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1 Introduction

For a prime p and a positive integer n, it is well-known that there are only finitely many degree
n field extensions of the field Q, of p-adic numbers. When p does not divide n or p = n, the
extensions of Q, have been classified and data associated to these extensions is stored in an
online database of local fields created by John W. Jones and David P. Roberts. When p properly
divides n, the problem of classifying these extensions becomes more complicated. In this case,
such extensions have been classified completely for n < 12.

In our work, we focus on the case n = 14 and p = 2 or p = 7. We use methods established
by Sebastian Pauli and Xavier-Frangois Roblot to find defining polynomials for each of these
extensions up to isomorphism. Employing computational methods similar to those used by Chad
Awtrey to classify degree 12 extensions of Q3, we compute several invariants associated to these
extensions to determine the Galois groups of their defining polynomials. The primary invariants
we use for determining the Galois groups are the subfield content, the size of the automorphism
group, and the parity. In the cases in which these invariants are insufficient to distinguish the
Galois groups, we use resolvent polynomials. Additionally, we present a conjecture about the
number of totally ramified extensions of Q, for a fixed discriminant and certain choices of p and
n.

2 Basic Facts and Notions Regarding Q,

Here we will state, but not prove, several definitions and results about the field of p-adic numbers,
Qp. For a more detailed treatment of the following material, see [4].

Let p be a prime number. The p-order function ord, : Z\ {0} — Z gives the largest ¢ for
which p’ divides a given integer. For example, ords(32) = 5, ord7(98) = 2, and ordy1(20) = 0.
By convention ord,(0) = co. We have the following two properties of ord,, for integers a, b:

(i) ordy(ab) = ord,(a) + ord,(b)
(ii) ordp(a + b) > min{ord,(a),ord,(b)}.

A nonzero rational number ¢ may be factored uniquely into a unit and a product of prime
factors, i.e. a = up('---pgr, where u = £1, the numbers pi,...,p, are primes, and ey,...,e,
are integers. Thus the domain of ord, may be extended to Q\ {0} by defining ord,(a) to be the
exponent e. For example, ord7(3/49) = —2, and ord;3(39/11) = 1. Again it is easy to see that
properties (i), (ii) above hold for rational numbers a, b.

The p-adic absolute value |- |, : Q — Q can then be defined by the formula |a|, = p
when a is nonzero, 0 otherwise. This absolute value, which hereafter we designate by | - |, is an
example of a non-Archimedean absolute value.

A non-Archimedean absolute value on a field K is a function |- | : K — R>( that satisfies the
following three properties for any a,b,c € K:

(i) la] > 0 and = 0 if and only if a =0

—ordp(a)

(ii) [ab] = |a||b]
(iii) [a + b] < maz{lal, [b]}
We induce a metric from a non-Archimedean absolute value on K, by defining the distance

between two points to be the absolute value of their difference. There are many interesting
properties that follow from a non-Archimedean absolute value and its induced metric.



Facts (a,b,c € K and 0 <r € R:

(i) All triangles are isosceles, i.e. |a — b| is equal to |a — ¢| or |b — ¢|.

(ii) If |a| # |b| then property (iii) above can be replaced by |a + b| = max{|al, |b|}.

(iii) An open (resp. closed) ball centered about a point with a fixed radius will also be a
closed (resp. open) set.

(iv) Let B(a,r) denote the open ball with center a and radius r, and let B(a,r) be its closure.
For either ball, if b € B(a,r) (resp. B(a,r)), then B(a,r) = B(b,r) (resp. B(a,r) = B(b,r)). In
other words, any point contained in a ball with a fixed center and radius will be the center of
that ball with the same radius.

(v) For a sequence to be Cauchy, it is only necessary that the distance between consecutive
terms go to zero.

(vi) As long as the terms in an infinite series converge to 0 in absolute value, the series will
be Cauchy.

In particular, all of these results hold for Q with respect to the p-adic absolute value |-| := |-|,.
Just as the set of real numbers R is defined to be the completion of Q with respect to the usual
absolute value, the set of p-adic numbers Q, is defined to be the completion of Q with respect to
the p-adic absolute value. It follows that the p-adic absolute value when extended to @, remains
non-Archimedean, so again all of the above facts hold.

(o]

Formally, Q,, is the ring C' of Cauchy sequences in Q (i.e. {A € [[ Q: le [A(n+1)—A(n)| =
0}) modded out by the maximal ideal M = {A € C : nh_}n;o A(n) = 0}. The field Q may be
embedded into Q, via the mapping * — (z,z,z,...) + M. However, we need not be so formal.
If we regard Q as a subset of Q,, every element of @, may be described in terms of integers as
follows:

S} .
Theorem 2.1. Every element of Q, can be written as an infinite series Y a;p’, with each
i=k
a; € {0,1,....,p— 1} and k € Z. For every p-adic number, the numbers ay, agy1, ... composing its
series are uniquely determined.

Proof. See [4] pg. 68. O

Adding and multiplying elements of QQ,,, written in the above form, works exactly like adding
and multiplying formal power series in the indeterminate 'p’. The resulting series can then be
rewritten in "base p." (insert example).

The p-order function can be extended to Q, in the obvious way: for a p-adic number, as

i=k i=0 i=0
to be k in this case. We may then extend the p-adic absolute value to Q, by defining |A| to be
p~°"d2(4)  The extended absolute value on Qp remains non-Archimedean.

In Q,, we have the associated valuation ring Z, = {a € Q, : |a] < 1} = {a € Q, : ord,(a) >
0}, and its unique maximal ideal pZ, = {a € Q, : |a| < 1} = {a € Q, : ord,(a) > 0}. The names
are fitting: Z,, the set of p-adic integers, is the completion of Z in Q,, and pZ, is the ideal
generated by the prime number p in Z,. From Theorem 2.1 it is clear that every p-adic number
may be written as an integral power of p multiplied by some p-adic integer. In later sections
we will investigate non-field integral domains containing Z,, so it will be useful when denoting
principal ideals to mention the ring in which the ideal is generated, as pZ, rather than (p).

The quotient ring Z,/pZ, is a field, called the residue field of Q,. For a typical ele-

o0

S} . S} . S} .
A=Y aip' =p*(> airrp?), the sum > a;4xp is not divisible by p, so we may define ord,(A)

ment > a;p’ + pZ,, the terms aip,asp? etc. being divisible by p will vanish, leaving just
i=0



ap € {0,1,...,p — 1}. The residue field is thus isomorphic to the integers modulo p, so we
will denote it by F,,.

One last thing to mention is Hensel’s Lemma, named after the mathematician that introduced
p-adic numbers in 1897.

Theorem (Hensel’s Lemma) 2.2. Let f € Zy[X], and let f_ be the corresponding polynomial
in Fp[X]. Suppose a = a+pZ, € F), is such that f(a) =0 but f'(a) # 0. Then there exists some
b € Zy such that b+ pZ, = a + pZ, and f(b) = 0.

Proof. [4] pg. 70. O

3 Finite Dimensional Extensions of Q,

Let L be a finite of a field K of characteristic zero, say [L : K] = n. We have a multiplicative
map Nz i : L — K, called the norm of L over K, which can be defined in three equivalent ways:

(i) For a € L, let ¢, : L — L be given by ¢,(y) = ay. As a K-linear transformation, ¢, may
be represented by a matrix A € Mat,,(K). We then define Ny, (a) to be det(A).

(ii) Let m, € K[X] be the minimal polynomial of a over K. Then N,/ (a) := (—1)™4¢9()m,, (0)des(),

(iii) If K is any algebraic closure of K, since Char(K) = 0 there are exactly n K-monomorphisms

of L into K, say o1,...,0n. Then Ny, (a) := [] oi(a). Note that if (and only if) L is Galois

i=1

over K, every K-monomorphism of L into K is actually a K-automorphism, so Ny, / x(a) =
11 o(a), where Aut(L/K) is the group of K-automorphisms of L.

oceAut(L/K)

For our purposes, we need not worry about the field norm for fields of prime characteristic; we
only use it for finite dimensional extensions of Q,. Note that the composition of norms works out
nicely, i.e. if K C E2 C F are fields for which the norm is defined, then Np/x = Ng /i o Np/p.

We now assume K is an n-dimensional extension of Q,, and let vy, ...,v, be a basis.

Using the field norm, we may extend the p-adic absolute value to K by defining |a| to be

{/INk/q,(a)|. This extended absolute value remains non-Archimedean, and K will still be

complete with respect to this absolute value.

Intuitively since a sequence in K may be written as a; ;v1 + ... + an iV, with the limit dis-
tributing over addition, there is really one place for a convergent sequence to converge to. Thus
any two absolute values on K which restrict to the p-adic absolute value on @, must induce the
same topology on K. And since two absolute values ||; and || on a field K induce the same
topology if and only if there exists a real number & such that ||; = ||3 (this is not a trivial result,
see F. Gouvea’s book), it is clear that there can only be one absolute value on K which restricts
to the p-adic absolute value on Q.

Since |a| = p~ "% (%) for a € Q,, we have ord,(a) = — log,, |al, so we can naturally extend the
domain ord, to K \ {0} by defining ord,(a) to be —log, |a|. Thus we have an order-reversing
bijection between the image of the absolute value and the image of the p-order. Moreover, we
have ord,(a) = w. Now the p-order can take on rational values. The following
theorem gives a more precise formulation of the image of ord,,.

Theorem 3.1. There exists a divisor e of n such that ord,(K \ {0}) = 1Z. In particular, the
norm NK/Q,, 18 mever surjective.



Proof. ord, is a group homomorphism from K\ {0} to Q, so ord,(K\{0}) is an additive subgroup
of Q. Since for any 0 # a € K, ord,(a) = M, it follows that ord,(K \ {0}) C 1Z.

But %Z is a cyclic group generated by 1/n, and its nontrivial subgroups are also cyclic, taking
the form 17 where d is a divisor of n. ord,(K \ {0}) being a nontrivial subgroup of 1Z, the
assertion is then obvious. O

As in Qy,, we have the ring of integers of K, defined tobe Ox ={a € K : |a| <1} ={a € K :
ord,(a) > 0}, and its unique maximal ideal Mg = {a € K : |a| < 1} = {a € K : ord,(a) > 0}.
Thus a is a unit in Ok if and only if ord,(a) = 0. Just as Z, is a complete subspace of Q,, so is
OK of K.

The residue field k := Ok /My contains an isomorphic copy of F), = Z,/pZ,. This can be
conveyed by the following diagram:

Zp%OK

¢ % (4

Zp/pr 1) OK/f)ﬁK

Here ¢, v are the canonical epimorphisms, each of which sends an element to its coset, and §
is the unique monomorphism such that o ¢ = 1z, . In place of ¥(a) = a+ Mg or ¢(b) = b+7Z,
we may write a or b where appropriate.

There is no trouble in identifying F,, with its isomorphic copy 0(F,) in k. We will briefly
return to the formality of isomorphic inclusions in section four, but in general we will not dwell
upon it.

Theorem 3.2. The residue field k is finite.

Proof. Since Ok is totally bounded (as a closed ball of radius 1) and complete, it is a compact
subspace of K. Note Dix is an open set (as an open ball of radius 1). For every a € Ok, the
function f, : Ox — Ok given by f,(b) = a+ b is a homeomorphism, making each coset a + Mk
an open set. Since Ok is equal to UaEOK a + Mg, k must have only finitely many members by
compactness. [

Theorem 3.3. Ok is a principal ideal domain.

Proof. Let I be any ideal of Ok . By Theorem 3.1, it is possible to choose some 7 € I such that
ordy(m) is minimal (i.e. |r| is maximal). We claim that 7Ox = I. If y € I, then |y| < |7,
meaning y7 ! € Ok. But then y = n(y7 '), meaning y € 7O O

Any generator of the maximal ideal My is called a uniformizer of K (sometimes also called
a uniformizer of Ok). We will typically denote a uniformizer by wg. Since a principal ideal of
an element is also generated by that element’s associates, and the units of Ok are precisely those
members with absolute value 1, it follows that all generators of an ideal have the same absolute
value, i.e. 7 generates I if and only if || is maximal among elements of I.

Corollary 3.4. Every ideal of Ok is equal to wkOg for some d € N.



Proof. Let I be an ideal of Ok generated by 7. Since Ok is a local principal ideal domain, the
element wg is up to associates the only irreducible element of Ok. Moreover every PID is a
unique factorization domain, so we can write 7 as @%b for some d € N and unit b. But this just
means that I = 71O = w;l(OK. O

By the previous corollary since p € Ok, there exists a number ex € N such that the ideal
generated by p is equal to the ideal generated by w}. eg is called the ramification index of
K over Q,. The ramification index is unique because w, w?,w?, ... all have different absolute

values, and elements with different absolute values generate distinct principal ideals.

Lemma 3.5. The following conditions are equivalent for a natural number e € N:
(1) e is the ramification index of K over Q.

(ii) Let wg generate My . Then wf and p are associates in Ok.

