odd and d

2 + 1 orbits if d is even.
Now let d be any divisor of n with ord2(d) = e. Then n/d is odd, meaning pn/d ≡ (−1)n/d =

−1 modulo n, and therefore modulo any odd prime pi dividing n. We can then conclude that
d and pn/d − 1 do not have any odd prime divisors in common. On the other hand, pn/d ≡
(−1)n/d = −1 (mod 2e), and therefore modulo 2k for any k ≤ e. But −1 ≡ 1 (mod 2k) if and
only if k = 1, so we can conclude that g = (d, pn/d − 1) is equal to 2.

From the fact that p itself is 1 (mod 2), we can conclude that multiplication by p induces two
orbits of Z/gZ.
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Putting this all together, we see that the number of n-dimensional extensions of Qp up to
isomorphism is ∑

d|n
ord2(d)=0

d+ 1

2
+

∑
d|n

1≤ord2(d)<ord2(n)

(
d

2
+ 1

)
+

∑
d|n

ord2(d)=ord2(n)

2

But ∑
d|n

ord2(d)=0

d+ 1

2
+

∑
d|n

1≤ord2(d)<ord2(n)

(
d

2
+ 1

)
=

∑
d|n

ord2(d)<ord2(n)

⌈
d+ 1

2

⌉

.

Theorem 8.5. If in the previous theorem n is odd, then up to isomorphism the number of n
dimensional extensions of Qp is the number of divisors of n.

Proof. Let d be any nonunit divisor of n. For every nonunit divisor d1 of d, from p ≡ −1 (mod
n) we have p ≡ −1 (mod d1), hence pn/d ≡ (−1)n/d ≡ −1 (mod d1), with 1 6≡ −1 (mod d1).
Thus for each nonunit divisor d of n we have g = (d, pn/d − 1) = 1. Then every group Z/gZ on
which Z acts is trivial, so the assertion is obvious.

The group of units of Z/nZ is cyclic if and only if n = 2, 4, qk, or 2qk for k ∈ N and q an odd
prime. If n is one of those values, p2 ≡ 1 (mod n) if and only if p ≡ 1 (mod n) or p ≡ −1 (mod
n). So if n is one of those values, our theorems extend to the case where p2 ≡ 1 (mod n).

9 Ramification Groups
In this section, we introduce ramification groups, which will be useful in narrowing down the
possibilities for the Galois group of the Galois closure of an extension of Qp.

Let L/Qp be a Galois extension and let G = Aut(L/Qp). We define the ith ramification
group of G to be Gi = {σ ∈ G : νL(σ(x)− x) ≥ i+ 1 ∀x ∈ OL}.

Our main use of ramification groups comes from the following lemma.

Lemma 9.1. Let L/Qp be a Galois extension with $ a uniformizer for L and G := Gal(L/Qp).
Let Ui := 〈1 + ($i)〉 and let U0 be the group of units of L. Then

1. For i ≥ 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1 and hence is abelian.

2. G0/G1 is cyclic with order coprime to p.

3. Gi/Gi+1 are direct products of cyclic groups of order p.

4. G0 is the semi-direct product of a cyclic group of order coprime to p and a normal subgroup
which is a p-group

5. G and G0 are solvable

Proof. See [1] pg. 43

For a degree 14 extension of Q7, the Galois group of the Galois closure must be a transitive
subgroup of S14. There are 63 transitive subrgoups of S14. Using Lemma 9.1 we can narrow down
our list of possible Galois groups even further. After doing this, we find there are 17 subgroups
which satisfy these criteria.
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Table 1: Possible Galois Groups for p = 7

Galois Group Label (14T) Subfields CO Parity O.L. 2 O.L. 3 O.L. 4 O.L. 5
C(14)=7[x]2 1 7T1, 2T1 14 -1

D_14(14)=[7]2 2 7T2, 2T1 14 -1

D(7)[x]2 3 7T2, 2T1 2 -1

2[1/2]F_42(7) 4 7T4, 2T1 2 -1 [7,212,42]

F_21(7)[x]2 5 7T3, 2T1 2 -1

F_42(7)[x]2 7 7T4, 2T1 2 -1 [7,422]

[7ˆ2]2=7wr2 8 2T1 7 -1

1/2[D(7)2̂]2 12 2T1 1 1 [143,49]
[1/2.[D(7)2̂]2 13 2T1 1 -1 [143,49] [143, 28, 983] [143, 28, 493, 985, 196]
[7ˆ2:3]2 14 2T1 1 -1 [42,49] [142, 42, 294] [142, 42, 98, 147, 2942]
[7ˆ2:3_3]2 15 2T1 1 -1 [42,49] [142, 42, 294] [142, 42, 982, 1473, 294]
[D(7)ˆ2]2=D(7)wr2 20 2T1 1 -1 [143,49] [143, 28, 983] [143, 28, 492, 986, 196]
[1/6_-.F_42(7)ˆ2]2_2 22 2T1 1 1 [42,49] [28, 42, 294] [28, 42, 1473, 196, 294]
[1/6_+.F_42(7)ˆ2]2_2 23 2T1 1 1 [42,49] [28, 42, 294] [28, 42, 147, 196, 2942]
[7ˆ2:6]2 24 2T1 1 -1 [42,49] [28, 42, 294] [28, 42, 147, 196, 2942] [42, 196, 2944, 588]
[7ˆ2:6_3]2 25 2T1 1 -1 [42,49] [28, 42, 294] [28, 42, 1473, 196, 294]
[D(7)^2:3]2 32 2T1 1 -1 [42,49] [28, 42, 294] [28, 42, 147, 196, 2942] [42, 196, 2944, 588]

Table 2: Possible Galois Groups for p = 2

Galois Group Label (14T) Subfields Centralizer Order Parity Orbit Lengths 2 Orbit Lengths 3 Orbit Lengths 4
C(14)=7[x]2 1 7T1, 2T1 14 -1
[2ˆ3]7 6 7T1 2 1 [7,283] [146, 282, 564]
[2ˆ4]7 9 7T1 2 -1 [7,283] [146, 565] [73, 2815, 562, 1124]
[2ˆ6]7 21 7T1 2 1 [7,283] [146, 565]
[2ˆ7]7=2wr7 29 7T1 2 -1 [7,283] [146, 565] [73, 2815, 1125]
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Table 3: Counts for Extensions of Q7

e j # Ke,j # Qe,j7

1 0 1 1
2 0 2 2
7 1 336 27

2 336 27
3 336 27
4 336 27
5 336 27
6 336 54
7 343 28

14 1 84 6
2 84 12
3 84 6
4 84 12
5 84 6
6 84 18
8 588 48
9 588 42
10 588 48
11 588 42
12 588 96
13 588 42
14 686 56

=654

Table 4: Polynomials for Unramified Extensions of Q7

n = 2 x2 + 6x+ 3
n = 7 x7 + 6x+ 4
n = 14 x14 + 5x7 + 6x5 + 2x4 + 3x2 + 6x+ 3
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10 Our Computations
Using Lemma 9.1 we created a program in GAP to output only the transitive subgroups of
S14 which satisfied Lemma 9.1. The possible Galois groups for degree 14 extensions of Qp
must come from this list of groups. Using the T numbering system, we were able to determine
that the only possible Galois Groups for degree 14 extensions of Q7 are of the form 14Tj with
j ∈ {1, 2, 3, 4, 5, 7, 8, 12, 13, 14, 15, 20, 22, 23, 24, 25, 32}. A similar calculation gave us that the
only possible Galois Groups for degree 14 extensions of Q2 are of the form 14Ti with i ∈
{1, 6, 9, 21, 29}.

Then we created the p-adic field in Magma. Then, we used the AllExtensions() command
in Magma, which implements an algorithm outlined by Pauli in his thesis, to get a list of all
possible extensions of Qp of degree 14. This algorithm gave us a list of the degree 14 irreducible
polynomials defining all the extensions of Qp in a given algebraic closure. Two irreducible
polynomials of the same degree define isomorphic extensions if and only if one of the polynomials
has a root in the field generated by the other polynomial. Using the HasRoot() command, we
were able to make a list of polynomial representatives of the isomorphism classes of degree 14
extensions of Qp

Once we had these extensions, we began to compute properties of the field extensions and
invariants of the Galois Groups in an attempt to match each field extension with its corresponding
Galois Group. The group theoretic properties are listed in Tables 1 and 2.

Our first such property was subfield content. On the field theory side, for a degree 14 extension
L of Qp, the subfield content tells us the Galois group of the Galois closures of the intermediate
fields between L and Qp. On the LMFDB, we found polynomials defining all extensions of degree
2 and degree 7 over Qp. Such an extension contributes to the subfield content of L if and only
if the polynomial defining the extension has a root in L. Then we used Magma’s HasRoot()
command to determine which polynomials had roots in which fields, thus determining subfield
content. The LMFDB also contained the Galois groups of the Galois closures of these degree
2 and degree 7 subfields, so we then added these groups to our list when the corresponding
polynomial had a root in the field.

On the group theory side, the subfield content is the permutation representation of the Ga-
lois Group acting on the cosets of the subgroup corresponding to the intermediate field. This
information is easily calculated, but in our case, we were able to find the information in the
LMFDB.

Our next invariant was the centralizer order. The centralizer order of each possible group as
a subgroup of S14 corresponds to the size of the automorphism group of the extension. We used
Magma’s AutomorphismGroup() command to determine the size of the automorphism group of
each extension. A program on GAP was able to determine the size of the centralizer of each
possible Galois group as subgroups of S14.

Then, we calculated the parity of each extension. The parity of a subgroup of S14 is 1 if the
subgroup is contained in A14 and -1 otherwise. The parity of a field extension is determined
by using the discriminant of the defining polynomial. The Galois Group is contained in A14 if
and only if the discriminant of the defining polynomial is a square in Qp. Given a polynomial
f(x) ∈ Zp[x], factor disc(f) = pir, where r ∈ Zp and p - r. If i is odd, the disc(f) is not a square.
If i is even, disc(f) is a square if and only if u+ pZp is a square in the residue field Zp/pZp.

As our tables indicate, these invariants do not give us enough information to classify the Galois
group. For example, the Galois groups 14T4 and 14T7 have the same subfield content, centralizer
order, and parity. To sort between these groups, we have had to use resolvent polynomials.
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11 Computation of Galois Groups Using Resolvents
In most cases, the subfield content, centralizer order, and parity information are not sufficient
to distinguish the Galois group of the Galois closure of a given degree 14 extension of Qp. In
this section, we introduce a powerful tool in computational algebra for computing Galois groups,
known as resolvents. As an example, we also give the explicit details of the computation a
resolvent for a certain degree 14 extension of Q7.

Let f(x) ∈ Qp[x] be an irreducible polynomial of degree n and set K = Qp[x]/(f). Fix an
algebraic closure of K and set and arbitrary ordering of the roots of f by α1, α2, . . . , αn. Since
f is irreducible, the Galois group of the Galois closure Kg of K is a isomoprhic to a transitive
subrgoup of Sn.