(iii) ord, (K \ {0}) = 12

Proof. Clearly (i) and (ii) are equivalent. For (iii) implies (ii) (from which (i) implies (iii) follows
by uniqueness of the ramification index), note that wg was chosen to have maximal absolute
value strictly less than 1, i.e. minimal p-order strictly greater than 0. Thus ord,(wk) = 1/e, since
1/e is the smallest positive number in the image of ord, (KX \0). Then ord,(w% ) = e-ord,(wk) =
1 = ord,(p), so |w%| = |p|, making w9, and p associates in O. O

Thus by Lemma 3.5 and Theorem 3.1, e must be a divisor of n. When ex = 1, K is called
an unramified extension of Q,, and when ex = n, K is said to be totally ramified. When ey is
divisible by p, K is called a wildly ramified extension of Q, and if p { e, tamely ramified.

The index of the residue field k over F, is denoted fx, or just f.
Theorem 3.6. [K : Q)] = ek fx
Proof. O

Just as the p-adic numbers have a unique representation as an infinite series, so do the
elements of K.

Theorem 3.7. If 0,c1,...,cp,s_1 € Ok are a complete set of coset representatives for k, then

o0 .

every a € K is equal to an infinite series ) a;wy, with each a; € {0,c1, ..., cpr_1}. Furthermore
i=k

a is uniquely determined by the elements ag,aq etc.

Proof. (do later) O

Let ¢ € Aut(K/Q,). Since | -|o ¢ is also an absolute value on K which restricts to the
p-adic absolute value on Q,, the uniqueness of such an absolute value gives us |¢(a)| = |a| for
all @ € K. In particular, since the Galois group of a splitting field of an irreducible polynomial
acts transitively on its roots, all the roots of an irreducible polynomial have the same absolute
value and p-order. This is a very useful fact which we will mention many times in the proceeding
discussion.

Lemma 3.8. If f € Z,[X] is monic with f = gh for some monic polynomials g, h € Q,[X], then
g.h € Z,X].



Proof. Every element of Q, can be written as p™u for some m € Z and u € Z,,, so let a,b € Z be
such that go := p®g and hg := p®h are in Z,[X] with some coefficient in both go and hy having
p-order zero.

For this to happen, we cannot have a < 0 or b < 0. If, say, a < 0, then |p®| > 1, meaning
the leading coeflicient of gy = p®g has absolute value strictly greater than one, since g is monic.
This contradicts the assumption that go € Z,[X]. Thus a,b and hence a + b are greater than or
equal to 0.

But we also cannot have a+ b > 0. In this case all the coefficients of p+? f are divisible by p,
so the corresponding polynomial p®*? f is zero in F),. On the other hand since at least one of the
coefficients of gg, ho has p-order zero, gy and hy and hence Goho = goho are nonzero in F,[X].

Thus a+b = 0, and it follows that 0 = a = b. Then gy = g and hy = h, i.e. g,h € Z,[X]. O

For rings R C S, an element b € S is integral over R if it is the root of a monic polynomial in
R[X]. The integral closure R’ of R in S is the set of elements of S which are integral over R. R
is called integrally closed in S if it is its own integral closure, i.e. if b € S is the root of a monic
polynomial in R[X], then b € R.

Theorem 3.9. Ok is the integral closure of Z, in K.

Proof. First, every element in O is integral over Z,,. For suppose a € Ok with minimal (monic)
polynomial m, € Q,[X]. Let K’ be a normal closure of K over Q,, so that m, splits completely
in K'[X] with roots a,a’,a”,.... Since a has absolute value no greater than 1, so do all the rest
of the roots a’,a”, ... Now the coefficients of m, are additive and multiplicative combinations of
the roots of m,, so they all have absolute value < 1 as well. But these coefficients are in @Q,, so
they must be in Z,,.

Conversely suppose a € K is the root of a monic polynomial f € Z,. It is required to show
that a € Og. Let m, € Q,[X] be the minimal polynomial of a over Q,. m, divides f, so by
Lemma 3.8 we have m, € Z,[X]. Now the constant coefficient of m, is £1 times the product of
the roots of m,. This latter coefficient having absolute value less than or equal to 1, there must
be a root of m, with absolute value less than or equal to 1. But all the roots of p have the same
absolute value, so |a| < 1, i.e. a € Ok.

O

Hensel’s Lemma, stated in section two, can be given in much greater generality. We give a
generalization which will be sufficient for our treatment of p-adic extensions in the sequel. [4]
gives a nice proof of the original lemma, and the version stated below can be proved in exactly
the same way.

Theorem 3.10 (Hensel’s Lemma) 1. If f € K[X], a € K with f(a + M) =0 and f'(a +
My ) #£ 0, then there exists some b € K with a + Mg = b+ Mk and f(b) = 0.

4 Intermediate Fields in the Preceding Discussion

We can extend the p-order on Q,, to any finite dimensional extension K of Q, by defining ord,(a)

for a € K to be w, where n = [K : Q,]. However, it is often useful to modify this
extended p-order in such a way as to produce a new discrete valuation function taking on integer
values. In particular, the discussion of ramification groups in section 9 would be more complicated
without this rescaling Here we will investigate the rescaling of the p-order function in a fairly
general setting. We let Ly = Q, € L; C --- Ly be a finite chain of finite dimensional field



extensions of Q,. We suppose n; is the dimension [L; : L;_1]. Thus L, is nj - - - ns-dimensional
over Q.

We already know how to extend the p-order function from Ly to any L; for 1 <t < s. The
extension can be done directly, as above, or one field at a time. For example, given that we have

already extended the function ord, to the field L;, we might emulate the definition above and
ordp(Np,/r, (a))

extend ord, from L; to Ly by the defining ord,(a) for a € Ly to be 2 . But this
is the same as defining the extension from Q) to Lo directly, since ord,(a) = W =

1 ordp(Nr, /ry0Nr, /1, (a)) _ ord, (N, /1, (@)

No ni no :

For each field L;, we have the local principal ideal domain Oy, and its unique maximal
ideal My,. As we have seen, each maximal ideal My, will be generated by an element wy, in
Or, whose p-order is nonzero and minimal. Moreover there must exist a natural number ey,

such that sz‘ is an associate of (that is, has the same p-order as) the element p € Z,. Thus
1

ordy(wr,) = o~

This is all done with respect to the base field Lo = Q. If we begin with a different base field
L;, with maximal ideal My, = (wy,), and an extension field L, with v > ¢, then since O, is
a PID, there exists some exponent e such that (wj ) = (wr,). This extends the definition of
the ramification index to different base fields, from which we can in the obvious fashion define
totally ramified, unramified, and tamely ramified extensions in greater generality. Since the
ramification index is evidently dependent on both the base field and the extension field, we will
denote the aforementioned e by er ,r,. When the base field is Ly = Qp, we will not mention
the base field and only the extension field, as we have done thus far. Notice in this case that
ordy (@) = ordy(wy,), or £ =y /.

The relationship of the various residue fields can be expressed in the following commutative
diagram:

Ly ~ Or, Or, » Op, - - O

&0 “p
fov Y -
/4 (@) (@]
P NG P! 2 Y2 %

0 01 2 s—1
ZP/pZP - OLl/le - 0L2/mL2 - OL3/mL3 T Of/m5
i+1
[y,
Now each k; = O, /My, is a field, and we already know the relationship [L; : Q,] = er, [k; :
F,]. But from the fact that the ramification index is multiplicative we can generalize this fact,

since e, /r, ,[ki : ki—1] = eifil [k[kil]F;]P] = [L[L;Qé]y] = [L; : Li—1] = n;. Now from this latter

relationship, it is easy to see that d; is an isomorphism if and only if [k;11 : k;] = 1 if and only
ifer,. /L, = niy1. Thus, §; is an isomorphism if and only if L;1; is a totally ramified extension
of Ll

The latter embedding ¢; is the "standard" way of embedding one residue field in the next.
If however, we would like to skip over a few residue fields, for example to embed k; in ki, we
may prefer a similar construction, as below:

Here 1)? is the canonical epimorphism, and d; is the unique monomorphism satisfying ;0%




Ot Ot+w

wt %&Qj wt+w
()

A
Ot/mt e Ot+w /mter

t+w - As above, we can argue that

| M
A is an isomorphism if and only if L;,, is a totally ramified extension of L;. But the map /(/)Itl\tfq:)

can be found in the first diagram above, so by uniqueness we have A = §;y4y—1 0+ 0 441 0 0.
Since A is an isomorphism if and only if each §; is an isomorphism, we have:

Here A is the unique monomorphism satisfying A o ¢! = 1

Theorem 1. kiy, is a totally ramified extension of k; if and only if k;11 is a totally ramified
extension of k; fort <i <t+ w.

Now for s >t > 1, we define the "L;-order" vp, : Ly = Q by vr, = er, ord,. It is easy to see
this gives a new valuation on L,. Since ord,(L;) = iZ, vy, (L) will take on integer values for
t

a € L;. In particular where (wg,) = My, v, (wr,) = er, ordy(wyr,) = eLti =1.
t

Let t < v <'s. As with ord,, we can extend the domain of vy, to L, by defining vy, (a) =
vi,Np,/,(a) _ vi,Np, /., (a)

[Ly:Ly] Nyt Nyl
We can of course rescale vz, to a new valuation vy, in the same way we rescaled ord,, to vr,.

But the question remains as to whether such a rescaling from vy, to vy, (that is, by defining
vr, to be er ,r,vr,) would give the same valuation as a rescaling such as we have done above
from ord, to vp,. In fact, this is true by the multiplicativity of the ramification index, since

€r,/LVL, = €L,/L,€L, ordy = ey, ord,.

In general for an extension L;, when 0 < w < ¢ everything we have defined up to this point
in the context of local fields-the ring Oy, , the ideal 9y, , the uniformizer wy, , the ramification
index-can be alternatively and equivalently defined in terms vy, instead of ord,,.

The ring Oy, (resp. the maximal ideal My ) can be defined as the set of members of L,
with nonnegative p-order (resp. positive p-order). But ord, and vy, are each either nonnegative
or positive wherever the other is, so we can also define Oy, (resp. My, ) to be the set of members
of L,, with nonnegative (resp. positive) L;-order.

Suppose ord, and vy, have their domains extended maximally to Ls. Multiplication by
er, gives a bijective order-preserving correspondence between the image of the p-order function
and the image of the L;-order function. In particular, whereas one might expect a uniformizer
wr,,, which generates My (or any generator of an ideal I C Op, ) to have to be defined in some
strange fashion without the use of the p-order function or the p-adic absolute value, it is sufficient
to take a member of the ideal with minimal L;-order. Minimal L;-order bijectively corresponds
to minimal p-order.

For 0 < w < v < s, the ramification index ey, ., was defined to be the unique natural

number such that in the ring Oy, , the ideals (sz“/ “v) and (wy,) are equal. Recall the result

v?

that ord,(L,) = eLl Z. We have a completely analogous result when we rescale the p-order:
Theorem 4.1. vy (L,) = 3LU1/Lw
Proof. We have v, (Ly) = e, ordy(L,) =er, eiv 7 = eLvl/Lw Z. O



5 The Discriminant and the Resolvent

Let L be an m-dimensional extension of K, where K is a finite dimensional extension of Q.
Lemma 3.8 and Theorem 3.9 can be generalized with no difficulty to yield:

Theorem 5.1. O, is the integral closure of Ok in L.

Let o1, ...,0., be all the embeddings of L into a fixed algebraic closure Q, containing K. If
a1, ..., 4y is any collection of m elements of Op, we define the discriminant of aq, ..., a,, to be
A2, where A is the determinant of the matrix:

o1(ar) -+ oilam)

UMial) : Um(.am)

Since switching rows or columns changes the determinant by a factor of —1, the discriminant
of an unordered collection of m members of Of is well defined up to parity.

An integral basis of O, over O is a basis for Op, over Ok, i.e. a collection of elements in
Oy, of which every member of O, is a unique Og-linear combination.

Lemma 5.2. There exists an integral basis of Op over Ok, and the number of elements in any
integral basis is m.

Proof. See [6], pg. 6 - 7. O

Now let vy, ...,u;, be an integral basis for O over Ok. We define the field discriminant
Disc(L/K) to be the ideal in Oy, generated by Disc(vy, ..., Um).
This notion is well defined regardless of a choice of integral basis.

Theorem 5.3. Suppose vy, ...,v, and wi,...,w,, are integral basis of Op over Og. Then
Disc(vy, ...,v,) and Disc(wy, ..., w,) have the same p-order.