Definition 1. Let G be a subgroup of Sn containing Gal(Kg) and let
F (X1, X2, . . . , Xm) be a polynomial in m variables with coeffients in Zp. If H is the stabilizer of
F in G, that is,

H = {σ ∈ G : F (Xσ(1), Xσ(2), . . . , Xσ(m)) = F (X1, X2, . . . , Xm)},

we define the resolvent polynomial RG(F, f) by

RG(F, f) =
∏

σ∈G/H

(X − F (ασ(1), ασ(2), . . . , ασ(n))),

where G/H denotes any set of left coset representatives of G modulo H.

The resolvent polynomial RG(F, f) has coeffiecents in Zp. If G = Sn, we call the resolvent an
absolute resolvent. Otherwise, we call the resolvent a relative resolvent. We have the following
result which will be useful for computing Galois groups

Theorem 1. Using the same notation as in the previous definition, set l = [G : H] = deg(RG(F, f)).
Then if RG(F, f) is squarefree, its Galois group is equal to φ(Gal(Kg)), where φ is the natural
group homomorphism from G to Sm given by the natrual left action of G on G/H. In particular,
the list of the degrees of the irreducible factors of RG(F, f) in Zp[x] is the same as the list of the
lengths of the orbits of the action of φ(Gal(Kg)) on [1, . . . , l].

It often happens that RG(F, f) is not squarefree. In that case, in order to apply the theorem
we use a Tschirnhausen transformation on f to get a new irreducible polynomial defining the
same extension as f . The Tschirnhausen transformation is given by the following algorithm.

Algorithm 1. Given a monic irreducibe polynomial f ∈ Zp[x] of degree n defining an extension
of Qp, we find another such polynomial defining the same extension.

1. Choose at random a polynomial A ∈ Z[x] of degree at most n− 1.

2. Compute the resultant U =Y (f(Y ), X −A(Y )).

3. Compute V = gcd(U,U ′). If V is constant, then return U . Otherwise, go to step 1.

In the case G = Sn and F = X1 + . . . + Xm, then the stabillizer of F in G consists all
permutations in Sn that fix {1, . . . ,m} ⊆ {1, . . . , n}, and it follows that the degree of RSn

(F, f)
is
(
n
m

)
. If the resolvent RSn(F, f), which we shall denote from now on by R(F, f) when G = Sn,

is squarefree then the degrees of its irreducible factors correspond to the lengths of the orbits of
the action of Gal(Kg) on the set

{{a1, . . . , am} : a1, . . . , am ∈ {1, . . . , n}, ai 6= aj if i 6= j}.
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The action of Gal(Kg) on this set defined by the componentwise action of Gal(Kg) on {1, . . . , n}.
The formula for the resolvent can be written as

R(X1 + . . .+Xm, f) =
∏

i1<i2<...<im
i1,i2,...,im∈{1,...,n}

(X − (αi1 + αi2 + . . .+ αim)).

We now introduce resultants as a computational tool for computing resolvents. For two polyno-
mials P (X), Q(X) over some field k we define their resultant by

(P,Q) =
∏

P (x)=Q(Y )=0

(X − Y )

where the roots of P and Q are in some algebraic closure of k. Note that (P,Q) = 0 if and only if
P and Q have a common root. For our purposes, the resultant will be computed for polynomials
in two variables. In this case, we will indicate by a subscript which variable should be considered
the indeterminate.

Returning to the computation of resultants, when m = 2, we have the following formula for
R(X1 +X2, f) in terms of a resultant.

R(X1 +X2, f)(X) =

(
Y (f(Y ), f(X − Y ))

2nf(X/2)

)1/2

.

Table ?? shows the lengths of the orbits of the possible Galois groups of a degree 14 extension
of Q7 acting on subsets of 1, . . . , of size 2. From this table, it is clear that we may distiniguish
between the groups 14T4 and 14T7 by using the degree 91 resolvent R(X1 + X2, f)(X). The
following section gives an example computation of such a resolvent.

11.1 Example computation of a resolvent
In this brief section we give the details of the computation of a degree 91 resolvent which allows
us to distinguish between the Galois groups 14T4 and 14T7. We start with the irreducible
polynomial f(x) = x14 + 63x8 + 42x4 + 7 ∈ Z7[x]. The extension of Q7 defined by f has subfields
2T1 and 7T4, and centralizer order 2. From table ??, it follows that we can look at the degrees
of the irreducible factors of R(X1 +X2, f)(X) to determine the Galois group of f .

Using the computer algebra system MAGMA, we compute this resolvent using the resultant
formula from the previous section. Since the computation of such resultants in MAGMA using
7-adic numbers is slow, we perform the resultant computation using polynomials with coefficients
in Q. The polynomial division operations are also performed using polynomials with rational
coefficients. After completing these operations, we are left with the degree 182 polynomial
(R(X1+X2, f)(X))2, the square of our desired resultant. This polynomial has integer cefficients,
and we do not write the polynomial here due to its large size. There is no easy way to take the
square root of such a polynomial, but we do not have to in this case becuase it is immediately
clear by inspection that the resolvent will have a factor of x7, and hence it will not be squarefree.

It is necessary to apply a Tschirnhausen transformation to f . The random polynomial for
the Tschirnhausen transformation is computed having integer coefficients between -100 and 100.
The resultant operation in Algorithm ?? is again performed using polynomials over the rationals
to save time. This resultant is guaranteed to have integer coefficients. The GCD in step 3 is
computed using polynomials defined over Z7. In our case, the Tschirnhausen transformation
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gave us the irreducible polynomial

f̃ = x14 − 159386430x13 + 10634011442862563x12

− 379453659173400909113198x11 + 956818924656628628832524x10

− 74302355417026786790741x9 + 6670128989326460944686302x8

− 8416255512999659948732990x7 − 5190590597903057517040514x6

+ 5754175722477884019190432x5 + 6966146269713383534465537x4

− 10832766079412731838804252x3 − 6559774213295333139272394x2

− 9580002566170570565448165x+ 7038300025323821440669079.

We now compute the square of the resolvent R(X1 +X2, f̃)(X) as before. Factoring this degree
182 polynomial over Q7 and removing one copy of each factor to get the square root, we are left
with the factorization of the resolvent R(X1 + X2, f̃)(X) over Q7. In our case, this polynomial
turned out to be squarefree and had irreducible factors of degrees 7, 21, 21 and 42. We can then
conclude that the Galois group of f is 14T4.

12 Degree 14 Extensions of Q7

The following table gives a list of defining polynomials for all degree 14 Extensions of Q7. The
e column is the ramification index of the extension, the j column is the j from Ore’s condition.
The sgg content column is the subfield content of the extension, the C.O. column is the size of
the automorphism group and the parity is 1 if the discriminant of the polynomial is a square in
Q7. The G column is the Galois group of the extension.

Table 5: Extensions of Q7

Defining Polynomial e j sgg Content C.O. Parity G
x14−84x12+49x10−42x7+49x5+
105

14 5 2T1 1 -1

x14 + 7x12 + 21 14 5 2T1, 7T3 2 1
x14 − 91x12 + 98x10 − 91x7 −
147x5 − 28

14 5 2T1 1 -1

x14 − 91x12 + 98x10 + 161x7 +
49x5 − 77

14 5 2T1 1 1

x14−91x12+98x10+70x7−98x5+
70

14 5 2T1 1 -1

x14 + 7x12 + 35 14 5 2T1, 7T3 2 1
x14 + 161x12 + 49x10 − 91x7 +
49x5 − 28

14 5 2T1 1 -1

x14 + 161x12 + 49x10 + 161x7 +
98x5 − 77

14 5 2T1 1 1

x14 + 161x12 + 49x10 + 70x7 +
147x5 + 70

14 5 2T1 1 -1

x14 + 21x12 + 21 14 5 2T1, 7T2 2 1
x14 + 70x12 − 147x10 − 91x7 −
98x5 − 28

14 5 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 70x12 − 147x10 + 161x7 +
147x5 − 77

14 5 2T1 1 1

x14 + 70x12 − 147x10 + 70x7 +
49x5 + 70

14 5 2T1 1 -1

x14 − 21x12 − 147x10 − 126 14 5 2T1, 7T1 14 1
x14 + 14x12 + 35 14 5 2T1, 7T1 14 -1
x14 − 21x12 − 147x10 + 168 14 5 2T1, 7T1 14 1
x14 − 21x12 − 147x10 − 28 14 5 2T1, 7T1 14 -1
x14 + 14x12 + 84 14 5 2T1, 7T1 14 1
x14 + 7x12 + 91 14 5 2T1, 7T1 14 -1
x14 + 7x12 + 42 14 5 2T1, 7T1 14 1
x14 − 21x12 − 147x10 − 91x7 +
98x5 − 28

14 5 2T1 7 -1

x14 − 21x12 − 147x10 − 91x7 +
98x5 + 119

14 5 2T1 7 1

x14 − 21x12 − 147x10 − 91x7 +
98x5 − 77

14 5 2T1 7 -1

x14 − 21x12 − 147x10 − 91x7 +
98x5 + 70

14 5 2T1 7 1

x14 − 21x12 − 147x10 − 91x7 +
98x5 − 126

14 5 2T1 7 -1

x14 − 21x12 − 147x10 − 91x7 +
98x5 + 21

14 5 2T1 7 1

x14 − 21x12 − 147x10 − 91x7 +
98x5 + 168

14 5 2T1 7 -1

x14 − 21x12 − 147x10 + 161x7 −
147x5 − 77

14 5 2T1 7 1

x14 − 21x12 − 147x10 + 161x7 −
147x5 + 70

14 5 2T1 7 -1

x14 − 21x12 − 147x10 + 161x7 −
147x5 − 126

14 5 2T1 7 1

x14 − 21x12 − 147x10 + 161x7 −
147x5 + 21

14 5 2T1 7 -1

x14 − 21x12 − 147x10 + 161x7 −
147x5 + 168

14 5 2T1 7 1

x14 − 21x12 − 147x10 + 161x7 −
147x5 − 28

14 5 2T1 7 -1

x14 − 21x12 − 147x10 + 161x7 −
147x5 + 119

14 5 2T1 7 1

x14 − 21x12 − 147x10 + 70x7 −
49x5 + 70

14 5 2T1 7 -1

x14 − 21x12 − 147x10 + 70x7 −
49x5 − 126

14 5 2T1 7 1

x14 − 21x12 − 147x10 + 70x7 −
49x5 + 21

14 5 2T1 7 -1

x14 − 21x12 − 147x10 + 70x7 −
49x5 + 168

14 5 2T1 7 1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 − 21x12 − 147x10 + 70x7 −
49x5 − 28

14 5 2T1 7 -1

x14 − 21x12 − 147x10 + 70x7 −
49x5 + 119

14 5 2T1 7 1

x14 − 21x12 − 147x10 + 70x7 −
49x5 − 77

14 5 2T1 7 -1

x14 + 21x12 + 42 14 5 2T1, 7T4 2 1
x14 − 112x12 + 49x10 − 91x7 −
49x5 − 28

14 5 2T1 1 -1

x14 − 112x12 + 49x10 + 161x7 −
98x5 − 77

14 5 2T1 1 1

x14 − 112x12 + 49x10 + 70x7 −
147x5 + 70

14 5 2T1 1 -1

x14 + 21x12 + 35 14 5 2T1, 7T4 2 1
x14 + 140x12 + 98x10 − 91x7 +
147x5 − 28

14 5 2T1 1 -1

x14 + 140x12 + 98x10 + 161x7 −
49x5 − 77

14 5 2T1 1 1

x14 + 140x12 + 98x10 + 70x7 +
98x5 + 70

14 5 2T1 1 -1

x14 + 7x+ 22 7 -6 2T1 1 1
x14 + 7x+ 11 7 -6 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 42x8 − 141x7 +
161x6 − 77x5 − 98x4 + 91x3 +
112x2 − 49x− 95