Proof. Each w; is an Ok linear combination of vy, ..., vy, so where W = [wy --+ wp,]" and

V =[v; -+ vp)', we have a matrix X € M L,,(Ok) with W = XV. Similarly we have a matrix
X' € ML,,(Ok) going the other way, as V = X'W. Then X’ = X! (in particular X is invertible
in ML,,(Ok)) whence Det(X) is a unit in Og. Moreover, for any linear combination of vy, ..., vy,
forming a basis element w;, the same linear combination of o;(v1),...,0;(vy) will equal o;(w;)
for any 1 < j < m, from which it follows that Disc(wy, ..., w,,) = Det(X)?Disc(v1, ..., v). But
then these two discriminants have the same p-order (or K-order, L-order, it doesn’t matter), so
being associates in O, they must generate the same principal ideal. O

Where f is a polynomial in any field, and 71, ..., 7445y are all its roots (with multiplicity) in
some fixed algebraic closure of the field, we have the polynomial discriminant Disc(f) defined
as H (’I"i — ’/‘j).

1#]

A power integral basis of O, over Ok is an integral basis of the form 1,a,a?,...,a™ 1.

Theorem 5.4. Suppose L is Galois over K. If 1,a,a?,...,a™ "' is a power integral basis for O,

over Ok and p € K[X] is the minimal polynomial of a over K (note that p will be in Ok [X] by
Theorem 5.1), then the field discriminant Disc(L/K) and the ideal in Op, generated by Disc(f)
are equal.
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Proof. For every o; € Aut(L/K), we have o;(a’) = 0;(a)’. Now the matrix A

i Um.(a) om(a)? Om(a)™

is such that the ideal generated by Det(A)? is Disc(K/F). But the determinant of A is

[1(ci(a) — o;(a)), whence Det(A)? = ] (oi(a) — oj(a)). But o1(a),...,0,(a) are precisely all
1<J i#£j
the roots of p, so this latter square is just Disc(u). O

Theorem 5.5. Where aq, ..., a,, are, counting multiplicity, all the roots of a polynomial f, then
m

Dise(f) = 11 f'(a).
i=1

m

Proof. Since f(z) = [][ (z—a;), we have f'(z) = > [] (z—a;), whence for each root a; we have

i=1 Jj=1i#j
f'lae) = T1(ar — ai).
i#£t
Then Disc(f) = _];[_(ai —aj) = H ;E[ (a; —a;) = 1;[1 f(a;). O

Let f € Z,[X] be monic and irreducible over Q,[X] with A = {a1, ..., } the set of all its
roots. Let L be a splitting field of f over Q,, and G = Aut(L/Q,).

Now any subgroup H of S, acts on Qp[Xq,...,X,], the action given by ch(z1,...,z,) =
h(zs(1), .., To(n)). Thus for any polynomial i in n ordered indeterminates we may talk about
the stabilizer Sy of h in H. It is of course possible to choose a set of coset representatives
S1y ey Sm of H/Sp such that {s1h, ..., spmh} is equal to the orbit of h.

We now define the resolvent of f with respect to h in H, denoted Ry (h, f)(x), to be the
polynomial [] (z — s;h(a1,...,@,)). The coefficients of Ry (h, f) are fixed by any member of H,

i=1
and hence by any member of G, whence Ry (h, f) € Q,[X].

Theorem 5.6. R(h, f) has a root in Q, if and only if G is contained in a conjugate of Sy as a
subgroup of Sy,.

From the preceding theorem we obtain a general method to find the Galois group of an
irreducible f € Z,[X]:

For each maximal transitive subgroup M of S,, let h € Z[X7, ..., X,,] be a polynomial whose
stabilizer is M. Compute Rg, (h, f) and check whether it has ax root in Q. If it does, G will
be contained in a conjugate of M and we can move on. If it does not, check the next maximal
transitive subgroup of .S,.

If none of the resolvents we calculated in terms of the maximal transitive subgroups of S,
have roots in QQ,, we can conclude that G = S,,.

If, however, G was found to be contained in some conjugate (liz., isomorphic copy) of M,
then repeat the process for M: for each maximal transitive subgroup N of M, find a polynomial
h € Z[X1,...,Xy] whose stabilizer in M is N. Compute Rps(h, f) and check whether it has a
root in Q,. If it does, G will be contained in a conjugate of N. If it does not, check the next
maximal transitive subgroup of M.

12



If none of the resolvents we calculated in terms of the maximal transitive subgroups of M
have roots in QQ,, we can conclude G' = M.

Repeating this process we find smaller and smaller candidates for G until we find it.

This process would theoretically allow us to compute any Galois group. Unfortunately, this
method is not very practical, as we must find the roots of the polynomial which is in general
pretty hard. However, there is another method, using linear resolvents which is not guaranteed
to give us a complete solution for the Galois group, but allows us to rule out several possibilties.

A linear resolvent is a resolvent with respect to a polynomial of the form c¢yx1 + ... + ¢z, €
ZIX1, e Xy ooy X

Now for r > 2, let W,. be the set of subsets of {1,2,...,n} with cardinality r. S,, acts on W,
the action given by o{ai,as, ...,a,} = {o(a1),o(az),...,o(a,)}.

Every subgroup of S,,, as H, also acts on W,., and induces a partition thereon, as S, T,V etc.
where SUT UV --- =W, and (V) = [W,| = |S| + |T| + |[V| + .... We then define the r-partition
length of H in S,, to be the multiset (S|, |T], |V],...).

If a resolvent has multiple roots, it is possible to apply a Tschirnhausen transformation to
obtain a new resolvent which has distinct roots (in particular, the resolvent will be squarefree
as a product of irreducibles). For more information about Tschirnhausen transformations, see
(some source).

Theorem 5.7. Forr > 2, let R be the linear resolvent Rg,, (x1 + ...+, ). If R has a multiple
root, apply a Tschirnhausen transformation to R so that all its roots are distinct, and relabel R.
Factor R in Qu[X] as a product of irreducibles, as pi --- p,. Then the r-partition length of G is

(deg(p), ., deg(pr))-

Thus by calculating, for various (small) r the r-partition length of the transitive subgroups
of S, and the factorization of linear resolvents of f with respect to 1 + ... + x,, it is possible to
rule out several Galois groups with different partition lengths.

6 Unramified Extensions
In this section we show that for every positive integer n there is a unique unramified extension
of Q, having degree n.

Theorem 6.1. Let K be a finite dimensional extension of Q, with residue field k. There is a
bijection

{L/K finite and unramified} +— {l/k finite}
where L — 1 = Oy /my,. Additionally this satisfies

1. If Ly and Ly are finite unramified extensions of K with residue fields 1 and ly then L1 C Lo
if and only if 1 Cls.

2. Awt(L/K) = Aut(l/k) under o — olo, .

Proof. Let p = char(k). The proof is broken into several steps.

Step 1: Let m be a positive integer not divisible by p. Then the irreducible factors of 2" — 1 in
k[x] are the reductions modulo Mk of the irreducible factors of ™ — 1 in Ok|[z].

Proof of Step 1: Write ™ — 1 = g7 (z)...g7"(x) € Ok|z] for irreducible g;(z), ..., g-(z). Let

gi(z) be the reduction of g;(x) modulo mg. We need to show that g;(z) is still irreducible. Note
that since ged(p, m) = 1, 2™ — 1 is separable in k[z] and hence so is each g;.

13



Let f € k[z] be a monic irreducible factor of g; and let f € O[z] be a monic polynomial such
that f modulo mg is f. Note that f is irreducible because otherwise f would be reducible. Let
a be any root of f and set E = K(«). We have

[E: K] = deg(f) = deg(f) < deg(g:) = deg(g:)-

We know that f(@) = 0 so g;(a@) = 0 where we think of @ as being in the residue field of E.
Now because g; is separable, we can apply Hensel’s lemma to get a root 8 € O of g;. This gives
K(B) C E. We have

deg(gi) = [K(B) : K] < [E': K] < deg(g:).
Hence deg(g;) = [E : K]. Thus deg(f) = deg(gi), so g; is irreducible.

Step 2: Let l/k be a separable extension of degree n. Then there exists a unique unrami-
fied extension K, /K that is finite and has residue field .

Proof of Step 2: Since [ is finite there exists @ such that | = k(@). Let m = || — 1. Then @
is a root of 2™ — 1 € k[x] since [X is a cyclic group of order m. Let f be the minimal polynomial
of @ over k. This means f is some irreducible factor of 2™ — 1 in k[z]. By step 1 there is some
irreducible factor f € Ok|[z] of 2™ — 1 which reduces to f modulo M. Let 8 be any root of f
and set K,, = K(f). Then

(K, : K] = deg(f) = deg(F) = [1: K] = .

Because 3 € Ok, /my then k(3) C Ok, /M. It follows that

n> f(K,/K) =[Ok, /my: k] > [k(B): k] =n.

Hence f(K,/K)=mnso K, /K is unramified and | = Ok /my, since they are both extensions of
k of the same degree.

Now we just need to prove uniqueness. Suppose L/K is such that the residue field of L is .
Since f has a a root @ € [ and f is separable then f has a root o € O, by Hensel’s lemma. Thus
K(a) C L and K(a) 2 K,,. If L is unramified, then n = [L : K], thus L = K(«a) & K,,. This
completes the uniqueness part.

A similar argument will give us part 1 of the theorem. Let L;, Lo be finite unramified
extensions of K with residue fields [1, 5 respectively. First suppose L1 C Lo. It is straightforward
to show that Iy C ls: define the map ¢ : O, — Or,/My, by  — x + My,. Then since
My, C My, we get that My, C ker(¢). Now suppose x € O, but = ¢ My,. Then x is a unit, so
x ¢ My,. Hence = ¢ ker(¢), so ker(¢) = My,. By the the first isomorphism theorem for rings,
we can conclude

lm(¢) = (OLl/le)'

This gives us I; C I5.

To go the other direction, suppose I; C ls. Then there exist @, 8 € Iy such that I; = k(@) and
lo = k(B). Let fi, f> be the minimal polynomials of @ and /3 respectively. By Hensel’s lemma
we can find «, 8 € Op, such that fi(«) = 0 and f2(8) = 0. Since f; and f are necessarily
irreducible, we get that [Ly : K] = [K(«a) : K] = deg(f1) and [Ls : K] = [K(B) : K] = deg(f2).
Furthermore these two extensions are unramified, and by the uniqueness of such unramified ex-
tensions we get that Ly = K(«) and Ly = K(8). Clearly since Ly =2 K(f) then o € K(B). It
follows that K(a) C K(8), so L1 C Lo.
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Step 3: Let I/k be a finite separable extension of degree n. Then Aut(K, /K) = Aut(l/k)

Proof of Step 3: Let f and f be as in step 2. By Hensel’s lemma any root of f in [ lifts to a root
of fin O, . Let a, ..., v, be the roots of f and let @y, ...@, be the roots of f such that @; is the
reduction of a; modulo My, . Consider the map Aut(K,,/K) — Aut(l/k),o — { the image of o
in Aut(l/k)}. To see that this is well-defined, suppose z = y (mod My). Then z —y € M.
Because o preserves the valuation, then o(x) — o(y) € M. Hence 7(T) = o(y) if T = 7.
Now let o € Aut(K,,/K) such that ¢ # id. Then there exist some 4,j with ¢ # j such that
o(a;) = o(a;). This is because K, = K(a,) for some 1 < p < n and such a ¢ is uniquely

determined by where it sends «;. Then &(&;) = o(a;) = @; # @;. Hence & # id. So the kernel
of the map Aut(K,/K) — Aut(l/k) is {id}. Thus this map is injective. Now since both Galois
groups have order n, we can conclude that this map is a bijection. It is clear that this map is a
homomorphism, so we can now conclude the two Galois groups are isomorphic. O

Lemma 6.2. Let K be a finite extension of Qp. If L1, Ly are finite dimensional extensions of
K with L1 an unramified extension of K, then LiLy is an unramified extension of Lo.

Proof. Let 1,15 be the residue fields of Ly, Ly and let I be the residue field of Ly Ly. Set 1 = k(@)
for some o € Op,. Let f € L;[X] be the minimal polynomial of o over K, with f € k[X]. Note
[l : k] < deg(f) = deg(f) = [K(a) : K] < [L; : K], which is equal to [l; : k] since L/K is
unramified. Thus L; = K(a) and f € k[X] is the minimal polynomial of & over K.

This gives L1Ly = K(a)Ls = La(a). It is left to show LjLs/Lo(«) is unramified. Let
g € Ly[X] be the minimal polynomial of o over Lo. Since g divides f, g divides f, so g is
separable and irreducible by Hensel’s Lemma.

Thus for I = Op, 1, /ML, 1y, [ 2 12] < [La(a) : Lo] = deg(g) = deg(g) = [la(a) : lo] < [/ : Ls].
Then [I' : l5] = [La(«) : La], so we are done. O

Corollary 6.3. A compositum of finitely many unramified extensions of Q, is an unramified
extension of Q,.