7 -6 2T1 1 1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 41x7 + 63x6 −
77x5 +140x3−84x2−161x−102

7 -6 2T1 1 -1

x14 + 7x+ 18 7 -6 2T1 1 1
x14 + 7x+ 8 7 -6 2T1 1 -1
x14 + 49x+ 2 7 -6 2T1, 7T4 2 -1
x14 + 7x+ 32 7 -6 2T1 1 -1
x14 + y7 + 32 7 -6 2T1 1 -1
x14 + 7x+ 1 7 -6 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 14x8 + 34x7 −
35x6+70x5+98x4+91x3−35x2−
168x+ 59

7 -6 2T1 1 -1

x14 + 98x+ 98 7 -6 2T1 1 -1
x14 + 7x2 + 1 7 -6 2T1, 7T4 2 -1
x14 + 7x+ 9 7 -6 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 112x8 + 6x7 +
63x6 − 126x5 − 56x3 − 84x2 −
147x+ 136

7 -6 2T1 1 1

x14 + 7x+ 23 7 -6 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 28x8 + 27x7 −
133x6 − 126x5 − 147x4 + 42x3 +
112x2 + 70x+ 171

7 -6 2T1 1 -1

x14 + 7x+ 16 7 -6 2T1, 7T4 2 -1
x14 + 49x+ 98 7 -6 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10+35x9+126x8−y7−35x6+
21x5+98x4−105x3+63x2+91x−
95

7 -6 2T1 1 -1

x14 + 7x+ 36 7 -6 2T1 1 1
x14 + 7x+ 37 7 -6 2T1, 7T4 2 -1
x14 + 7x+ 2 7 -6 2T1 1 -1
x14 + y7 + 4 7 -6 2T1 1 -1
x14 + 28x2 + 1 7 -6 2T1, 7T4 2 -1
x14 + 7x+ 4 7 -6 2T1 1 -1
x14 + 35x2 + 1 7 -6 2T1, 7T4 2 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 − 7x9 + 140x8 − 57x7 −
84x6+119x5−56x3−98x2+77x−
25

7 -5 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 − 49x9 + 112x8 − 113x7 +
63x6−28x5+42x3+84x2−133x+
122

7 -5 2T1 1 1

x14 + 42x13 + 91x12 + 84x11 −
49x10 − 91x9 + 84x8 − 169x7 −
133x6 + 168x5 − 49x4 − 105x3 −
77x2 − 49x+ 171

7 -5 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 − 133x9 + 56x8 + 118x7 +
14x6 + 21x5 − 147x4 − 154x3 +
105x2 − 14x+ 122

7 -5 2T1 1 1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 168x9 + 28x8 + 62x7 +
161x6 − 126x5 + 49x4 − 105x3 −
56x2 − 28x− 25

7 -5 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 126x9 + 6x7 − 35x6 +
70x5 − 147x4 + 42x3 + 126x2 −
91x+ 73

7 -5 2T1 1 1

x14 + 42x2 + 8 7 -5 2T1, 7T3 2 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 7x9 − 168x8 + 6x7 +
161x6 − 126x5 − 49x4 − 154x3 −
7x2 + 56x− 165

7 -5 2T1 1 1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 42x13 + 91x12 + 84x11 −
49x10 − 35x9 + 147x8 − 50x7 −
35x6 + 70x5 − 154x3 − 168x2 −
105x+ 80

7 -5 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 − 77x9 + 119x8 − 106x7 +
112x6−77x5−56x3+14x2+28x−
116

7 -5 2T1 1 1

x14 + 42x13 + 91x12 + 84x11 −
49x10 − 119x9 + 91x8 − 162x7 −
84x6 + 119x5 − 49x4 + 140x3 −
147x2 + 112x− 67

7 -5 2T1 1 -1

x14 + 7x9 + 98 7 -5 2T1 1 -1
x14 + 42x2 + 4 7 -5 2T1, 7T3 2 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 21x9 − 133x8 + 69x7 +
63x6 − 28x5 − 105x3 + 84x2 +
133x− 109

7 -5 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 − 21x9 − 161x8 + 13x7 −
133x6 + 168x5 + 98x4 + 140x3 −
77x2 + 21x− 109

7 -5 2T1 1 -1

x14 + 7x9 + 49 7 -5 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 − 105x9 + 126x8 − 99x7 +
161x6−126x5 + 147x4−105x3−
56x2 − 7x− 60

7 -5 2T1 1 -1

x14 + 42x2 + 2 7 -5 2T1, 7T4 2 -1
x14 + 14x9 + 49 7 -5 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 − 7x9 − 126x8 + 76x7 +
112x6 − 77x5 − 49x4 − 105x3 +
14x2 − 98x− 102

7 -5 2T1 1 1

x14 + 42x13 + 91x12 + 84x11 −
49x10 − 49x9 − 154x8 + 20x7 −
84x6 + 119x5 + 49x4 + 140x3 −
147x2 + 133x− 102

7 -5 2T1 1 -1

x14 + 42x2 + 1 7 -5 2T1, 7T3 2 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 49x9 − 63x8 − 148x7 −
133x6 + 168x5 + 49x4 + 91x3 −
77x2 − 105x− 95

7 -5 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 7x9 − 91x8 + 139x7 +
14x6 + 21x5 − 98x4 + 140x3 +
105x2 − 119x+ 101

7 -5 2T1 1 -1

x14 + 42x2 + 9 7 -5 2T1, 7T4 2 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 63x9 − 28x8 − 85x7 +
112x6 − 77x5 + 49x4 − 105x3 +
14x2 − 77x− 137

7 -5 2T1 1 1

x14 + 42x2 + 29 7 -5 2T1, 7T4 2 -1
x14 + 42x13 + 91x12 + 84x11 −
91x10+140x9+49x8−y7+14x6+
168x5 − 49x4 + 77x3 − 105x2 −
154x− 4

7 -4 2T1 1 1

x14 + 42x13 + 91x12 + 84x11 −
133x10 − 98x9 − 70x8 − y7 −
133x6 − 126x5 + 49x4 + 112x3 +
21x2 + 91x− 32

7 -4 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 +
168x10+7x9+154x8−y7+14x6+
70x5−98x4+49x3+98x2−56x−
11

7 -4 2T1 1 1

x14 + 42x13 + 91x12 + 84x11 +
126x10 + 112x9 + 35x8 − y7 +
112x6 + 70x5 − 147x4 − 112x3 +
126x2 + 91x+ 59

7 -4 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 +
84x10 − 126x9 − 84x8 − y7 +
161x6 − 126x5 − 98x4 − 28x3 +
105x2 − 154x− 165

7 -4 2T1 1 1

x14 + 42x13 + 91x12 + 84x11 +
42x10 − 21x9 + 140x8 − y7 +
161x6 + 168x5 + 49x4 − 42x3 +
35x2 − 105x+ 3

7 -4 2T1 1 -1

x14 + 7x10 + 98 7 -4 2T1, 7T4 2 -1
x14 + 42x13 + 91x12 + 84x11 −
77x10 − 126x9 + 140x8 − 43x7 +
63x6 − 126x5 − 49x4 + 70x3 +
35x2 − 84x− 53

7 -4 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
119x10 − 21x9 + 21x8 − 43x7 −
35x6 + 119x5 − 49x4 − 140x3 −
133x2 − 133x− 130

7 -4 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
161x10 + 84x9 − 98x8 − 43x7 +
161x6 + 168x5 + 49x4 − 105x3 −
7x2 + 112x− 158

7 -4 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 +
140x10− 154x9 + 126x8− 43x7−
35x6 + 21x5 − 98x4 − 168x3 +
70x2 − 35x− 137

7 -4 2T1 1 -1

x14 + 49x3 + 98 7 -4 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 14x10 + 98 7 -4 2T1, 7T2 2 -1
x14 + 42x13 + 91x12 + 84x11 −
63x10 − 49x9 − 112x8 − 85x7 −
133x6 − 28x5 + 98x4 − 84x3 −
70x2 + 84x+ 143

7 -4 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
105x10 + 56x9 + 112x8 − 85x7 +
161x6 + 70x5 + 147x3 + 154x2 +
84x+ 17

7 -4 2T1 1 1

x14 + 49x3 + 49 7 -4 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 +
154x10 − 77x9 − 126x8 − 85x7 −
84x6 + 21x5 + 98x4 − 28x3 +
112x2 − 63x− 88

7 -4 2T1 1 -1

x14 + 21x10 + 98 7 -4 2T1, 7T4 2 -1
x14 + 98x3 + 49 7 -4 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
91x10 + 133x9− 140x8− 127x7 +
112x6 + 70x5 − 147x4 − 56x3 −
147x2 + 56x+ 66

7 -4 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
133x10− 105x9 + 84x8− 127x7 +
63x6 + 168x5 + 98x4 − 168x3 +
77x2 + 56x− 60

7 -4 2T1 1 1

x14 + 7x10 + 49 7 -4 2T1, 7T4 2 -1
x14 + 42x13 + 91x12 + 84x11 −
35x10 + 105x9 + 70x8 − 169x7 +
112x6 − 28x5 + 147x4 − 147x3 +
14x2 + 28x− 102

7 -4 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
77x10 − 133x9 − 49x8 − 169x7 +
161x6 + 119x5 − 147x4 − 63x3 −
7x2 + 126x+ 17

7 -4 2T1 1 -1

x14 + 21x10 + 49 7 -4 2T1, 7T2 2 -1
x14 + 42x13 + 91x12 + 84x11 −
21x10− 161x9 + 161x8 + 132x7−
133x6 − 126x5 + 49x4 − 56x3 −
140x2 + 147x+ 143

7 -4 2T1 1 -1

x14 + 35x10 + 49 7 -4 2T1, 7T4 2 -1
x14 + 42x13 + 91x12 + 42x11 −
154x10 + 91x9 − 126x8 + 69x7 +
112x6 + 168x5 + 84x4 − 35x3 −
35x2 − 21x− 144

7 -3 2T1 1 -1

x14 + 42x13 + 91x12 + 84x10 +
147x9 − 126x8 − 8x7 − 84x6 −
28x5 − 126x4 + 35x3 + 161x2 −
133x+ 129

7 -3 2T1 1 1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 42x13 + 91x12 − 42x11 −
21x10− 140x9 + 168x8 + 111x7−
133x6 + 21x5 + 7x4 + 154x3 −
35x2 − 98x− 137

7 -3 2T1 1 -1

x14 + 42x13 + 91x12 − 84x11 −
126x10 − 84x9 + 70x8 + 83x7 −
35x6 − 28x5 + 140x4 − 21x3 +
63x2 + 84x+ 87

7 -3 2T1 1 1

x14 + 42x13 + 91x12 − 126x11 +
112x10 − 28x9 − 77x8 − 92x7 −
133x6 + 168x5 − 70x4 − 147x3 +
112x2 + 70x+ 115

7 -3 2T1 1 -1

x14 + 42x13 + 91x12 − 168x11 +
7x10+28x9+70x8−71x7−84x6−
77x5 + 63x4 + 119x3 + 112x2 −
140x− 53

7 -3 2T1 1 1

x14 + 49x4 + 98 7 -3 2T1, 7T3 2 -1
x14 + 42x13 + 91x12 + 56x11 −
35x10 + 77x9 + 49x8 − 29x7 +
63x6−126x5−70x4+70x3+7x2−
70x− 165

7 -3 2T1 1 1

x14 + 42x13 + 91x12 + 14x11 −
140x10 + 133x9 + 98x8 + 41x7 +
63x6 + 119x5 + 63x4 + 91x3 −
91x2 + 14x− 39

7 -3 2T1 1 -1

x14 + 42x13 + 91x12 − 28x11 +
98x10 − 154x9 + 98x8 − 36x7 −
133x6 − 77x5 − 147x4 + 161x3 +
105x2 − 98x− 109

7 -3 2T1 1 1

x14 + 42x13 + 91x12 − 70x11 −
7x10 − 98x9 + 49x8 + 83x7 +
161x6 − 28x5 − 14x4 − 63x3 −
91x2 − 63x− 32

7 -3 2T1 1 -1

x14 + 21x11 + 49 7 -3 2T1 1 -1
x14 + 98x4 + 98 7 -3 2T1, 7T3 2 -1
x14 + 42x13 + 91x12 + 70x11 +
84x10 + 63x9 − 21x8 + 167x7 +
63x6 + 119x5 + 119x4 + 77x3 +
147x2 − 70x− 137

7 -3 2T1 1 -1

x14 + 42x13 + 91x12 + 28x11 −
21x10 + 119x9 + 77x8 + 41x7 −
84x6 + 119x5 − 91x4 + 49x3 +
98x2 − 133x− 158

7 -3 2T1 1 -1

x14 + 7x11 + 49 7 -3 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 42x13 + 91x12 − 56x11 +
112x10− 112x9 + 126x8 + 34x7 +
63x6 + 168x5 − 168x4 + 140x3 −
147x2 − 161x− 102

7 -3 2T1 1 -1

x14 + 42x13 + 91x12 + 126x11 −
35x10 − 7x9 + 154x8 + 146x7 −
133x6 + 21x5 − 168x4 + 112x3 −
7x2 − 7x− 88

7 -3 2T1, 7T4 2 -1

x14 + 14x11 + 49 7 -3 2T1 1 -1
x14 + 42x13 + 91x12 + 42x11 +
98x10 + 105x9 + 154x8 − 8x7 +
161x6 − 28x5 + 98x4 − 91x3 +
42x2 + 112x+ 115

7 -3 2T1 1 1

x14 + 42x13 + 91x12 − 7x10 +
161x9 − 91x8 − 134x7 + 14x6 −
28x5−112x4−119x3−7x2+49x+
94

7 -3 2T1 1 -1

x14 + 49x4 + 49 7 -3 2T1, 7T3 2 -1
x14 + 42x13 + 91x12 + 98x11 −
21x10 + 35x9 + 133x8 + 69x7 −
133x6 + 168x5 + 154x4 + 140x3 +
35x2 + 77x+ 66

7 -3 2T1 1 -1

x14 + 42x13 + 91x12 + 56x11 −
126x10 + 91x9 − 14x8 − 106x7 +
112x6 + 21x5 − 56x4 + 14x3 +
84x2 + 63x+ 94

7 -3 2T1 1 -1

x14 + 42x13 + 91x12 + 154x11 −
140x10−35x9+63x8−y7+63x6−
77x5 − 133x4 + 77x3 − 21x2 −
154x+ 164

7 -3 2T1, 7T4 2 -1

x14 + 42x13 + 91x12 + 112x11 +
98x10 + 21x9 + 14x8 + 118x7 +
14x6 − 28x5 − 147x3 + 126x2 −
119x− 102

7 -3 2T1 1 1

x14 + 42x13 + 91x12 + 168x11 −
21x10 − 49x9 − 7x8 − 148x7 +
63x6 + 168x5 + 56x4 + 84x3 +
119x2 − 154x− 151

7 -3 2T1, 7T4 2 -1

x14 + 42x13 + 49x12 + 112x11 −
119x10− 161x9 + 28x8 + 125x7 +
112x6 + 56x5 + 63x4 − 56x3 +
77x2 + 35x− 116

7 -2 2T1 1 1

x14 + 42x13 + 7x12 + 140x11 +
105x10 − 112x9 + 35x8 − 92x7 −
35x6−56x5+77x4−56x3−56x2+
126x+ 136

7 -2 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 42x13 − 35x12 + 168x11 −
63x10 − 161x9 − 154x8 + 34x7 +
14x6−70x5−7x4−56x3 +7x2 +
168x+ 143

7 -2 2T1 1 1

x14 + 42x13 − 77x12 − 147x11 +
63x10 + 35x9 + 147x8 + 160x7 −
84x6 + 14x5 + 154x4 − 56x3 −
77x2 + 161x− 95

7 -2 2T1 1 -1

x14 + 42x13 − 119x12 − 119x11 +
140x10 + 133x9 − 91x8 − 57x7 +
14x6 − 147x5 − 126x4 − 56x3 +
35x2 + 105x+ 108

7 -2 2T1 1 1

x14 + 42x13 − 161x12 − 91x11 +
168x10 + 133x9 + 161x8 + 69x7−
35x6 +133x5−161x4−56x3 +66

7 -2 2T1 1 -1

x14 + 21x12 + 98 7 -2 2T1, 7T4 2 -1
x14 + 42x13 + 63x12 − 70x11 +
70x10 + 56x9 + 126x8 + 55x7 +
161x6 + 98x5 − 14x4 + 63x3 −
168x2 − 119x+ 150

7 -2 2T1 1 -1

x14 + 42x13 + 21x12 − 42x11 −
140x9 − 14x8 − 162x7 + 161x6 −
112x5 + 98x4 + 63x3 − 154x2 +
21x− 39

7 -2 2T1 1 -1

x14 + 42x13 − 21x12 − 14x11 −
119x10 − 91x9 − 7x8 − 36x7 +
14x6 + 119x5 + 112x4 + 63x3 +
56x2 + 112x− 130

7 -2 2T1 1 -1

x14 + 42x13 − 63x12 + 14x11 +
56x10 − 140x9 + 147x8 + 90x7 +
63x6 + 105x5 + 28x4 + 63x3 +
119x2 + 154x− 123

7 -2 2T1 1 -1

x14 + 42x13 − 105x12 + 42x11 −
161x10 + 56x9 + 105x8− 127x7−
35x6 − 154x5 − 154x4 + 63x3 +
35x2 + 147x− 18

7 -2 2T1 1 -1

x14 + 21x12 + 49 7 -2 2T1, 7T4 2 -1
x14 + 42x13 + 77x12 + 91x11 +
14x10 + 126x9 − 70x8 − 15x7 +
161x6 − 56x5 + 105x4 − 161x3 −
119x2 + 168x− 123

7 -2 2T1 1 -1

x14 + 42x13 + 35x12 + 119x11 −
7x10 + 28x9 − 14x8 + 111x7 −
35x6 − 21x5 − 28x4 − 161x3 +
42x2 + 14x− 67

7 -2 2T1 1 1

x14 + 49x5 + 49 7 -2 2T1 1 -1

37



Defining Polynomial e j sgg Content C.O. Parity G
x14 + 42x13 − 49x12 − 168x11 +
147x10− 119x9− 147x8 + 20x7 +
161x6 + 98x4 − 161x3 − 77x2 −
98x− 4

7 -2 2T1 1 -1

x14 + 7x12 + 49 7 -2 2T1, 7T4 2 -1
x14 + 98x5 + 49 7 -2 2T1 1 -1
x14 + 42x13 + 49x12 − 63x11 +
84x10 + 49x9 + 35x8 + 41x7 +
63x6 − 126x5 + 42x4 − 42x3 −
154x2 + 105x+ 52

7 -2 2T1 1 -1

x14 + 42x13 + 7x12 − 35x11 +
63x10 − 49x9 + 91x8 + 167x7 −
133x6−91x5−91x4−42x3+7x2−
49x+ 108

7 -2 2T1 1 1

x14 + 35x12 + 98 7 -2 2T1, 7T4 2 -1
x14 + 42x13 + 105x12 + 70x11 −
147x10 + 168x9 + 28x8− 155x7 +
14x6 + 77x5 − 98x4 + 77x3 −
168x2 + 7x+ 115

7 -2 2T1 1 -1

x14 + 42x13 + 63x12 + 98x11 −
70x10 − 77x9 + 133x8 − 29x7 +
112x6 − 84x5 − 35x4 + 77x3 −
56x2 − 49x− 25

7 -2 2T1 1 -1

x14 + 7x12 + 98 7 -2 2T1, 7T4 2 -1
x14 + 42x13 + 119x12 − 112x11 +
91x10 + 140x9 − 21x8 + 118x7 −
133x6 + 21x5 − 77x4 − 147x3 +
77x2 − 98x− 60

7 -2 2T1 1 -1

x14 + 14x12 + 49 7 -2 2T1, 7T4 2 -1
x14 + 56x12 − 21x11 − 147x10 +
154x9 − 7x8 + 55x7 + 98x6 +
126x5 + 49x4 − 77x3 − 154x2 −
63x− 165

7 -1 2T1 1 -1

x14 − 42x13 − 28x12 + 168x11 −
147x10− 168x9 + 112x8 + 13x7 +
133x6+35x5+49x4+21x2+77x−
109

7 -1 2T1 1 1

x14 − 84x13 − 161x12 − 35x11 −
49x10 + 98x9 − 161x8 − 127x7 −
126x6 − 7x5 − 49x4 − 168x3 −
98x2 − 28x− 102

7 -1 2T1 1 -1

x14 − 126x13 + 56x11 + 147x10 −
77x9−140x8−22x7+7x6+98x4+
105x3 − 168x2 − 35x− 144

7 -1 2T1 1 1

38



Defining Polynomial e j sgg Content C.O. Parity G
x14 − 168x13 + 112x12 + 98x11 +
98x10 − 7x9 − 168x8 − 15x7 −
154x6 + 56x5 + 147x4 + 133x3 +
154x2 + 56x+ 108

7 -1 2T1 1 -1

x14 + 133x13 − 168x12 + 91x11 +
147x10 − 35x9 + 98x8 − 106x7 +
77x6 + 161x5 + 98x4 − 84x3 −
161x2 − 98x− 32

7 -1 2T1 1 1

x14 + 56x13 − 147x11 + 91x10 −
14x9 − 154x8 + 69x7 + 56x6 −
140x5+7x4−7x3−154x2−77x+
17

7 -1 2T1, 7T2 14 -1

x14 + 56x13 − 147x11 + 91x10 −
14x9 − 154x8 + 118x7 + 56x6 −
140x5+7x4−7x3−154x2−77x−
81