Proof. Obvious from the preceding lemma, and from the multiplicativity of ramification indices.
O

7 Totally Ramified Extensions

Let K be a finite dimensional extension of Q,, and wg a uniformizer for Og. A polynomial
ap+ar1x+ ...+ anx™ € Ok |[X] is called an Fisenstein polynomial if @ { ay,, @ | a1, ..., am—1, and
@? { ag. This generalizes the "Eisenstein criterion," seen in abstract algebra or number theory,
which can determine if a polynomial in Q[X] is irreducible. Indeed, any Eisenstein polynomial
is irreducible in K[X] by the same argument. The notion of adjoining a root of an Eisenstein
polynomial to Q, will be very useful in classifying totally ramified extensions. An extension
L/K is called an FEisenstein extension if L can be obtained by adjoining a root of an Eisenstein
polynomial of Ok [X] to K.

As an example of the previous definition, note that the polynomial 22 —3 € Z3[x] is Eisenstein.
Hence the extension Q3(a)/Q3 where « is a root of z? — 3 is an Eisenstein extension. Now we
show that any Eisenstein extension is totally ramified.

Theorem 7.1. Suppose L/K is Fisenstein. Then L is totally ramified over K.
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Proof. Let f(z) = ana™ +a,_12" 1 +...+ag € Ok[z] be an Eisenstein polynomial, and a € O
a root of f such that L = K(«). Let a = aq, g, ..., o, be all the roots of f, wy a uniformizer

of K, and w;, a uniformizer of L. It is required to show that ej,x = 1, where |@;"/*| = |wk]|.
n

Since all the roots of f have the same absolute value, |a|® = [] |as| = |ao|, with |ag| = |wk]|
i=1

by hypothesis. Since o € O, there exists some m € N with |y |™ = |a|. Then |wg|t/K =

o™ = |a = |wK|%7 or mn = er k. But e;x < m, so we must conclude m = 1, i.e.

n = eL/K- L]

Theorem 7.2. If a finite extension L/K is totally ramified then L/K is Fisenstein.

Proof. Let L/K be totally ramified with [L : K] = n. Let wy, be a uniformizer of L. Consider the
intermediate field Ly = K(wr). Since L/Q, is totally ramified then L;/Q), is totally ramified.
Let wy, be a uniformizer of L;. Since wy € Ly it follows that |wr,| = |wr|. Because L/K
is totally ramified then |wg| = |wr|®. We also have |wg| = |wp, |F1 5] = |y |F1E] Hence
[Li:K]=mn,s0 L) =L.

Now let f(x) = 2" + ap_12" " + ... + ap € Ok[z] be the minimal polynomial of @y, over K.
Let @y = wy, ...,y be the roots of f. All these roots have absolute value equal to |wy| < 1.
Hence |a;| < 1 since the a;’s are symmetric polynomials in the w;. So a; € Mk . Also, since
L/Q, is totally ramified,

n
laol = [ [ il = | = |k].
=1

Hence aq is not divisible by w%, so f is Eisenstein. O
Corollary 7.3. A finite extension L/K is totally ramified if and only if L/K is Fisenstein.

Thus in order to classify totally ramified extensions of Q,, we need only consider those
extensions obtained by adjoining a root of an Eisenstein polynomial to Q,.

We will see toward the end of this section that it is always possible to split up a finite extension
L/Q, into an unramified extension and then a totally ramified extension Q, C Ly, € L. The
unramified extension is easy to classify, since there is a unique unramified extension of every
degree. Thus, to classify extensions of Q,, it is left to focus on the totally ramified extensions of
the unramified extensions of Q,. To study these extensions, we will use a very useful tool known
as Krasner’s Lemma.

Krasner’s Lemma 7.4. Let K be a finite extension of Qp, and K an algebraic closure of K. If
there exists o, f € K such that | — f| < |a — o(a)| for all 0 € Aut(K /K ) such that o(a) # a,
i.e., B is closer to « than any of a’s nontrivial Galois conjugates, then K(a) C K(8) .

Proof. Take o € Aut(K/K) such that o(3) = 8. We would like to show that o(a) = «, in
which case we would have that Aut(K/K(8))C Aut(K/K(a)) and the Fundamental Theorem
of Galois Theory would give us that K(«) C K(f3).

By the previous lemma,

o = 5| = |o (e = B)|
= lo(a) —a(B)]
= |o(@) = 5
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Now,

lo(a) —al = [(o(a) = B) + (B — )]
< max{|o(a) — B,|a — 5]}

Since |o(a) — 8| = |a — B|, we must have that |o(a) — a| < |a — 8|. However, S is closer to «
than any of «’s nontrivial Galois conjugates, so o must act trivially on «, i.e. o(a) = a. O

Definition 7.5. For ., € K, 3 belongs to « if |a — B| < |o(a) — | for all 0 € Gal(K /K ).

Krasner’s Lemma says if 8 belongs to «, then K(a) C K().
We now define a metric on K[X]. For f(z) = apz"™ + ap_12" 1 + -+ + a1z + ap € K|[z], we
define || f]| to be max; |a;|.

Lemma 7.6. Let f(z) = 2" + ap_12" "' +--- + ag € K[| be irreducible and take o € K such
that f(a) = 0. Then, there exists a constant ¢y > 0 such that if g(x) € K[z] with ||g — f|| < ¢y,
then g(xz) has a root 8 that belongs to a. Also, g(x) is irreducible, degg(x) = deg f(x), and
K(a) = K(pB).

Proof. Pick ¢y such that

s < min (1, £(@)]) (1)
ef < min (¢ |o(0) ~ 0)[}) 2)

where ¢; = [ max | f(2)||7=7. Now, take g(x) € K[z] monic such that ||g(z) — f(z)| < cs. If
0<j<n—1

deg g(x) # n, then we have ||g(xz) — f(x)|| > 1. However, since ¢; < 1 by equation (1), we must

have degg(xz) =n

Now,
lg(@)ll = I (=) + (9(z) — f(2))]|

< max (|[f(2)[; |/ (=) = g(=)[)
< [If (@)l

where the first inequality comes from the non-archimedean absolute value, and the second in-
equality is because ||g(z) — f(z)|| < ¢f < || f(x)]]. o
Write g(z) = 2™ + b, 12"~ + -+ + by and take By € K with g(39) = 0. Then,

n—1
> bi
=0

) i
onax [biflBol"

1651

IN

Let j be such that |b;||3o)’ is maximal. So, |Bo|™ < |bj||Bo)?. Note |Bo|™ ™7 < |b;| < |lg(x)]; for
if By # 0 then we can divide through by Sy, and if 8y = 0 this result is clearly true. As we
saw earlier ||g(z)| < ||f(2)|l, so if we take roots and combine the last two inequalities, we get

1Bol < |1 £ ()| 7.
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n—1
Let f(z) —g(z) = Z emax™. Since g(Bo) =0,
m=0

|f(Bo)l = £(Bo) — 9(Bo)|

o max lem [ Bo

IA

| m

IN

m
cf max_ |Bol

< =i
<ep  max |f(@)]

< min |o(a) — o
min Jo(@) —a

where the last inequality comes from defining equation (2) of c¢y.
Let @ = ay,as,...,a, be the roots of f(z). So [(Bo — a1)...(Bo — an)| = |f(Bo)| <
%11)12 lo(a) — al;. Suppose i minimizes |3y — ;. Then, [fo — ai| < |o(a) — af for all o
such that o(a) # «
The group Aut(K /K) acts transitively on the roots of irreducible polynomials, so there exists
o; € Aut(K/K) such that o;(o;) = a. Let 3; = 0;(8). Then, for all ¢ € Aut(K/K) such that

o(a) # a we have

1Bi — al = |oi(8; — @]
= |oi(Bi) — oi(a)]
= |Bo —
<lo(a) —af

So, f3; belongs to «. Krasner’s Lemma gives K («) C K(;). Since f(x) is irreducible we have,

deg f(z) = [K(a) : K|
[K(5:) : K|

Since deg f(z) = deg g(x) we must have K(«a) = K(f;). O

Corollary 7.7. Take f(x),g(x),cs as in the previous lemma. Then every root of g(x) belongs to
exactly one root of f(x). So the roots of f(x) generate the same extensions as the roots of g(x).

Proof. Let « be a root of f(x) and let 8 be a root of g(x), 8’s existence is guaranteed by the
previous lemma. Let 8 = 31, 8a,. .., B, be the roots of g(x).

First, let’s show every root of g(z) belongs to at least one root of f(x). Since g(z) is ir-
reducible, and the Galois group acts transitively on the roots of irreducible polynomials, there
exists 0; €Gal(K /K) such that o;(8) = ;. So

loi(a) = Bil = loi(a) — a4(B)]
—Ja-§]
<|a; — | for all i # 1.

18



The last inequality is because 8 belongs to o and the collection of «;’s such that ¢ # 1 is the
collection of non-trivial Galois conjugates of «. So, §; belongs to o;(a).

Now, suppose 3 belongs to a and aj, # a. We may write oy, = 7(a) for some 7 € Aut(K /K).
By the non-Archimedean property, we get |7(a) —a| < max{|r(«) — 5], |8 — «@|}. Since 5 belongs
to a, we know o — | < |7(e) — «|. Also, since 5 belongs to 7(a) we have

(@) = Bl < o =774 (a)
= r(a—7""())

= [m(a@) —

Thus we have |7(o) — o] < max{|7(e) — 8|,|8 — a|} < |7(a) — a|. Thus, we can not have
a root of f(x) belonging to two roots of g(x). Since we know that degg(z) = deg f(z) and
both polynomials are irreducible and separable, we must have that each root of g(x) belongs to
one and only one root of f(z). The facts about the field extensions follows from the previous
lemma. O

Now, using these tools, we can show that there are only finitely many totally ramified (equiv-
alently Eisenstein) extensions of K

Lemma 7.8. There are only finitely many Fisenstein extensions of K having a fized degree n.

Proof. Let A= Mg x -+ - x Mg x (Mg \ wOk), where w is a uniformizer for Ok and there are
n—1 copies of M. We have a bijection from A to the set of all Eisenstein polynomials of O[]
of degree n by mapping each n-tuple (a,_1, ..., ag) to the polynomial ag + ... + a, 12"t + 2" €
Ok[X].

We can make A a metric space by defining ||(an—1,...,a0)| = max |a;|. This metric coincides
with the product topology on A, and the aforementioned bijectilon gives a homeomorphism
between A and the metric subspace {f € K[X]: f is monic, deg(f) < n} . For a € A denote the
corresponding polynomial by f,.

For each a € A there exists a neighborhood U, C A such that if b € U,, then the roots of f,
and f, generate the same extension, where U, = {& € A : ||z —a|| < ¢y, } for ¢y, as defined in
Lemma 3.

Now, M is closed in O, which is compact, so My is compact. Note @w?O = {x € My :
|z| < |@|}, so @w?Ok is open in M. Thus its complement, My \ @2Of is a closed subset of
the compact set M, so My \ w?O is compact. A product of compact spaces is compact, so A
is compact. So A = UU,, U---UU,, for some a1, ...,as € K, and so all the Eisenstein extensions
of K are generated by the roots of f,,,..., fa, O

Theorem 7.9. If L is finite dimensional over Qp, let K be the composite of all the unramified
extensions of Q, contained in L. Then K is an unramified extension of Qp, and L is a totally
ramified extension of K.

Proof. See [3] pg. 39. O

Corollary 7.10. For every n > 1, there are finitely many fields which are n dimensional over
Qp-

Proof. For every positive nonunit divisor d of n, there is exactly one unramified extension Ky
of Q, having dimension d. And by the previous theorem, there are only finitely many totally
ramified extensions of K; which have dimension n/d over Kj.

Since every n dimensional extension L of Q, can be broken up into an unramified extension
K/Q, and a totally ramified extension L/K, the assertion is obvious. O
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8 Tamely Ramified Degree Fourteen Extensions of Q,

For n > 1 and e a divisor of n not divisible by p, Awtrey cites a general method for counting up
to isomorphism the number of n-dimensional extensions of @, which have ramification index e:

Fixing e determines the dimension f = n/e of the residue field. Let g = (e,p/ — 1). Since
Z acts on Z/gZ by multiplication, the latter group may be partitioned into orbits under multi-
plication by p. Then there are as many nonisomorphic n-dimensional extensions of Q, having
ramification index e as there are orbits.

When p is not 2 or 7, all degree 14 extensions of @, are tamely ramified. We give a count of
the number of such extensions based on p being congruent to 1,3,5,9,11 or 13 modulo 14.

We divide this count into cases based on the four possibilities for (e, f).

I . There is up to isomorphism only one unramified extension of Q, for each degree n, so
there is nothing to prove when e = 1.

II.Ife=2and f =7, we have g = (2,p” — 1) = 2. p being nonzero modulo 2, multiplication
by p induces only two orbits of Z/gZ: {0} and {1}, so there are two nonisomorphic degree 14
extensions of Q, with ramification index 2.

II. If e =7 and f = 2, we have g = (7,p? — 1), so g will be 7 when p? =1 (mod 7), and 1
otherwise.

When p = 3,5,9 or 11 modulo 14 (and therefore modulo 7), p? is evidently not congruent to
1, so g = 1. But then Z/gZ is the trivial group, so multiplication by p induces only one orbit,
yielding up to isomorphism only one extension.