7 -1 2T1 7 -1

x14 + 56x13 − 147x11 + 91x10 −
14x9 − 154x8 + 167x7 + 56x6 −
140x5+7x4−7x3−154x2−77x+
164

7 -1 2T1 7 -1

x14 + 56x13 − 147x11 + 91x10 −
14x9 − 154x8 − 127x7 + 56x6 −
140x5+7x4−7x3−154x2−77x+
66

7 -1 2T1 7 -1

x14 + 14x13 + 14x12 + 140x11 −
105x10− 140x9 + 63x8− 120x7−
7x6 + 14x5 − 140x4 − 126x3 −
77x2 − 133x+ 171

7 -1 2T1 1 -1

x14 − 28x13 − 21x12 + 35x11 +
140x10 − 21x9 − 112x8 − 64x7 −
21x6 − 126x5 − 42x4 − 147x3 +
49x2 − 91x− 67

7 -1 2T1 7 -1

x14 − 28x13 − 21x12 + 35x11 +
140x10 − 21x9 − 112x8 − 15x7 −
21x6 − 126x5 − 42x4 − 147x3 +
49x2 − 91x− 165

7 -1 2T1 7 -1

x14 − 28x13 − 21x12 + 35x11 +
140x10 − 21x9 − 112x8 + 34x7 −
21x6 − 126x5 − 42x4 − 147x3 +
49x2 − 91x+ 80

7 -1 2T1 7 -1

x14 − 28x13 − 21x12 + 35x11 +
140x10 − 21x9 − 112x8 + 83x7 −
21x6 − 126x5 − 42x4 − 147x3 +
49x2 − 91x− 18

7 -1 2T1 7 -1

39



Defining Polynomial e j sgg Content C.O. Parity G
x14 − 28x13 − 21x12 + 35x11 +
140x10− 21x9− 112x8 + 132x7−
21x6 − 126x5 − 42x4 − 147x3 +
49x2 − 91x− 116

7 -1 2T1 7 -1

x14 − 28x13 − 21x12 + 35x11 +
140x10− 21x9− 112x8− 162x7−
21x6 − 126x5 − 42x4 − 147x3 +
49x2 − 91x+ 129

7 -1 2T1 7 -1

x14 − 28x13 − 21x12 + 35x11 +
140x10− 21x9− 112x8− 113x7−
21x6 − 126x5 − 42x4 − 147x3 +
49x2 − 91x+ 31

7 -1 2T1 7 -1

x14 − 70x13 − 105x12 − 119x11 +
140x10 + 7x8 − 106x7 + 14x6 +
126x5 − 42x4 − 70x3 − 119x2 +
49x− 11

7 -1 2T1 1 -1

x14 − 112x13 + 105x12 + 21x11 −
105x10 − 77x9 + 77x8 + 97x7 +
98x6 + 84x5 − 140x4 + 105x3 +
105x2 − 56x− 4

7 -1 2T1 1 -1

x14 + 14x13 + 98 7 -1 2T1 1 -1
x14 + 70x13 + 7x12 + 63x11 +
35x10 + 133x9 − 35x8 − 8x7 −
98x6 + 42x5 − 84x4 − 154x3 −
126x2 + 98x+ 59

7 -1 2T1, 7T4 2 -1

x14 + 28x13 + 70x12 + 56x11 +
84x10 + 105x9 − 112x8 − 99x7 +
133x6 + 147x5 − 133x4 − 28x3 −
98x2 − 56x− 81

7 -1 2T1 1 -1

x14 − 14x13 + 84x12 − 112x10 −
21x9 + 105x8 + 55x7 + 70x6 −
42x5 + 63x4 − 147x3 − 21x2 −
112x+ 73

7 -1 2T1 1 1

x14 + 7x13 + 49 7 -1 2T1 1 -1
x14 − 98x13 − 35x12 + 84x11 +
133x10 + 119x9 + 49x8 + 69x7 +
91x6 + 70x5 + 161x4 − 91x3 −
63x2 + 70x− 109

7 -1 2T1 1 -1

x14 + 49x6 + 49 7 -1 2T1, 7T3 2 -1
x14 + 14x13 + 49 7 -1 2T1 7 -1
x14 + 42x13 − 119x12 + 70x11 +
77x10− 140x9 + 154x8 + 167x7−
168x6 − 161x5 + 70x4 − 126x3 +
126x2 + 168x+ 10

7 -1 2T1 7 -1

x14 + 7x13 + 98 7 -1 2T1 7 -1

40



Defining Polynomial e j sgg Content C.O. Parity G
x14 + 42x13 − 119x12 + 70x11 +
77x10 − 140x9 + 154x8 − 78x7 −
168x6 − 161x5 + 70x4 − 126x3 +
126x2 + 168x+ 157

7 -1 2T1 7 -1

x14 + 42x13 − 119x12 + 70x11 +
77x10 − 140x9 + 154x8 − 29x7 −
168x6 − 161x5 + 70x4 − 126x3 +
126x2 + 168x+ 59

7 -1 2T1 7 -1

x14 + 42x13 − 119x12 + 70x11 +
77x10 − 140x9 + 154x8 + 20x7 −
168x6 − 161x5 + 70x4 − 126x3 +
126x2 + 168x− 39

7 -1 2T1 7 -1

x14 + 42x13 − 119x12 + 70x11 +
77x10 − 140x9 + 154x8 + 69x7 −
168x6 − 161x5 + 70x4 − 126x3 +
126x2 + 168x− 137

7 -1 2T1 7 -1

x14 − 56x12 + 63x11 + 126x10 −
168x9 + 77x8 + 27x7 + 63x6 −
56x5 + 21x4 + 154x2 + 14x− 32

7 -1 2T1 1 -1

x14 − 42x13 − 42x12 + 7x11 −
70x10 + 49x9 − 49x8 − 162x7 +
98x5 − 126x4 − 119x3 − 112x2 −
42x+ 122

7 -1 2T1 1 1

x14 + 98x13 − 28x12 + 91x11 +
21x10 − 14x9 + 154x8 + 83x7 −
14x6+112x5−21x4−7x3−21x2−
140x+ 94

7 -1 2T1, 7T4 2 -1

x14 + 56x13 + 133x12 − 161x11 −
126x10+154x9−168x8−155x7+
119x6 + 119x5 + 126x4 − 77x3 −
91x2 − 147x+ 52

7 -1 2T1 1 -1

x14 + 14x13 − 98x12 − 119x11 +
168x10−119x9+147x8−148x7−
42x6 − 168x5 − 168x4 − 49x3 −
112x2 − 56x− 39

7 -1 2T1 7 -1

x14 + 14x13 − 98x12 − 119x11 +
168x10− 119x9 + 147x8− 99x7−
42x6 − 168x5 − 168x4 − 49x3 −
112x2 − 56x− 137

7 -1 2T1 7 -1

x14 + 14x13 − 98x12 − 119x11 +
168x10− 119x9 + 147x8− 50x7−
42x6 − 168x5 − 168x4 − 49x3 −
112x2 − 56x+ 108

7 -1 2T1 7 -1

x14 + 14x13 − 98x12 − 119x11 +
168x10 − 119x9 + 147x8 − y7 −
42x6 − 168x5 − 168x4 − 49x3 −
112x2 − 56x+ 10

7 -1 2T1 7 -1

41



Defining Polynomial e j sgg Content C.O. Parity G
x14 + 14x13 − 98x12 − 119x11 +
168x10− 119x9 + 147x8 + 48x7−
42x6 − 168x5 − 168x4 − 49x3 −
112x2 − 56x− 88

7 -1 2T1 7 -1

x14 + 14x13 − 98x12 − 119x11 +
168x10− 119x9 + 147x8 + 97x7−
42x6 − 168x5 − 168x4 − 49x3 −
112x2 − 56x+ 157

7 -1 2T1 7 -1

x14 + 14x13 − 98x12 − 119x11 +
168x10−119x9+147x8+146x7−
42x6 − 168x5 − 168x4 − 49x3 −
112x2 − 56x+ 59

7 -1 2T1 7 -1

x14 + 49x6 + 98 7 -1 2T1, 7T3 2 -1
x14 + 70x13 + 140x12 + 49x11 +
161x10 − 42x9 − 49x8 + 111x7 −
35x6 − 42x5 + 35x4 + 119x3 −
63x2 + 28x+ 94

7 -1 2T1 1 -1

x14 + 98x6 + 49 7 -1 2T1, 7T1 14 -1
x14 + 126x13 − 14x12 + 168x11 −
91x10 − 63x9 + 49x8 − 22x7 +
21x6 + 133x5 + 140x4 + 42x3 +
35x2 − 133x+ 80

7 -1 2T1, 7T1 14 -1

x14 + 126x13 − 14x12 + 168x11 −
91x10 − 63x9 + 49x8 + 27x7 +
21x6 + 133x5 + 140x4 + 42x3 +
35x2 − 133x− 18

7 -1 2T1, 7T1 14 -1

x14 + 126x13 − 14x12 + 168x11 −
91x10 − 63x9 + 49x8 + 76x7 +
21x6 + 133x5 + 140x4 + 42x3 +
35x2 − 133x− 116

7 -1 2T1, 7T1 14 -1

x14 + 126x13 − 14x12 + 168x11 −
91x10 − 63x9 + 49x8 + 125x7 +
21x6 + 133x5 + 140x4 + 42x3 +
35x2 − 133x+ 129

7 -1 2T1, 7T1 14 -1

x14 + 126x13 − 14x12 + 168x11 −
91x10 − 63x9 + 49x8 − 169x7 +
21x6 + 133x5 + 140x4 + 42x3 +
35x2 − 133x+ 31

7 -1 2T1, 7T1 14 -1

x14 + 126x13 − 14x12 + 168x11 −
91x10 − 63x9 + 49x8 − 120x7 +
21x6 + 133x5 + 140x4 + 42x3 +
35x2 − 133x− 67

7 -1 2T1, 7T1 14 -1

x14 + 70x7 + 49 7 0 2T1, 7T4 2 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 48x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x− 25

7 0 2T1 1 -1

42



Defining Polynomial e j sgg Content C.O. Parity G
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 97x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x− 123

7 0 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 146x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 122

7 0 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 − 148x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 24

7 0 2T1 1 -1

x14 + 98x7 + 98 7 0 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 − 50x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 171

7 0 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 97x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 24

7 0 2T1, 7T4 2 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 146x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x− 74

7 0 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 − 148x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 171

7 0 2T1 1 -1

x14 + 35x7 + 98 7 0 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 − 50x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x− 25

7 0 2T1 1 -1

x14 + 21x7 + 49 7 0 2T1 1 -1
x14 + 49x8 + 98 7 0 2T1, 7T4 2 -1
x14 + 49x7 + 98 7 0 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 − 50x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 122

7 0 2T1 1 -1

x14 + 28x7 + 49 7 0 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 48x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x− 74

7 0 2T1 1 -1

x14 + 49x8 + 49 7 0 2T1, 7T4 2 -1

43



Defining Polynomial e j sgg Content C.O. Parity G
x14 + 77x7 + 49 7 0 2T1 1 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 48x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 73