When p = 1, we have g = 7. But then multiplication by p puts each element of Z/gZ into its
own orbit, yielding 7 extensions.

Finally when p = 13, we have p = —1 (mod 7) and g = 7. Multiplication by p induces the
orbits {0}; {1,6}; {2,5}; {3,4} of Z/gZ, so we have 4 extensions.

IV.Ife=14 and f =1, g = (14,p — 1). When p is of the form 14k + 1, g is 14. Then
multiplication by p sorts the elements of Z/gZ into trivial orbits, giving 14 extensions.

When p is of the form 14k plus 3,5,9,11 or 13, g is clearly equal to 2. By the same reasoning
in IT above, there are only 2 extensions.

Putting the above material together we deduce:

Theorem 8.1. The number of nonisomorphic degree 14 extensions of Q, is 24 when p =1 (mod
14), 6 when p = 3,5,9 or 11, and 8 when p = 13.

The subcase where p is congruent to unity modulo the degree of the extension merits special
attention. When n is of the form 2q for some odd prime ¢, and p is a prime number = 1 (mod 2¢),
it is easy to see that the exact same arguments as above give us the following: up to isomorphism
the number of 2¢g-dimensional extensions of Q, is 1 + 2+ ¢ + 2¢.

More generally fixing a prime number p, we say that a natural number n is p-adically perfect
if up to isomorphism the number of n-dimensional extensions of Q,, is 3 d.

d|n

It has been observed that there are many more wildly ramified extensions up to isomorphism

than there are tamely ramified. It seems apparent that when p divides n, the number of degree

n extensions of Q, up to isomorphism should be greater than )  d. Exact formulas (source)
d|n
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are known detailing the number of extensions up to isomorphism of Q, of a fixed degree and
ramification index, but working with these formulas to obtain a suitable lower bound on the
number of extensions up to isomorphism in the wildly ramified case has been difficult. For the
time being, all that can be done is to state the following conjecture:

Conjecture 8.2. If n is p-adically perfect, then p cannot divide n.

The following theorem along with the previous conjecture would completely characterizes
p-adically perfect numbers:

Theorem 8.3. Suppose p does not divide n. Then n is p-adically perfect if and only if p = 1
(mod n).

Proof. First suppose p = 1 (mod n). Let e be any divisor of n. We have g = (e,p™/® —1) = e
since p™/¢ is congruent to unity modulo n, and therefore modulo e. But also p = 1 (mod e), so
multiplying all the elements of Z/gZ by p only sorts each element into its own orbit.

Thus there are e nonisomorphic n-dimensional extensions of @@, with ramification index e,
meaning there are Y e nonisomorphic extensions in total.

eln

Conversely suppose n is p-adically perfect. Resolve n into prime factors, as A*BPC? etc.

Now for each divisor d of n, the number of orbits of Z/gZ where g = (d,p™/% — 1) is < g,
which is < d. Thus for n to be p-adically perfect there must be exactly d nonisomorphic degree
n extensions of Q, with ramification index d. Otherwise the sum over d | n of the number of
nonisomorphic extensions with ramification index d will be strictly less than > d.

d|n

For this to happen, we must first have g = d. Second, multiplication of Z/¢Z by p must sort
each element into its own orbit, i.e. p must be congruent to unity modulo d = g.

Then p = 1 modulo A%, B, C” etc. and hence modulo their product n. O

When p = —1, a similar but more complicated result can be deduced:

Theorem 8.4. If p is an odd prime congruent to —1 (mod n) with n even, then the number of
n dimensional extensions of Q, up to isomorphism is

d+1
2 ||t X 2
2
d|n d|n
ords(d)<ords(n) ordy (d)=ordy (n)

Proof. Since p is odd, n is even, so we may write n = 2¢p$* - - - p%. Let d be any divisor of n with
ordy(d) < e. Then g = (d, p™/® — 1) is equal to d since n/d is even, ensuring p™/¢ = (—1)"/¢ =1
(mod n) and therefore modulo d. Also p = —1 (mod d), so multiplication by p sorts Z/gZ into
the orbits {0}; {1,d — 1}; {2,d — 2} etc.

Thus there are % orbits if d is odd and g + 1 orbits if d is even.

Now let d be any divisor of n with ordy(d) = e. Then n/d is odd, meaning p/¢ = (=1)"/¢ =
—1 modulo n, and therefore modulo any odd prime p; dividing n. We can then conclude that
d and p"/¢ — 1 do not have any odd prime divisors in common. On the other hand, p™/? =
(—1)"/% = —1 (mod 2¢), and therefore modulo 2* for any k < e. But —1 = 1 (mod 2*) if and
only if k = 1, so we can conclude that g = (d,p™/? — 1) is equal to 2.

From the fact that p itself is 1 (mod 2), we can conclude that multiplication by p induces two
orbits of Z/gZ.
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Putting this all together, we see that the number of n-dimensional extensions of Q, up to
isomorphism is

> %jt > (§+1>+ o2

d|n d|n d|n
ordg (d)=0 1<ordg(d)<ordg(n) ordg(d)=ordg(n)
But
>0y (fa)- oy [
2 2 2
dln dln d|n
ordg (d)=0 1<ordy (d)<ords(n) ordg (d)<ords(n)

O

Theorem 8.5. If in the previous theorem n is odd, then up to isomorphism the number of n
dimensional extensions of Q, is the number of divisors of n.

Proof. Let d be any nonunit divisor of n. For every nonunit divisor d; of d, from p = —1 (mod
n) we have p = —1 (mod d;), hence p*/¢ = (=1)"/% = —1 (mod d;), with 1 # —1 (mod d;).
Thus for each nonunit divisor d of n we have g = (d, p/d — 1) = 1. Then every group Z/gZ on
which Z acts is trivial, so the assertion is obvious. O]

The group of units of Z/nZ is cyclic if and only if n = 2,4, ¢*, or 2¢* for k € N and ¢ an odd
prime. If n is one of those values, p? = 1 (mod n) if and only if p =1 (mod n) or p = —1 (mod
n). So if n is one of those values, our theorems extend to the case where p? = 1 (mod n).

9 Ramification Groups

In this section, we introduce ramification groups, which will be useful in narrowing down the
possibilities for the Galois group of the Galois closure of an extension of Q,.

Let L/Q, be a Galois extension and let G = Aut(L/Q,). We define the ith ramification
group of Gtobe G; ={oc € G:vp(o(x) —z) >i+1 VeeOr}.

Our main use of ramification groups comes from the following lemma.

Lemma 9.1. Let L/Q,, be a Galois extension with w a uniformizer for L and G = Gal(L/Q,).
Let U; .= (1 + (@) and let Uy be the group of units of L. Then

1. Fori >0, G;/G;i41 is isomorphic to a subgroup of U;/U;11 and hence is abelian.
Go/Gy is cyclic with order coprime to p.

G;/Giy1 are direct products of cyclic groups of order p.

™ e e

Gy is the semi-direct product of a cyclic group of order coprime to p and a normal subgroup
which is a p-group

5. G and Gy are solvable
Proof. See [1] pg. 43 O

For a degree 14 extension of Q7, the Galois group of the Galois closure must be a transitive
subgroup of S14. There are 63 transitive subrgoups of S14. Using Lemma 9.1 we can narrow down
our list of possible Galois groups even further. After doing this, we find there are 17 subgroups
which satisfy these criteria.
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Table 1: Possible Galois Groups for p =7

Galois Group Label (14T) | Subfields | CO | Parity | O.L. 2 O.L.3 | O.L. 4

C(14)=T7[x]2 1 7T1,2T1 | 14 | -1

D 14(14)=[7]2 2 7T2,2T1 | 14 | -1

D(7)[x]2 3 7T2, 2T1 | 2 -1

2[1/2|F _42(7) 4 7T4, 2T1 | 2 -1 [7,212,42]

F_21(7)[x]2 5 7T3, 2T1 | 2 -1

F_42(7)[x]2 7 7T4, 2T1 | 2 -1 [7,422]

[7°2]2=Twr2 8 2T1 7 -1

1/2[D(7)2]2 12 2T1 1 1 [143,49]

[1/2.ID(7)2]2 13 2T1 1 -1 [143,49] [143, 28, 983] | [143, 28, 493, 98°,

7°2:3]2 14 2T1 1 -1 42,49 142, 42, 294] | [142, 42, 98, 147, 2

7°2:3 3|2 15 2T1 1 -1 42,49 142, 42, 294] | [142, 42, 982, 147°

D(7)"2]2=D(7)wr2 20 2T1 1 -1 143 49 143, 28, 983] | [143, 28, 492, 98,

1/6 _-F 42(7)°2]2_2 | 22 2T1 1 1 42,49] 28, 42, 294] 28, 42, 1473, 196,

[1/6 +.F 42(7)"2]2 2 | 23 2T1 1 1 [42,49] [28, 42, 294] | [28, 42, 147, 196, ¢

[7°2:6]2 24 2T1 1 -1 [42,49] [28, 42, 294] | [28, 42, 147, 196, ¢

[7°2:6_3]2 25 2T1 1 -1 [42,49] [28, 42, 294] | [28, 42, 1473, 196,

[D(7)"2:3]2 32 2T1 1| -1 [42,49] [28, 42, 204] | [28, 42, 147, 196,
Table 2: Possible Galois Groups for p = 2

Galois Group | Label (14T) | Subfields | Centralizer Order | Parity | Orbit Lengths 2 | Orbit Lengths 3 \ Orbi

C(14)="7[x]2 | 1 7T1,2T1 | 14 -1

[273]7 6 7T1 2 1 [7,287] [145, 282, 567

[2°4]7 9 TT1 2 -1 [7,28%] [145, 56°] [73,

[2°6]7 21 7T1 2 1 [7,283] [145, 56°]

[2°7]7T=2wrT | 29 7T1 2 -1 [7,28%] [145, 56°] [73,
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Table 3: Counts for Extensions of Q-

€ j #:KeJ #:Q;J
1 0 1 1
2 0 2 2
7 1 336 27
2 336 27
3 336 27
4 336 27
) 336 27
6 336 54
7 343 28
14 |1 84 6
2 84 12
3 84 6
4 84 12
5 84 6
6 84 18
8 588 48
9 588 42
10 | 588 48
11 | 588 42
12 | 588 96
13 | 588 42
14 | 686 56

=654

Table 4: Polynomials for Unramified Extensions of Q7

n=2 22 +6x+3
n="7 2’ +6x+4
n=14 | 2% + 527 +62° + 22* + 322 + 62 + 3
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10 Our Computations

Using Lemma 9.1 we created a program in GAP to output only the transitive subgroups of
S14 which satisfied Lemma 9.1. The possible Galois groups for degree 14 extensions of Q,
must come from this list of groups. Using the T numbering system, we were able to determine
that the only possible Galois Groups for degree 14 extensions of Q7 are of the form 1475 with
j e {1,2,3,4,5,7,8,12,13,14,15, 20,22, 23,24,25,32}. A similar calculation gave us that the
only possible Galois Groups for degree 14 extensions of Qo are of the form 147% with ¢ €
{1,6,9,21,29}.

Then we created the p-adic field in Magma. Then, we used the AllExtensions() command
in Magma, which implements an algorithm outlined by Pauli in his thesis, to get a list of all
possible extensions of @, of degree 14. This algorithm gave us a list of the degree 14 irreducible
polynomials defining all the extensions of @@, in a given algebraic closure. Two irreducible
polynomials of the same degree define isomorphic extensions if and only if one of the polynomials
has a root in the field generated by the other polynomial. Using the HasRoot() command, we
were able to make a list of polynomial representatives of the isomorphism classes of degree 14
extensions of @,

Once we had these extensions, we began to compute properties of the field extensions and
invariants of the Galois Groups in an attempt to match each field extension with its corresponding
Galois Group. The group theoretic properties are listed in Tables 1 and 2.

Our first such property was subfield content. On the field theory side, for a degree 14 extension
L of Qp, the subfield content tells us the Galois group of the Galois closures of the intermediate
fields between L and Q,. On the LMFDB, we found polynomials defining all extensions of degree
2 and degree 7 over (Q,. Such an extension contributes to the subfield content of L if and only
if the polynomial defining the extension has a root in L. Then we used Magma’s HasRoot()
command to determine which polynomials had roots in which fields, thus determining subfield
content. The LMFDB also contained the Galois groups of the Galois closures of these degree
2 and degree 7 subfields, so we then added these groups to our list when the corresponding
polynomial had a root in the field.

On the group theory side, the subfield content is the permutation representation of the Ga-
lois Group acting on the cosets of the subgroup corresponding to the intermediate field. This
information is easily calculated, but in our case, we were able to find the information in the
LMFDB.

Our next invariant was the centralizer order. The centralizer order of each possible group as
a subgroup of S14 corresponds to the size of the automorphism group of the extension. We used
Magma’s AutomorphismGroup() command to determine the size of the automorphism group of
each extension. A program on GAP was able to determine the size of the centralizer of each
possible Galois group as subgroups of Sy4.

Then, we calculated the parity of each extension. The parity of a subgroup of S14 is 1 if the
subgroup is contained in Ai4 and -1 otherwise. The parity of a field extension is determined
by using the discriminant of the defining polynomial. The Galois Group is contained in Aj, if
and only if the discriminant of the defining polynomial is a square in Q,. Given a polynomial
f(z) € Z,x], factor disc(f) = p'r, where r € Z, and p { r. If i is odd, the disc(f) is not a square.
If ¢ is even, disc(f) is a square if and only if u + pZ, is a square in the residue field Z,/pZ,,.

As our tables indicate, these invariants do not give us enough information to classify the Galois
group. For example, the Galois groups 14T4 and 14T7 have the same subfield content, centralizer
order, and parity. To sort between these groups, we have had to use resolvent polynomials.
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11 Computation of Galois Groups Using Resolvents

In most cases, the subfield content, centralizer order, and parity information are not sufficient
to distinguish the Galois group of the Galois closure of a given degree 14 extension of Q. In
this section, we introduce a powerful tool in computational algebra for computing Galois groups,
known as resolvents. As an example, we also give the explicit details of the computation a
resolvent for a certain degree 14 extension of Q5.

Let f(z) € Qplz] be an irreducible polynomial of degree n and set K = Q,[z]/(f). Fix an
algebraic closure of K and set and arbitrary ordering of the roots of f by a1, as,...,a,. Since
f is irreducible, the Galois group of the Galois closure K¢ of K is a isomoprhic to a transitive
subrgoup of S,,.

Definition 1. Let G be a subgroup of S, containing Gal(K9) and let
F(X1,Xo,...,Xm) be a polynomial in m variables with coeffients in Z,. If H is the stabilizer of
F in G, that is,

H = {J eqG: F(Xa(l),Xg(g),...,XU(m)) = F(Xl,XQ,...,Xm)},

we define the resolvent polynomial R (F, f) by

RG(Faf): H (X_F(an(l)vaa@)a'";acr(n)))7
ceG/H

where G/H denotes any set of left coset representatives of G modulo H.

The resolvent polynomial R¢(F, f) has coeffiecents in Z,,. If G = S,,, we call the resolvent an
absolute resolvent. Otherwise, we call the resolvent a relative resolvent. We have the following
result which will be useful for computing Galois groups

Theorem 1. Using the same notation as in the previous definition, setl = [G : H| = deg(Rg(F, f)).
Then if Rg(F, f) is squarefree, its Galois group is equal to ¢(Gal(K9)), where ¢ is the natural
group homomorphism from G to Sy, given by the natrual left action of G on G/H. In particular,
the list of the degrees of the irreducible factors of Ra(F, f) in Zy[x] is the same as the list of the
lengths of the orbits of the action of ¢(Gal(K9)) on [1,...,1].

It often happens that R (F, f) is not squarefree. In that case, in order to apply the theorem
we use a Tschirnhausen transformation on f to get a new irreducible polynomial defining the
same extension as f. The Tschirnhausen transformation is given by the following algorithm.

Algorithm 1. Given a monic irreducibe polynomial f € Zy[x] of degree n defining an extension
of Qp, we find another such polynomial defining the same extension.

1. Choose at random a polynomial A € Z[z] of degree at most n — 1.
2. Compute the resultant U =y (f(Y), X — A(Y)).
3. Compute V = ged(U,U"). If V is constant, then return U. Otherwise, go to step 1.

In the case G = S,, and F = X{ + ...+ X,,, then the stabillizer of F' in G consists all
permutations in S, that fix {1,...,m} C {1,...,n}, and it follows that the degree of Rg, (F, f)
is (:;) If the resolvent Rg, (F, f), which we shall denote from now on by R(F, f) when G = S,,
is squarefree then the degrees of its irreducible factors correspond to the lengths of the orbits of
the action of Gal(K9) on the set

{ar,...;am}ar,...,am €{1,...,n},a;, # a; if i # j}.
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The action of Gal(K7) on this set defined by the componentwise action of Gal(K¥) on {1,...,n}.
The formula for the resolvent can be written as

R(Xi+ ...+ Xm, f) = 1T (X = (s + s, + .+ a,).

) ‘7;1 <ig<.‘.<i7,L
21,7427“'12711.6{1:“'7”}

We now introduce resultants as a computational tool for computing resolvents. For two polyno-
mials P(X), Q(X) over some field k we define their resultant by

PrQ= ] &-v

P(2)=Q(Y)=0

where the roots of P and () are in some algebraic closure of k. Note that (P, Q) = 0 if and only if
P and @ have a common root. For our purposes, the resultant will be computed for polynomials
in two variables. In this case, we will indicate by a subscript which variable should be considered
the indeterminate.

Returning to the computation of resultants, when m = 2, we have the following formula for
R(X1 + Xo, f) in terms of a resultant.

B 1/2
ROX 4 X, )(X) — (y<f<Y>,f<X Y))) |

2 f(X/2)
Table 7?7 shows the lengths of the orbits of the possible Galois groups of a degree 14 extension
of Q7 acting on subsets of 1,..., of size 2. From this table, it is clear that we may distiniguish

between the groups 1474 and 1477 by using the degree 91 resolvent R(X; + Xs, f)(X). The
following section gives an example computation of such a resolvent.

11.1 Example computation of a resolvent

In this brief section we give the details of the computation of a degree 91 resolvent which allows
us to distinguish between the Galois groups 14T4 and 14T7. We start with the irreducible
polynomial f(z) = 24 + 6328 +422* + 7 € Z7[z]. The extension of Q7 defined by f has subfields
2T1 and 7T4, and centralizer order 2. From table 7?7, it follows that we can look at the degrees
of the irreducible factors of R(X; + X3, f)(X) to determine the Galois group of f.

Using the computer algebra system MAGMA, we compute this resolvent using the resultant
formula from the previous section. Since the computation of such resultants in MAGMA using
7-adic numbers is slow, we perform the resultant computation using polynomials with coefficients
in Q. The polynomial division operations are also performed using polynomials with rational
coefficients. After completing these operations, we are left with the degree 182 polynomial
(R(X1+ X, £)(X))?, the square of our desired resultant. This polynomial has integer cefficients,
and we do not write the polynomial here due to its large size. There is no easy way to take the
square root of such a polynomial, but we do not have to in this case becuase it is immediately
clear by inspection that the resolvent will have a factor of 27, and hence it will not be squarefree.

It is necessary to apply a Tschirnhausen transformation to f. The random polynomial for
the Tschirnhausen transformation is computed having integer coefficients between -100 and 100.
The resultant operation in Algorithm ?? is again performed using polynomials over the rationals
to save time. This resultant is guaranteed to have integer coefficients. The GCD in step 3 is
computed using polynomials defined over Z;. In our case, the Tschirnhausen transformation
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gave us the irreducible polynomial

f =z — 15938643023 + 106340114428625632 "2
— 3794536591734009091131982 ' 4 9568189246566286288325242:°
— 743023554170267867907412° + 6670128989326460944686302°
— 84162555129996599487329902" — 5190590597903057517040514°
+ 5754175722477884019190432x° + 69661462697133835344655372*

— 10832766079412731838804252x3 — 655977421329533313927239422
— 9580002566170570565448165x 4 7038300025323821440669079.

We now compute the square of the resolvent R(X; + Xs, f)(X) as before. Factoring this degree
182 polynomial over Q7 and removing one copy of each factor to get the square root, we are left
with the factorization of the resolvent R(X; + Xa, f)(X) over Q7. In our case, this polynomial
turned out to be squarefree and had irreducible factors of degrees 7, 21, 21 and 42. We can then

conclude that the Galois group of f is 14T4.

12 Degree 14 Extensions of QQ;

The following table gives a list of defining polynomials for all degree 14 Extensions of Q7. The
e column is the ramification index of the extension, the j column is the j from Ore’s condition.
The sgg content column is the subfield content of the extension, the C.O. column is the size of
the automorphism group and the parity is 1 if the discriminant of the polynomial is a square in
Q7. The G column is the Galois group of the extension.

Table 5: Extensions of Q7

Defining Polynomial e |] sgg Content | C.O. | Parity | G
2184212449510 —4227 44925+ | 14 | 5 2T1 1 -1
105

¥+ 72 421 1415 2T1, 7T3 2 1
2™ — 912" + 98210 — 912" — [ 14 | 5 2T1 1 -1
1472° — 28

' — 912" + 9821V + 16127 + [ 14 | 5 2T1 1 1
495 — 77

2191212498210 +7027—982°+ | 14 | 5 2T1 1 -1
70

" + 7212 +35 145 2T1, 7T3 2 1
2 1161272 + 49210 — 9127 + [ 14 [ 5 2T1 1 -1
492° — 28

4 4+ 161z + 4920 + 161"+ [ 14 | 5 2T1 1 1
985 — 77

2™ + 161212 + 4920 + 702" + [ 14 | 5 2T1 1 -1
1472° 4+ 70

2112 4 21 1415 2T1, 7T2 2 1
2™ 4+ 70212 — 14720 — 912" — [ 14 | 5 2T1 1 -1
9825 — 28
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Defining Polynomial e |] sgg Content | C.O. | Parity
e 4+ 7022 — 14720 + 16127+ [ 14 | 5 2T1 1 1
1472° — 77
2™ 4+ 70212 — 14720 + 702" + [ 14 | 5 2T1 1 -1
4956‘ + 70
¥ — 21212 — 147210 — 126 1415 2T1, 7T1 14 1
1:14 + 14;1:12 + 35 145 [2T1,7T1 14 -1
™ — 21212 — 14720 + 168 14]5 2T1, 7T1 14 1
21— 21412 — 147210 — 28 1415 2T1, 7T1 14 -1
z + 14;512 + 84 4[5 2T1, 7T1 14 1
7212 491 145 [2T1,7T1 14 -1
x14 + 7212 442 4[5 2T1, 7T1 14 1
2 = 21212 — 147210 — 912" + [ 14 | 5 2T1 7 -1
9825 — 28

12122 — 147210 — 91" + [ 14 [ 5 2T1 7 1
985 + 119
2™ — 21212 — 147210 — 912" + [ 14 | 5 2T1 7 -1
98z° — 77

T 92122 — 147210 — 912" + [ 14 [ 5 2T1 7 1
982° + 70

T 2122 — 1472 — 912" + [ 14 | 5 2T1 7 -1
985 — 126

421212 — 147210 — 912" + [ 14 | 5 2T1 7 1
98z° + 21

42122 — 147210 — 912" + [ 14 | 5 2T1 7 -1
98z° + 168

121212 — 147210 + 1612 — [ 14 [ 5 2T1 7 1
1472° — 77

1212 — 14720 + 1612 — [ 14 | 5 2T1 7 -1
1472 4+ 70

421212 — 147210 +1612" — [ 14 | 5 2T1 7 1
14725 — 126

121212 — 147210 + 1612" — [ 14 [ 5 2T1 7 -1
1472° 4+ 21

1 _ 212" — 14720 + 1612 — [ 14 | 5 2T1 7 1
14725 + 168

421212 — 147210 + 1612 — [ 14 | 5 2T1 7 -1
1472°% — 28

421212 — 147219 + 16127 — | 14 | 5 2T1 7 1
1472° + 119

T 2122 — 14720 + 702" — [ 14 | 5 2T1 7 -1
4925 + 70

12127 — 147210 + 7027 — [ 14 [ 5 2T1 7 1
49z° — 126
2™ — 21212 — 147210 + 702" — [ 14 | 5 2T1 7 -1
49x° + 21

T 2122 — 1472 + 702" — [ 14 | 5 2T1 7 1
4925 + 168
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Defining Polynomial e |] sgg Content | C.O. | Parity
o — 2122 — 147210 + 7027 — [ 14 [ 5 2T1 7 -1
492° — 28

1 — 21212 — 147210 4+ 702" — [ 14 [ 5 2T1 7 1
4925 + 119

2t — 21212 — 147210 + 702" — [ 14 | 5 2T1 7 -1
49z% — 77

21212127 + 42 1415 2T1, 7T4 2 1
1 — 112212 + 49210 — 912" — [ 14 [ 5 2T1 1 -1
4925 — 28

2t — 11222 + 49210 + 161" — [ 14 | 5 2T1 1 1
98z° — 77

2 112272 + 49210 + 7027 — [ 14 [ 5 2T1 1 -1
1472° 4+ 70

1%+ 21272 + 35 1415 2T1, 7T4 2 1
' + 140212 + 98210 — 912" + [ 14 | 5 2T1 1 -1
14725 — 28

™ 4+ 14022 + 9820 + 161" — [ 14 | 5 2T1 1 1
49x° — 77

1 4+ 14022 + 98210 + 702" + [ 14 | 5 2T1 1 -1
985 + 70

o+ Tr 4+ 22 7 -6 |2T1 1 1
¥+ T+ 11 7 -6 |2T1 1 -1
x4+ 42218 4+ 91212 4+ 8421 — |7 [ -6 | 2T1 1 1
49210 4+ 3529 4 4228 — 14127 +