7 0 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 97x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x− 25

7 0 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 48x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x− 123

7 0 2T1, 7T4 2 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 97x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 122

7 0 2T1 1 -1

x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 + 146x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 24

7 0 2T1 1 -1

x14 + 98x8 + 98 7 0 2T1, 7T4 2 -1
x14 + 42x13 + 91x12 + 84x11 −
49x10 + 35x9 + 168x8 − 148x7 +
112x6 − 77x5 − 49x4 − 56x3 +
63x2 − 105x+ 73

7 0 2T1 1 -1

x14 + 14x7 + 98 7 0 2T1, 7T4 2 -1
x14 + 7x+ 14 14 -6 2T1 1 -1
x14 + 7x+ 28 14 -6 2T1 1 -1
x14 + 7x+ 7 14 -6 2T1 1 -1
x14 + 7x+ 21 14 -6 2T1 1 -1
x14 + 7x+ 42 14 -6 2T1 1 -1
x14 + 7x+ 35 14 -6 2T1 1 -1
x14 + 14x2 + 7 14 -5 2T1, 7T4 2 -1
x14 + 28x2 + 7 14 -5 2T1, 7T4 2 -1
x14 + 42x2 + 7 14 -5 2T1, 7T4 2 -1
x14 + 7x2 + 7 14 -5 2T1, 7T4 2 -1
x14 + 21x2 + 7 14 -5 2T1, 7T4 2 -1
x14 + 35x2 + 7 14 -5 2T1, 7T4 2 -1
x14 + 42x2 + 21 14 -5 2T1, 7T4 2 -1
x14 + 35x2 + 21 14 -5 2T1, 7T4 2 1
x14 + 28x2 + 21 14 -5 2T1, 7T4 2 -1
x14 + 21x2 + 21 14 -5 2T1, 7T4 2 1
x14 + 14x2 + 21 14 -5 2T1, 7T4 2 -1
x14 + 7x2 + 21 14 -5 2T1, 7T4 2 1
x14 + 7x3 + 28 14 -4 2T1 1 -1
x14 + 7x3 + 14 14 -4 2T1 1 -1

44



Defining Polynomial e j sgg Content C.O. Parity G
x14 + 7x3 + 7 14 -4 2T1 1 -1
x14 + 7x3 + 21 14 -4 2T1 1 -1
x14 + 7x3 + 35 14 -4 2T1 1 -1
x14 + 7x3 + 42 14 -4 2T1 1 -1
x14 + 7x4 + 14 14 -3 2T1, 7T3 2 -1
x14 + 7x4 + 28 14 -3 2T1, 7T3 2 -1
x14 + 21x4 + 14 14 -3 2T1, 7T4 2 -1
x14 + 7x4 + 7 14 -3 2T1, 7T3 2 -1
x14 + 21x4 + 7 14 -3 2T1, 7T4 2 -1
x14 + 21x4 + 28 14 -3 2T1, 7T4 2 -1
x14 + 21x4 + 42 14 -3 2T1, 7T3 2 -1
x14 + 21x4 + 35 14 -3 2T1, 7T3 2 1
x14 + 7x4 + 35 14 -3 2T1, 7T4 2 -1
x14 + 21x4 + 21 14 -3 2T1, 7T3 2 1
x14 + 7x4 + 42 14 -3 2T1, 7T4 2 -1
x14 + 7x4 + 21 14 -3 2T1, 7T4 2 1
x14 + 14x5 + 7 14 -2 2T1 1 -1
x14 + 21x5 + 7 14 -2 2T1 1 -1
x14 + 7x5 + 7 14 -2 2T1 1 -1
x14 + 7x5 + 21 14 -2 2T1 1 -1
x14 + 14x5 + 21 14 -2 2T1 1 -1
x14 + 21x5 + 21 14 -2 2T1 1 -1
x14 + 7x6 + 28 14 -1 2T1, 7T2 2 -1
x14 + 7x6 + 14 14 -1 2T1, 7T4 2 -1
x14 + 21x6 + 28 14 -1 2T1, 7T4 2 -1
x14 + 7x6 + 7 14 -1 2T1, 7T4 2 -1
x14 + 21x6 + 7 14 -1 2T1, 7T4 2 -1
x14 + 21x6 + 14 14 -1 2T1, 7T2 14 -1
x14 − 91x12 − 14x7 + 84x6 + 56 14 -1 2T1 7 -1
x14 − 91x12 − 28x7 + 84x6 − 140 14 -1 2T1 7 -1
x14 − 91x12 − 42x7 + 84x6 + 105 14 -1 2T1 7 -1
x14 + 21x6 + 35 14 -1 2T1, 7T2 2 1
x14 + 21x6 + 42 14 -1 2T1, 7T4 2 -1
x14 + 7x6 + 42 14 -1 2T1, 7T4 2 1
x14 + 21x6 + 21 14 -1 2T1, 7T4 2 -1
x14 + 7x6 + 35 14 -1 2T1, 7T4 2 1
x14 + 7x6 + 21 14 -1 2T1, 7T2 14 -1
x14 − 77x12 − 91x7 − 140x6 − 28 14 -1 2T1 7 1
x14− 77x12 + 161x7− 140x6− 77 14 -1 2T1 7 -1
x14 − 77x12 + 70x7 − 140x6 + 70 14 -1 2T1 7 1
x14 + 35x8 + 7 14 1 2T1, 7T4 2 -1
x14−14x8−14x7+49x2+98x+56 14 1 2T1 1 -1
x14−14x8−28x7+49x2−147x−
140

14 1 2T1 1 -1

x14−14x8−42x7 + 49x2−49x+
105

14 1 2T1 1 -1

45



Defining Polynomial e j sgg Content C.O. Parity G
x14 + 21x8 + 7 14 1 2T1, 7T4 2 -1
x14−28x8−14x7−147x2−147x+
56

14 1 2T1 1 -1

x14−28x8−28x7−147x2+49x−
140

14 1 2T1 1 -1

x14−28x8−42x7−147x2−98x+
105

14 1 2T1 1 -1

x14 + 7x8 + 7 14 1 2T1, 7T3 2 -1
x14−42x8−14x7+98x2−49x+56 14 1 2T1 1 -1
x14−42x8−28x7 + 98x2−98x−
140

14 1 2T1 1 -1

x14−42x8−42x7+98x2−147x+
105

14 1 2T1 1 -1

x14 + 42x8 + 7 14 1 2T1, 7T4 2 -1
x14−56x8−14x7+98x2+49x+56 14 1 2T1 1 -1
x14−56x8−28x7 + 98x2 + 98x−
140

14 1 2T1 1 -1

x14−56x8−42x7+98x2+147x+
105

14 1 2T1 1 -1

x14 + 28x8 + 7 14 1 2T1, 7T3 2 -1
x14−70x8−14x7−147x2+147x+
56

14 1 2T1 1 -1

x14−70x8−28x7−147x2−49x−
140

14 1 2T1 1 -1

x14−70x8−42x7−147x2+98x+
105

14 1 2T1 1 -1

x14 + 3x7 + 18 14 1 2T1, 7T3 2 -1
x14 + y7 + 2 14 1 2T1 1 -1
x14 + y7 + 44 14 1 2T1 1 -1
x14 + 2x7 + 8 14 1 2T1 1 -1
x14 + 7x8 + 21 14 1 2T1, 7T4 2 -1
x14−91x8−91x7+98x2−147x−
28

14 1 2T1 1 1

x14−91x8+161x7+98x2+49x−
77

14 1 2T1 1 -1

x14−91x8+70x7+98x2−98x+70 14 1 2T1 1 1
x14 + y7 + 30 14 1 2T1, 7T4 2 -1
x14 + y7 + 9 14 1 2T1 1 1
x14 + 2x7 + 43 14 1 2T1 1 -1
x14 + 2x7 + 22 14 1 2T1 1 1
x14 + 21x8 + 21 14 1 2T1, 7T3 2 -1
x14+70x8−91x7−147x2−98x−
28

14 1 2T1 1 1

x14 + 70x8 + 161x7 − 147x2 +
147x− 77

14 1 2T1 1 -1

x14+70x8+70x7−147x2+49x+
70

14 1 2T1 1 1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 28x8 + 21 14 1 2T1, 7T4 2 -1
x14−21x8−91x7−147x2+98x−
28

14 1 2T1 1 1

x14 − 21x8 + 161x7 − 147x2 −
147x− 77

14 1 2T1 1 -1

x14−21x8+70x7−147x2−49x+
70

14 1 2T1 1 1

x14 + 35x8 + 21 14 1 2T1, 7T3 2 -1
x14−112x8−91x7+49x2−49x−
28

14 1 2T1 1 1

x14−112x8+161x7+49x2−98x−
77

14 1 2T1 1 -1

x14−112x8+70x7+49x2−147x+
70

14 1 2T1 1 1

x14 + 42x8 + 21 14 1 2T1, 7T3 2 -1
x14+140x8−91x7+98x2+147x−
28

14 1 2T1 1 1

x14+140x8+161x7+98x2−49x−
77

14 1 2T1 1 -1

x14+140x8+70x7+98x2+98x+
70

14 1 2T1 1 1

x14 + 7x9 + 28 14 2 2T1 1 -1
x14−14x9−14x7+49x4+98x2+
56

14 2 2T1 1 -1

x14−14x9−28x7+49x4−147x2−
140

14 2 2T1 1 -1

x14−14x9−42x7+49x4−49x2+
105

14 2 2T1 1 -1

x14−14x9−56x7+49x4+49x2+
105

14 2 2T1 1 -1

x14−14x9−70x7+49x4+147x2−
140

14 2 2T1 1 -1

x14−14x9−84x7+49x4−98x2+
56

14 2 2T1 1 -1

x14 + 7x9 + 14 14 2 2T1 1 -1
x14 − 28x9 − 14x7 − 147x4 −
147x2 + 56

14 2 2T1 1 -1

x14−28x9−28x7−147x4+49x2−
140

14 2 2T1 1 -1

x14−28x9−42x7−147x4−98x2+
105

14 2 2T1 1 -1

x14−28x9−56x7−147x4+98x2+
105

14 2 2T1 1 -1

x14−28x9−70x7−147x4−49x2−
140

14 2 2T1 1 -1

x14 − 28x9 − 84x7 − 147x4 +
147x2 + 56

14 2 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 7x9 + 7 14 2 2T1 1 -1
x14−42x9−14x7+98x4−49x2+
56