16125 — 7725 — 98z* + 912°® +

11222 — 492 — 95

x4+ 42218 4 91212 + 842 — |7 [ -6 | 2T1 1 -1
49219 + 3529 + 4127 + 6325 —

7725 + 1402 — 8422 — 1612 — 102

2™+ 7+ 18 7 -6 |2T1 1 1
2+ T+ 8 7 |-6 |2T1 1 -1
% 4+ 492 + 2 7 | -6 |2T1,7T4 2 -1
™+ Tz + 32 7 -6 |2T1 1 -1
o 4"+ 32 7 |-6 |2T1 1 -1
e T+ 1 7 -6 |2T1 1 -1
x4+ 4228 4 91212 4+ 842 — |7 [ -6 | 2T1 1 -1
49219 + 3529 + 1428 + 3427 —

3528 4+7025+982%+9123 — 3522 —

168z + 59

2™ 4+ 982 + 98 7 -6 |2T1 1 -1
ot 4+ 722 + 1 7 | -6 |2T1,7T4 2 -1
2+ T4+ 9 7 -6 | 2T1 1 -1
et 4+ 4225 + 9122 4 842 — |7 [ -6 [ 2T1 1 1
49219 + 3529 + 11228 + 627 +

632° — 12625 — 5623 — 8422 —

1472 + 136

™+ Tz + 23 7 -6 |2T1 1 -1
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Defining Polynomial e |] sgg Content | C.O. | Parity
21t 4+ 4201 4+ 91212 4 84211 — [ 7 -6 2T1 1 -1
49210 + 3529 + 2828 + 2727 —

13325 — 12625 — 1472* + 4223 +

11222 + 70z + 171

¥+ Tz + 16 7 | -6 | 2T1, 7T4 2 -1
1 + 49z 4+ 98 7 -6 | 2T1 1 -1
2 4+ 4221 4+ 9122 4+ 84211 — |7 [ -6 | 2T1 1 -1
492104352 +12628 —y” — 3525 +

212549824 —10523+6322+91x—

95

2 4+ Tx + 36 7 [-6 |2T1 1 1
o 4+ 7r + 37 7 | -6 |2T1, 7T4 2 -1
4+ 7r 42 7 -6 |2T1 1 -1
T+ yT 4 7 1-6 |2T1 1 -1
o1+ 2822 +1 7 -6 |2T1, 7T4 2 -1
e+ T+ 4 7 1-6 |2T1 1 -1
o' 4+ 3522 + 1 7 | -6 | 2T1, 7T4 2 -1
o 4+ 422 4+ 9122 4+ 842 — |7 [ -5 | 2T1 1 -1
49219 — 729 + 14028 — 5727 —

8425411925 5623 —98x2 + 77z —

25

1t 42018 4+ 91212 4 84211 — [ 7 -5 2T1 1 1
49210 — 492° + 11228 — 11327 +

6325 —2825 4422348422 — 1332+

122

2+ 422 4+ 9122 4+ 84211 — |7 [ -5 | 2T1 1 -1
49210 — 912° + 842% — 16927 —

13325 + 1682° — 492* — 10523 —

T7x? — 49z + 171

2 4 4221 4+ 9122 4+ 84211 — |7 [ -5 | 2T1 1 1
49219 — 1332° + 562 + 11827 +

1428 + 2125 — 1472* — 15423 +

10522 — 14z + 122

et 4+ 4221 + 9122 4 842 — |7 [ -5 [ 2T1 1 -1
49219 + 1682° + 2828 + 6227 +

16125 — 1262° + 492* — 10523 —

5622 — 28x — 25

ot 4+ 4225 4 9122 4+ 842 — |7 [ -5 [ 2T1 1 1
49219 + 1262° + 627 — 3525 +

T0x5 — 147z* + 4223 + 12622 —

91z + 73

o™+ 4222 + 8 7 | -5 | 2T1, 7T3 2 -1
21t 4+ 42018 4+ 91212 4 84211 — [ 7 -5 2T1 1 1
49210 4+ 729 — 16828 + 627 +

1612% — 12625 — 492* — 15423 —

722 + 56z — 165
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Defining Polynomial e |] sgg Content | C.O. | Parity
21t 4+ 4201 4+ 91212 4 84211 — [ 7 -5 2T1 1 -1
49219 — 352° + 14728 — 5027 —

3528 + 7025 — 15423 — 16822 —

1052 + 80

2+ 422 4+ 9122 4+ 84211 — |7 [ -5 | 2T1 1 1
49210 — 772° + 1192% — 10627 +

11228 —772° =563+ 1422 +28x—

116

4+ 4221 49122 4+ 84211 — |7 [ -5 [ 2T1 1 -1
49210 — 1192° + 9128 — 16227 —

8426 + 11925 — 4924 + 14023 —

14722 + 1122 — 67

™+ 72% + 98 7 |-5 | 2T1 1 -1
o+ 4222 + 4 7 | -5 | 2T1, 7T3 2 -1
et 4+ 4225 + 9122 4 842 — |7 [ -5 [ 2T1 1 -1
49219 4+ 2129 — 13328 + 6927 +

632° — 2825 — 10523 + 8422 +

133z — 109

ot 4+ 4225 + 9122 4 842 — |7 [ -5 [ 2T1 1 -1
4919 — 212% — 16128 + 1327 —

13325 + 16825 4 98z* + 1402° —

7722 + 21z — 109

a4+ 729 + 49 7 -5 | 2T1 1 -1
21t 4+ 42018 4+ 91212 4 84211 — [ 7 -5 2T1 1 -1
49210 — 1052° + 1262% — 9927 +

16125 —1262° 4 147z — 10523 —

5622 — Tx — 60

24222+ 2 7 | -5 | 2T1, 7T4 2 -1
x4+ 1429 + 49 7 | -5 |2T1 1 -1
2 4+ 4221 49122 4+ 84211 — |7 [ -5 | 2T1 1 1
49210 — 729 — 12628 + 7627 +

11228 — 7725 — 492* — 10522 +

14z2% — 98z — 102

2 4+ 4221 4+ 9122 4+ 84211 — |7 [ -5 | 2T1 1 -1
49210 — 4929 — 15428 + 2027 —

84x°% + 1192° + 49z* + 14023 —

14722 + 133z — 102

o't 4222 + 1 7 | -5 |2T1,7T3 2 -1
o 4+ 422 4+ 9122 4+ 842 — |7 [ -5 | 2T1 1 -1
49219 + 4929 — 6328 — 14827 —

13325 4 16825 + 492* + 9123 —

7722 — 1052 — 95

2™+ 4228 + 91212 4+ 84211 — [ 7 | -5 | 2T1 1 -1
49210 4+ 729 — 9128 + 13927 +

1425 + 2125 — 982* + 14023 +

10522 — 119z + 101

21422249 7 | -5 | 2T1, 7T4 2 -1
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Defining Polynomial j sgg Content | C.O. | Parity
1t + 42213 + 91212 4+ 84211 — -5 2T1 1 1
49210 4+ 6327 — 2828 — 8527 +

11226 — 772° + 492* — 10523 +

1422 — 77z — 137

2+ 4222 + 29 -5 | 2T1, 7T4 2 -1
x4+ 42218 4+ 91212 4 8421 — -4 | 2T1 1 1
91210 +1402° +4928 — 7 + 1425+

1682° — 492* 4 772 — 10522 —

1542 — 4

x4+ 4228 4+ 91212 4 8421 — -4 | 2T1 1 -1
133210 — 982° — 7028 — 47 —

13325 — 12625 + 492 + 11223 +

2122 + 91z — 32

1t + 4221 + 91212 + 84211 + -4 | 2T1 1 1
168210 472 415428 —y" + 1425+

70x® —98x* 4+ 4923 + 9822 — 562 —

11

o 4221 + 91272 4 84211 + -4 | 2T1 1 -1
126210 + 1122° + 3528 — ¢ +

11225 + 702° — 1472* — 11223 +

12622 + 91z + 59

x4+ 4227 4+ 91212 4 842 + -4 | 2T1 1 1
84210 — 1262% — 8428 — ¢7 +

16128 — 1262° — 982* — 2823 +

10522 — 1542 — 165

2 4+ 4221 4+ 91212 4 84211 + -4 | 2T1 1 -1
42210 — 212° + 14028 — y" +

16125 4 16825 + 492* — 4223 +

3522 — 105z + 3

™+ 7210 498 -4 | 2T1, 7T4 2 -1
x4+ 4228 4+ 91212 4 8421 — -4 | 2T1 1 -1
7720 — 12622 + 14028 — 4327 +

6328 — 1262® — 4924 + 7023 +

3522 — 84z — 53

x4+ 4228 4+ 91212 4 842 — -4 | 2T1 1 -1
119210 — 2129 + 2128 — 4327 —

3525 + 11925 — 492* — 1402° —

13322 — 133z — 130

1t + 42218 + 91212 + 84211 — -4 | 2T1 1 -1
16120 + 8429 — 9828 — 4327 +

16125 + 16825 4 49z* — 10523 —

Tx2 + 1122 — 158

% 4221 + 91272 4 84211 + -4 | 2T1 1 -1
140210 — 1542° + 1262% — 4327 —

3525 + 212° — 98z* — 16823 +

7022 — 35x — 137

™ + 4923 + 98 -4 | 2T1 1 -1
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Defining Polynomial e |] sgg Content | C.O. | Parity
1%+ 14270 498 7 | -4 |2T1, 7T2 2 -1
x4+ 42218 1 91212 4+ 842 — |7 [ -4 | 2T1 1 -1
63210 — 4929 — 11228 — 8527 —

13328 — 282° + 98x% — 8423 —

7022 + 842 + 143

x4+ 42218 4 91212 4+ 842 — |7 [ -4 | 2T1 1 1
10520 + 562 + 11228 — 8527 +

16128 + 7025 + 14723 4 15422 +

84z + 17

2™ 4+ 4923 + 49 7 | -4 ]2T1 1 -1
2 4+ 4221 4+ 9122 4+ 8421 + |7 [ -4 | 2T1 1 -1
154210 — 7729 — 1262 — 8527 —

8428 + 2125 + 98z* — 28z% +

11222 — 63z — 88

% 421210 498 7 | -4 |2T1,7T4 2 -1
2™ 4+ 9823 + 49 7 -4 [2T1 1 -1
et 4+ 4225 4 9122 4 842 — |7 [ -4 [ 2T1 1 -1
91210 + 13322 — 14028 — 12727 +

11225 + 7025 — 147z* — 5623 —

14722 + 56z + 66

o™ 4+ 4228 + 91212 4+ 84211 — [ 7 | -4 | 2T1 1 1
133210 — 1052° + 8428 — 12727 +

632% + 1682° + 98z* — 16823 +

7722 + 562 — 60

2+ 7210+ 49 7 | -4 | 2T1, 7T4 2 -1
2+ 422 4+ 9122 4+ 8421 — |7 [ -4 | 2T1 1 -1
35210 4+ 10529 4 702% — 16927 +

11225 — 2825 + 1472* — 14723 +

1422 + 28z — 102

2 4+ 4221 4+ 9122 4+ 84211 — |7 [ -4 | 2T1 1 -1
7720 — 1332% — 4928 — 16927 +

16128 + 1192° — 1472* — 6322 —

Tx? + 1262 + 17

2+ 21210+ 49 7 | -4 |2T1, 7T2 2 -1
21t 4+ 4201 191212 8421 — [ 7 | -4 | 2T1 1 -1
21210 — 1612° 4 1612® + 13227 —

13325 — 12625 + 492* — 5623 —

14022 4 147z + 143

1% + 35210 + 49 7 | -4 |2T1,7T4 2 -1
et 4+ 4221 4 9122 4 422 — |7 [ -3 [ 2T1 1 -1
154210 4+ 912° — 1262° + 6927 +

11225 + 1682° + 842* — 3523 —

3522 — 21z — 144

™ 4+ 4228 + 91212 + 84210 + [ 7 | -3 | 2T1 1 1
14729 — 12628 — 8z7 — 84x6 —

282°% — 126x* + 3523 + 16122 —

133z + 129
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Defining Polynomial e |] sgg Content | C.O. | Parity
2T+ 422 491212 — 42,10 — |7 [-3 [ 271 1 -1
21210 — 1402° 4 1682° + 11127 —