14 2 2T1 1 -1

x14−42x9−28x7+98x4−98x2−
140

14 2 2T1 1 -1

x14−42x9−42x7+98x4−147x2+
105

14 2 2T1 1 -1

x14−42x9−56x7+98x4+147x2+
105

14 2 2T1 1 -1

x14−42x9−70x7+98x4+98x2−
140

14 2 2T1 1 -1

x14−42x9−84x7+98x4+49x2+
56

14 2 2T1 1 -1

x14 + 7x9 + 21 14 2 2T1 1 -1
x14−91x9−91x7+98x4−147x2−
28

14 2 2T1 1 -1

x14−91x9+161x7+98x4+49x2−
77

14 2 2T1 1 -1

x14−91x9+70x7+98x4−98x2+
70

14 2 2T1 1 -1

x14−91x9−21x7+98x4+98x2+
70

14 2 2T1 1 -1

x14−91x9−112x7+98x4−49x2−
77

14 2 2T1 1 -1

x14 − 91x9 + 140x7 + 98x4 +
147x2 − 28

14 2 2T1 1 -1

x14 + 7x9 + 35 14 2 2T1 1 -1
x14+161x9−91x7+49x4+49x2−
28

14 2 2T1 1 -1

x14 + 161x9 + 161x7 + 49x4 +
98x2 − 77

14 2 2T1 1 -1

x14 + 161x9 + 70x7 + 49x4 +
147x2 + 70

14 2 2T1 1 -1

x14 + 161x9 − 21x7 + 49x4 −
147x2 + 70

14 2 2T1 1 -1

x14 + 161x9 − 112x7 + 49x4 −
98x2 − 77

14 2 2T1 1 -1

x14 + 161x9 + 140x7 + 49x4 −
49x2 − 28

14 2 2T1 1 -1

x14 + 7x9 + 42 14 2 2T1 1 -1
x14+70x9−91x7−147x4−98x2−
28

14 2 2T1 1 -1

x14 + 70x9 + 161x7 − 147x4 +
147x2 − 77

14 2 2T1 1 -1

x14+70x9+70x7−147x4+49x2+
70

14 2 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14+70x9−21x7−147x4−49x2+
70

14 2 2T1 1 -1

x14 + 70x9 − 112x7 − 147x4 −
147x2 − 77

14 2 2T1 1 -1

x14 + 70x9 + 140x7 − 147x4 +
98x2 − 28

14 2 2T1 1 -1

x14 + 21x10 + 28 14 3 2T1, 7T4 2 -1
x14−14x10−14x7+49x6+98x3+
56

14 3 2T1 1 -1

x14 − 14x10 − 28x7 + 49x6 −
147x3 − 140

14 3 2T1 1 -1

x14−14x10−42x7+49x6−49x3+
105

14 3 2T1 1 -1

x14 + 21x10 + 7 14 3 2T1, 7T4 2 -1
x14 − 28x10 − 14x7 − 147x6 −
147x3 + 56

14 3 2T1 1 -1

x14 − 28x10 − 28x7 − 147x6 +
49x3 − 140

14 3 2T1 1 -1

x14 − 28x10 − 42x7 − 147x6 −
98x3 + 105

14 3 2T1 1 -1

x14 + 7x10 + 7 14 3 2T1, 7T4 2 -1
x14−42x10−14x7+98x6−49x3+
56

14 3 2T1 1 -1

x14−42x10−28x7+98x6−98x3−
140

14 3 2T1 1 -1

x14 − 42x10 − 42x7 + 98x6 −
147x3 + 105

14 3 2T1 1 -1

x14 + 21x10 + 14 14 3 2T1, 7T4 2 -1
x14−56x10−14x7+98x6+49x3+
56

14 3 2T1 1 -1

x14−56x10−28x7+98x6+98x3−
140

14 3 2T1 1 -1

x14 − 56x10 − 42x7 + 98x6 +
147x3 + 105

14 3 2T1 1 -1

x14 + 7x10 + 28 14 3 2T1, 7T4 2 -1
x14 − 70x10 − 14x7 − 147x6 +
147x3 + 56

14 3 2T1 1 -1

x14 − 70x10 − 28x7 − 147x6 −
49x3 − 140

14 3 2T1 1 -1

x14 − 70x10 − 42x7 − 147x6 +
98x3 + 105

14 3 2T1 1 -1

x14 + 7x10 + 14 14 3 2T1, 7T4 2 -1
x14−84x10−14x7+49x6−98x3+
56

14 3 2T1 1 -1

x14 − 84x10 − 28x7 + 49x6 +
147x3 − 140

14 3 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14−84x10−42x7+49x6+49x3+
105

14 3 2T1 1 -1

x14 + 7x10 + 21 14 3 2T1, 7T4 2 -1
x14 − 91x10 − 91x7 + 98x6 −
147x3 − 28

14 3 2T1 1 1

x14 − 91x10 + 161x7 + 98x6 +
49x3 − 77

14 3 2T1 1 -1

x14−91x10+70x7+98x6−98x3+
70

14 3 2T1 1 1

x14 + 7x10 + 42 14 3 2T1, 7T4 2 -1
x14 + 161x10 − 91x7 + 49x6 +
49x3 − 28

14 3 2T1 1 1

x14 + 161x10 + 161x7 + 49x6 +
98x3 − 77

14 3 2T1 1 -1

x14 + 161x10 + 70x7 + 49x6 +
147x3 + 70

14 3 2T1 1 1

x14 + 21x10 + 21 14 3 2T1, 7T4 2 -1
x14 + 70x10 − 91x7 − 147x6 −
98x3 − 28

14 3 2T1 1 1

x14 + 70x10 + 161x7 − 147x6 +
147x3 − 77

14 3 2T1 1 -1

x14 + 70x10 + 70x7 − 147x6 +
49x3 + 70

14 3 2T1 1 1

x14 + 7x10 + 35 14 3 2T1, 7T4 2 -1
x14 − 21x10 − 91x7 − 147x6 +
98x3 − 28

14 3 2T1 1 1

x14 − 21x10 + 161x7 − 147x6 −
147x3 − 77

14 3 2T1 1 -1

x14 − 21x10 + 70x7 − 147x6 −
49x3 + 70

14 3 2T1 1 1

x14 + 21x10 + 35 14 3 2T1, 7T4 2 -1
x14 − 112x10 − 91x7 + 49x6 −
49x3 − 28

14 3 2T1 1 1

x14 − 112x10 + 161x7 + 49x6 −
98x3 − 77

14 3 2T1 1 -1

x14 − 112x10 + 70x7 + 49x6 −
147x3 + 70

14 3 2T1 1 1

x14 + 21x10 + 42 14 3 2T1, 7T4 2 -1
x14 + 140x10 − 91x7 + 98x6 +
147x3 − 28

14 3 2T1 1 1

x14 + 140x10 + 161x7 + 98x6 −
49x3 − 77

14 3 2T1 1 -1

x14 + 140x10 + 70x7 + 98x6 +
98x3 + 70

14 3 2T1 1 1

x14 + 14x11 + 7 14 4 2T1 1 -1
x14−14x11+49x8−14x7+98x4+
56

14 4 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 − 14x11 + 49x8 − 28x7 −
147x4 − 140

14 4 2T1 1 -1

x14−14x11+49x8−42x7−49x4+
105

14 4 2T1 1 -1

x14−14x11+49x8−56x7+49x4+
105

14 4 2T1 1 -1

x14 − 14x11 + 49x8 − 70x7 +
147x4 − 140

14 4 2T1 1 -1

x14−14x11+49x8−84x7−98x4+
56

14 4 2T1 1 -1

x14 + 21x11 + 7 14 4 2T1 1 -1
x14 − 28x11 − 147x8 − 14x7 −
147x4 + 56

14 4 2T1 1 -1

x14 − 28x11 − 147x8 − 28x7 +
49x4 − 140

14 4 2T1 1 -1

x14 − 28x11 − 147x8 − 42x7 −
98x4 + 105

14 4 2T1 1 -1

x14 − 28x11 − 147x8 − 56x7 +
98x4 + 105

14 4 2T1 1 -1

x14 − 28x11 − 147x8 − 70x7 −
49x4 − 140

14 4 2T1 1 -1

x14 − 28x11 − 147x8 − 84x7 +
147x4 + 56

14 4 2T1 1 -1

x14 + 7x11 + 7 14 4 2T1 1 -1
x14−42x11+98x8−14x7−49x4+
56

14 4 2T1 1 -1

x14−42x11+98x8−28x7−98x4−
140

14 4 2T1 1 -1

x14 − 42x11 + 98x8 − 42x7 −
147x4 + 105

14 4 2T1 1 -1

x14 − 42x11 + 98x8 − 56x7 +
147x4 + 105

14 4 2T1 1 -1

x14−42x11+98x8−70x7+98x4−
140

14 4 2T1 1 -1

x14−42x11+98x8−84x7+49x4+
56

14 4 2T1 1 -1

x14 + 7x11 + 21 14 4 2T1 1 -1
x14 − 91x11 + 98x8 − 91x7 −
147x4 − 28

14 4 2T1 1 -1

x14 − 91x11 + 98x8 + 161x7 +
49x4 − 77

14 4 2T1 1 -1

x14−91x11+98x8+70x7−98x4+
70

14 4 2T1 1 -1

x14−91x11+98x8−21x7+98x4+
70

14 4 2T1 1 -1

x14 − 91x11 + 98x8 − 112x7 −
49x4 − 77

14 4 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 − 91x11 + 98x8 + 140x7 +
147x4 − 28

14 4 2T1 1 -1

x14 + 14x11 + 21 14 4 2T1 1 -1
x14 + 161x11 + 49x8 − 91x7 +
49x4 − 28

14 4 2T1 1 -1

x14 + 161x11 + 49x8 + 161x7 +
98x4 − 77

14 4 2T1 1 -1

x14 + 161x11 + 49x8 + 70x7 +
147x4 + 70

14 4 2T1 1 -1

x14 + 161x11 + 49x8 − 21x7 −
147x4 + 70

14 4 2T1 1 -1

x14 + 161x11 + 49x8 − 112x7 −
98x4 − 77

14 4 2T1 1 -1

x14 + 161x11 + 49x8 + 140x7 −
49x4 − 28

14 4 2T1 1 -1

x14 + 21x11 + 21 14 4 2T1 1 -1
x14 + 70x11 − 147x8 − 91x7 −
98x4 − 28

14 4 2T1 1 -1

x14 + 70x11 − 147x8 + 161x7 +
147x4 − 77

14 4 2T1 1 -1

x14 + 70x11 − 147x8 + 70x7 +
49x4 + 70

14 4 2T1 1 -1

x14 + 70x11 − 147x8 − 21x7 −
49x4 + 70

14 4 2T1 1 -1

x14 + 70x11 − 147x8 − 112x7 −
147x4 − 77

14 4 2T1 1 -1

x14 + 70x11 − 147x8 + 140x7 +
98x4 − 28

14 4 2T1 1 -1

x14 + 21x12 + 14 14 5 2T1, 7T3 2 -1
x14−14x12+49x10−14x7+98x5+
56

14 5 2T1 1 -1

x14 − 14x12 + 49x10 − 28x7 −
147x5 − 140

14 5 2T1 1 -1

x14−14x12+49x10−42x7−49x5+
105

14 5 2T1 1 -1

x14 + 21x12 + 7 14 5 2T1, 7T3 2 -1
x14 − 28x12 − 147x10 − 14x7 −
147x5 + 56

14 5 2T1 1 -1

x14 − 28x12 − 147x10 − 28x7 +
49x5 − 140

14 5 2T1 1 -1

x14 − 28x12 − 147x10 − 42x7 −
98x5 + 105

14 5 2T1 1 -1

x14 + 7x12 + 7 14 5 2T1, 7T2 2 -1
x14−42x12+98x10−14x7−49x5+
56

14 5 2T1 1 -1

x14−42x12+98x10−28x7−98x5−
140

14 5 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 − 42x12 + 98x10 − 42x7 −
147x5 + 105

14 5 2T1 1 -1

x14 + 42x12 + 7 14 5 2T1, 7T1 14 -1
x14 + 21x12 + 77 14 5 2T1, 7T1 14 -1
x14 + 21x12 + 28 14 5 2T1, 7T1 14 -1
x14 + 42x12 + 56 14 5 2T1, 7T1 14 -1
x14 − 56x12 + 98x10 − 42 14 5 2T1, 7T1 14 -1
x14 − 56x12 + 98x10 − 140 14 5 2T1, 7T1 14 -1
x14 + 35x12 + 63 14 5 2T1, 7T1 14 -1
x14−56x12+98x10−14x7+49x5+
56

14 5 2T1 7 -1

x14−56x12+98x10−14x7+49x5−
42

14 5 2T1 7 -1

x14−56x12+98x10−14x7+49x5−
140

14 5 2T1 7 -1

x14−56x12+98x10−14x7+49x5+
105

14 5 2T1 7 -1

x14−56x12+98x10−14x7+49x5+
7

14 5 2T1 7 -1

x14−56x12+98x10−14x7+49x5−
91

14 5 2T1 7 -1

x14−56x12+98x10−14x7+49x5+
154

14 5 2T1 7 -1

x14−56x12+98x10−28x7+98x5−
140

14 5 2T1 7 -1

x14−56x12+98x10−28x7+98x5+
105

14 5 2T1 7 -1

x14−56x12+98x10−28x7+98x5+
7

14 5 2T1 7 -1

x14−56x12+98x10−28x7+98x5−
91

14 5 2T1 7 -1

x14−56x12+98x10−28x7+98x5+
154

14 5 2T1 7 -1

x14−56x12+98x10−28x7+98x5+
56

14 5 2T1 7 -1

x14−56x12+98x10−28x7+98x5−
42

14 5 2T1 7 -1

x14 − 56x12 + 98x10 − 42x7 +
147x5 + 105

14 5 2T1 7 -1

x14 − 56x12 + 98x10 − 42x7 +
147x5 + 7

14 5 2T1 7 -1

x14 − 56x12 + 98x10 − 42x7 +
147x5 − 91

14 5 2T1 7 -1

x14 − 56x12 + 98x10 − 42x7 +
147x5 + 154

14 5 2T1 7 -1

x14 − 56x12 + 98x10 − 42x7 +
147x5 + 56

14 5 2T1 7 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 − 56x12 + 98x10 − 42x7 +
147x5 − 42

14 5 2T1 7 -1

x14 − 56x12 + 98x10 − 42x7 +
147x5 − 140

14 5 2T1 7 -1

x14 + 7x12 + 14 14 5 2T1, 7T4 2 -1
x14 − 70x12 − 147x10 − 14x7 +
147x5 + 56

14 5 2T1 1 -1

x14 − 70x12 − 147x10 − 28x7 −
49x5 − 140

14 5 2T1 1 -1

x14 − 70x12 − 147x10 − 42x7 +
98x5 + 105

14 5 2T1 1 -1

x14 + 7x12 + 28 14 5 2T1, 7T4 2 -1
x14−84x12+49x10−14x7−98x5+
56

14 5 2T1 1 -1

x14 − 84x12 + 49x10 − 28x7 +
147x5 − 140

14 5 2T1 1 -1

x14 + 14x13 + 7 14 6 2T1 1 -1
x14 + 7x13 + 14 14 6 2T1 1 -1
x14 + 21x13 + 28 14 6 2T1 1 -1
x14 + 14x13 + 56 14 6 2T1 1 -1
x14 − 14x13 + 49x12 − 42 14 6 2T1 1 -1
x14 − 14x13 + 49x12 − 140 14 6 2T1 1 -1
x14 + 7x13 + 63 14 6 2T1 1 -1
x14 + 21x13 + 7 14 6 2T1 1 -1
x14 + 7x13 + 77 14 6 2T1 1 -1
x14 + 7x13 + 28 14 6 2T1 1 -1
x14 + 21x13 + 56 14 6 2T1 1 -1
x14 − 28x13 − 147x12 − 42 14 6 2T1 1 -1
x14 − 28x13 − 147x12 − 140 14 6 2T1 1 -1
x14 + 14x13 + 63 14 6 2T1 1 -1
x14 + 7x13 + 7 14 6 2T1 1 -1
x14 + 14x13 + 77 14 6 2T1 1 -1
x14 + 14x13 + 28 14 6 2T1 1 -1
x14 + 7x13 + 56 14 6 2T1 1 -1
x14 − 42x13 + 98x12 − 42 14 6 2T1 1 -1
x14 − 42x13 + 98x12 − 140 14 6 2T1 1 -1
x14 + 21x13 + 63 14 6 2T1 1 -1
x14 − 91x13 + 98x12 − 126 14 6 2T1 1 -1
x14 + 7x13 + 21 14 6 2T1 1 -1
x14 − 91x13 + 98x12 + 168 14 6 2T1 1 -1
x14 − 91x13 + 98x12 − 28 14 6 2T1 1 -1
x14 + 14x13 + 84 14 6 2T1 1 -1
x14 + 21x13 + 91 14 6 2T1 1 -1
x14 + 7x13 + 70 14 6 2T1 1 -1
x14 + 161x13 + 49x12 − 126 14 6 2T1 1 -1
x14 + 14x13 + 21 14 6 2T1 1 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 161x13 + 49x12 + 168 14 6 2T1 1 -1
x14 + 161x13 + 49x12 − 28 14 6 2T1 1 -1
x14 + 21x13 + 84 14 6 2T1 1 -1
x14 + 7x13 + 91 14 6 2T1 1 -1
x14 + 7x13 + 42 14 6 2T1 1 -1
x14 + 70x13 − 147x12 − 126 14 6 2T1 1 -1
x14 + 7x13 + 35 14 6 2T1 1 -1
x14 + 70x13 − 147x12 + 168 14 6 2T1 1 -1
x14 + 70x13 − 147x12 − 28 14 6 2T1 1 -1
x14 + 7x13 + 84 14 6 2T1 1 -1
x14 + 14x13 + 91 14 6 2T1 1 -1
x14 + 14x13 + 42 14 6 2T1 1 -1
x14 + 98x2 + 14 14 7 2T1, 7T4 2 -1
x14 + 98x2 + 28 14 7 2T1, 7T4 2 -1
x14 + 49x2 + 63 14 7 2T1, 7T4 2 -1
x14 + 49x2 + 7 14 7 2T1, 7T4 2 -1
x14 + 49x2 + 14 14 7 2T1, 7T4 2 -1
x14 + 49x2 + 28 14 7 2T1, 7T4 2 -1
x14 + 49x2 + 56 14 7 2T1, 7T4 2 -1
x14 + 98x+ 56 14 7 2T1 1 -1
x14 − 14x7 − 42 14 7 2T1 1 -1
x14 − 14x7 − 140 14 7 2T1 1 -1
x14 + 49x+ 63 14 7 2T1 1 -1
x14 + 98x+ 7 14 7 2T1 1 -1
x14 + 49x+ 14 14 7 2T1 1 -1
x14 + 21x7 + 28 14 7 2T1 1 -1
x14 − 28x7 − 140 14 7 2T1 1 -1
x14 + 98x+ 63 14 7 2T1 1 -1
x14 + 21x7 + 7 14 7 2T1 1 -1
x14 + 49x+ 77 14 7 2T1 1 -1
x14 + 49x+ 28 14 7 2T1 1 -1
x14 + 21x7 + 56 14 7 2T1 1 -1
x14 − 28x7 − 42 14 7 2T1 1 -1
x14 + 21x7 + 63 14 7 2T1 1 -1
x14 + 49x+ 7 14 7 2T1 1 -1
x14 + 98x+ 77 14 7 2T1 1 -1
x14 + 98x+ 28 14 7 2T1 1 -1
x14 + 49x+ 56 14 7 2T1 1 -1
x14 + 7x7 + 98 14 7 2T1 1 -1
x14 − 42x7 − 140 14 7 2T1 1 -1
x14 + 49x2 + 42 14 7 2T1, 7T4 2 1
x14 + 98x2 + 42 14 7 2T1, 7T4 2 -1
x14 + 49x2 + 21 14 7 2T1, 7T4 2 1
x14 + 98x2 + 21 14 7 2T1, 7T4 2 -1
x14 + 49x3 + 84 14 7 2T1, 7T4 2 1
x14 + 49x2 + 84 14 7 2T1, 7T4 2 -1
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Defining Polynomial e j sgg Content C.O. Parity G
x14 + 49x2 + 91 14 7 2T1, 7T4 2 1
x14 − 91x7 − 28 14 7 2T1 1 -1
x14 + 98x+ 84 14 7 2T1 1 1
x14 + 21x7 + 91 14 7 2T1 1 -1
x14 + 49x+ 70 14 7 2T1 1 1
x14 − 91x7 − 126 14 7 2T1 1 -1
x14 + 49x+ 21 14 7 2T1 1 1
x14 − 91x7 + 168 14 7 2T1 1 -1
x14 + 49x+ 91 14 7 2T1 1 1
x14 + 49x+ 42 14 7 2T1 1 -1
x14 + 63x7 + 49 14 7 2T1 1 1
x14 + 98x+ 21 14 7 2T1 1 -1
x14 + 161x7 + 168 14 7 2T1 1 1
x14 + 161x7 − 28 14 7 2T1 1 -1
x14 + 21x7 + 84 14 7 2T1 1 1
x14 + 98x+ 42 14 7 2T1 1 -1
x14 + 70x7 − 126 14 7 2T1 1 1
x14 + 49x+ 35 14 7 2T1 1 -1
x14 + 70x7 + 168 14 7 2T1 1 1
x14 + 70x7 − 28 14 7 2T1 1 -1
x14 + 49x+ 84 14 7 2T1 1 1
x14 + 98x+ 91 14 7 2T1 1 -1
x14 + y + 4 1 -13 2T1, 7T1 14 -1
x14 + 49x12 + 1029x10 +
12017x8 + 8x7 + 82859x6 −
1176x5 + 352947x4 + 13720x3 +
881203x2 − 19160x+ 794999

2 -12 2T1, 7T1 14 -1

x14 + 99x13 + 50x12 − 88x11 −
106x10 + 51x9 − 6x8 − 19x7 +
85x6+19x5+90x4−27x3+60x2+
13x− 73

2 -12 2T1, 7T1 14 1

References
[1] Chad Awtrey. Dodecic Local Fields. BiblioBazaar, 2011.

[2] Chad Awtrey. Dodecic 3-adic fields. Int. J. Number Theory, 08(04):933–944, 2012.

[3] Jim Brown. Local class field theory, 2008.

[4] Fernando Q. Gouvêa. P-Adic Numbers: An Introduction. Structure and Bonding. Springer-
Verlag GmbH, 1997.

[5] John W. Jones and David P. Roberts. A database of local fields. J. Symbolic Comput.,
41(1):80 – 97, 2006.

[6] Serge Lang. Algebraic Number Theory. Applied Mathematical Sciences. Springer, 1994.

56