13325 + 212° + T2* + 15423 —

3522 — 98z — 137

2 4+ 4221 4+ 91212 — 84211 — |7 [ -3 [ 2T1 1 1
126210 — 8422 + 702% + 8327 —

3526 — 2825 + 1402* — 2122 +

6322 + 84x + 87

2+ 42213 19122 — 126211+ |7 [ -3 | 2T1 1 -1
112210 — 2829 — 7728 — 9227 —

13325 + 16825 — 70z* — 14723 +

11222 4 70z + 115

e+ 4223 191272 —1682T + [ 7 [ -3 | 2T1 1 1
Txl042829+ 7028 — 7127 — 8425 —

7725 + 63x* + 11922 + 11222 —

140z — 53

% 4+ 4927 + 98 7 -3 |2T1,7T3 2 -1
o 4+ 422 + 9122 + 562 — [ 7 | -3 [ 2T1 1 1
35210 4+ 772% + 4928 — 2927 +

6325 —1262° —70x*+ 7023 4+ 722 —

702 — 165

o+ 4227 4 91272 + 1420 — [ 7 [ -3 | 2T1 1 -1
140210 + 13322 + 9828 + 4127 +

632% + 1192° + 632* + 9123 —

9122 + 142 — 39

2+ 422 491212 — 2811 + |7 [ -3 [ 2T1 1 1
98210 — 15429 4 9828 — 3627 —

13326 — 7725 — 1472% 4+ 16123 +

10522 — 98z — 109

2 4 4221 491212 — 7021 — |7 [ -3 [ 2T1 1 -1
7210 — 9829 + 4928 + 8327 +

16125 — 28z° — 14x* — 63z% —

9122 — 63z — 32

2+ 21211+ 49 7 -3 |2T1 1 -1
' +98z% + 938 7 | -3 | 2T1, 7T3 2 -1
et 4+ 4225 + 9122 4+ 702" + |7 [ -3 [ 2T1 1 -1
84210 + 63z° — 2128 + 16727 +

6328 + 11925 4+ 1192* + 7723 +

14722 — 70z — 137

et 4+ 4221 4 9122 4 282 — |7 [ -3 [2T1 1 -1
21210 + 11929 + 7728 + 4127 —

84z% + 11925 — 912* + 4923 +

9822 — 133z — 158

2+ 72T+ 49 7 -3 |2T1 1 -1
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Defining Polynomial j sgg Content | C.O. | Parity
1%+ 4241 4 91212 — 562l + -3 2T1 1 -1
112219 — 11229 + 12628 4 3427 +

6325 4+ 1682° — 168x* + 1402 —

1472% — 161z — 102

2+ 42213 491212 + 126211 — -3 | 2T1, 7T4 2 -1
35210 — 72° + 15428 + 14627 —

13326 4 2125 — 1682* 4+ 11223 —

Tx2 — Tr — 88

¥+ 1421+ 49 -3 | 2T1 1 -1
x4+ 4221 4+ 91212 4+ 4221 + -3 | 2T1 1 1
98210 + 10527 + 15428 — 827 +

16128 — 2825 + 98z* — 9123 +

4222 + 1122 4+ 115

1t 4+ 42213 4+ 91212 — 7210 & -3 | 2T1 1 -1
1612° — 9128 — 13427 + 1426 —

282° —1122*—11923 — 722 +492+

94

1%+ 4927 + 49 -3 | 2T1, 7T3 2 -1
™ 4+ 4225 4 9122 4 9821 — -3 | 2T1 1 -1
21210 + 352° + 13328 + 6927 —

133208 + 16825 4+ 1542* + 14023 +

3522 + 77z + 66

2™ + 4228 + 91212 + 5621 — -3 | 2T1 1 -1
126210 4 912° — 1428 — 10627 +

11225 + 212° — 56x* + 1423 +

8422 + 63z + 94

o™ 4+ 42213 + 91212 + 154211 — -3 | 2T1, 7T4 2 -1
14021 —352°4-632° —y" +632° —

T72® — 133z + 7722 — 2122 —

154z + 164

x4+ 42213 + 91212 + 112211 + -3 | 2T1 1 1
98210 + 2129 + 142% + 11827 +

142 — 2825 — 14723 + 12622 —

1192 — 102

o 4+ 4223 + 91212 + 16821 — -3 | 2T1, 7T4 2 -1
21210 — 4929 — 728 — 14827 +

6325 + 1682° + 562* + 8423 +

11922 — 154z — 151

o 4+ 42213 + 49272 + 112277 — -2 | 2T1 1 1
119219 — 16129 + 2828 + 12527 4

11225 + 562° + 63z* — 562° +

7722 + 352 — 116

o 4221 + 7212 + 14027 + -2 | 2T1 1 -1
105210 — 1122° + 352% — 9227 —

3528 =565 +772x* —56a3 —56x2+

1262 + 136
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Defining Polynomial j sgg Content | C.O. | Parity
o 4+ 4225 — 35212 + 168217 — -2 | 2T1 1 1
63210 — 16129 — 15428 + 3427 +

1426 — 702° — 72* — 5623 + 722 +

168z + 143

2+ 42213 — 77 — 1471 4 -2 | 2T1 1 -1
63210 + 3527 + 1472% + 16027 —

84x% + 1425 + 1542* — 5623 —

7722 4+ 161x — 95

2+ 4221 — 119272 — 119217 + -2 | 2T1 1 1
140210 + 13322 — 9128 — 5727 +

1425 — 1472° — 1262* — 562° +

3522 + 105z + 108

o™ 4 42213 — 161212 — 912! + -2 | 2T1 1 -1
168210 +1332° + 16128 + 6927 —

3525 413325 — 1612* — 562> + 66

¥+ 21212 4+ 98 -2 | 2T1, 7T4 2 -1
1t + 4221 4+ 63212 — 70211 + -2 2T1 1 -1
70210 + 5629 4+ 1262° + 5527 +

1612% + 98z° — 142* + 6323 —

16822 — 119z + 150

1t 4+ 4228 4 21212 — 4221 — -2 | 2T1 1 -1
140z° — 1428 — 16227 4+ 16125 —

1122° + 982* + 6323 — 15422 +

21z — 39

2 4 4221 — 21212 — 1421 — -2 | 2T1 1 -1
119210 — 9129 — 728 — 3627 +

1425 + 1192° + 1122* + 6323 +

5622 4+ 1122 — 130

o 4+ 422 — 6322 4+ 14z + 2 | 2T1 1 -1
56210 — 14029 4 14728 4 9027 +

632% + 1052° + 282* + 632% +

11922 + 1542 — 123

o+ 42213 — 105212 + 4221 — 2 | 2T1 1 -1
161210 +562° + 10528 — 12727 —

3528 — 15425 — 1542* + 6323 +

3522 + 147z — 18

21212127 4+ 49 -2 | 2T1, 7T4 2 -1
x4+ 4228 + 77212 4+ 912 + 2 | 2T1 1 -1
1420 + 12629 — 7028 — 1527 +

1612% — 562° + 1052* — 16123 —

11922 4 168z — 123

o 4+ 42213 + 35212 + 119211 — -2 | 2T1 1 1
7210 + 2829 — 1428 + 11127 —

3528 — 212° — 282* — 16123 +

4222 + 142 — 67

1% + 4925 + 49 -2 | 2T1 1 -1
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Defining Polynomial e |] sgg Content | C.O. | Parity
o+ 422 — 49272 — 16827+ [ 7 [ -2 | 2T1 1 -1
147219 — 1192° — 14728 + 2027 +

16128 + 982* — 16123 — 7722 —

98z — 4

e+ 72+ 49 7 | -2 | 2T1,7T4 2 -1
2™ 4+ 982° + 49 7 -2 |2T1 1 -1
4+ 4221 449212 — 63211 + |7 [ -2 | 2T1 1 -1
84210 + 492° + 3528 + 4127 +

632° — 12625 + 422% — 4223 —

15422 + 105z + 52

2 4228 4 7212 — 35T + |7 [ -2 [ 2T1 1 1
63210 — 492° + 912 + 16727 —

13325 —912° —91x*— 4223+ 722 —

49x + 108

1% 4+ 35212 4 98 7 -2 |2T1, 7T4 2 -1
1t 4+ 42213 + 105212 + 7021 — | 7 -2 2T1 1 -1
147210 + 1682 + 2828 — 15527 4

1428 + 772° — 98z + 773 —

16822 + 7z + 115

o' 4+ 4228 463212 4 982 — |7 [ -2 [2T1 1 -1
70210 — 772% 4+ 13328 — 2927 +

11225 — 8425 — 35z* + 772% —

5622 — 492 — 25

o+ 7212 498 7 -2 | 2T1,7T4 2 -1
4+ 4228 4+ 119212 — 1122+ [ 7 [ -2 | 2T1 1 -1
91219 + 1402° — 2128 + 11827 —

13328 4+ 2125 — 772* — 14723 +

77x2 — 982 — 60

™+ 14212 + 49 7 | -2 | 2T1, 7T4 2 -1
2 456212 — 2121 — 14710+ |7 [ -1 | 2T1 1 -1
1542° — 728 + 5527 + 985 +

12625 + 492* — 7723 — 15422 —

63z — 165

e = 42215 — 2822 4 1681 — |7 [ -1 | 2T1 1 1
147219 —1682% + 11228 4+ 1327 +

13325 +352°+49x4+ 2122+ 77—

109

e = 84213 — 16122 — 35211 — [ 7 [ -1 | 2T1 1 -1
49210 1+ 9829 — 16128 — 12727 —

12625 — 72° — 492 — 168z% —

9822 — 28z — 102

2™ — 1262 + 5621 + 14720 — | 7 [ -1 [ 2T1 1 1
7729 —14028 — 2227+ 725 4+-98z% +

10523 — 16822 — 35z — 144
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Defining Polynomial

sgg Content

Parity

1% — 16821 + 112212 + 98211 +
08210 — 729 — 16828 — 1527 —
15425 + 5625 + 147z + 13323 +
15422 4 56z + 108

2T1

-1

11+ 13325 — 168212 + 9121 +
147210 — 3529 4 982% — 10627 +
7728 + 1612° + 98z* — 8423 —
16122 — 98z — 32

2T1

21t + 56215 — 14721 + 91210 —
142° — 15428 + 6927 + 5625 —
1402 + 7Tz — 722 — 15422 —TTz+
17

2T1, 712

14

x4 56213 — 147211 + 91210 —
142° — 15428 + 11827 + 5625 —
1402 + Tzt — 722 — 15422 — 77z —
81

2T1

2™ 4 56213 — 147211 + 91210 —
1429 — 15428 4 16727 + 562° —
1402 + 7zt — 722 — 15422 —TTx+
164

2T1

x4 4+ 56213 — 147211 + 91210 —
1429 — 15428 — 12727 + 562 —
14025 4+ 72* — 723 — 15422 — 77z +
66

2T1

x4 4 14213 + 14212 + 140211 —
105219 — 1402° + 6328 — 12027 —
728 + 142° — 140z* — 1262° —
77x? — 133z + 171

2T1

1 — 2821 — 21212 + 35211 +
140219 — 2129 — 11228 — 6427 —
2125 — 12625 — 422* — 14723 +
4922 — 91z — 67

2T1

21— 28218 — 21212 4 35211 +
140219 — 2129 — 1122% — 1527 —
2128 — 12625 — 422* — 1472 +
4922 — 91z — 165

2T1

1% — 2821 — 2122 4 35211 +
140210 — 2129 — 11228 + 3427 —
2128 — 12625 — 422 — 1472° +
4922 — 91z + 80

2T1

21t — 28418 — 21212 4 35211 +
140210 — 2129 — 1122% + 8327 —
2128 — 12625 — 422 — 14723 +
4922 — 91z — 18

2T1
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Defining Polynomial e |] sgg Content | C.O. | Parity
2T =28 — 2122 4 35, 4+ |7 [-1 | 2T1 7 -1
140210 — 2129 — 11228 4+ 13227 —

2128 — 12625 — 422* — 14723 +

4922 — 91z — 116

=28z — 21212 4 3511 4+ |7 [-1 | 2T1 7 -1
140210 — 2129 — 11228 — 16227 —

2128 — 1262° — 422* — 14723 +

4922 — 91z + 129

=28z — 21212 4 3511 4+ |7 [ -1 | 2T1 7 -1
140210 — 2129 — 11228 — 11327 —

2125 — 1262° — 422* — 14723 +

4922 — 91z + 31

2 — 7028 — 10522 — 119211+ [ 7 | -1 | 2T1 1 -1
140210 + 728 — 10627 + 1425 +

12625 — 422* — 7023 — 11922 +

49 — 11

2 — 11228 + 10522 + 2121 — [ 7 | -1 | 2T1 1 -1
105210 — 772° + 772 + 9727 +

9825 + 8425 — 140z* + 10523 +

10522 — 56z — 4

2™+ 14213 + 98 7 -1 ]2T1 1 -1
%+ 7021 4+ 722 632 + |7 [ -1 | 2T1, 7T4 2 -1
35210 4+ 13329 — 3528 — 827 —

9820 + 422° — 842* — 15423 —

12622 + 98z + 59

2™+ 2821 4+ 70212 4+ 562t + [ 7 | -1 | 2T1 1 -1
84210 + 10529 — 11228 — 9927 +

13325 + 1472° — 1332* — 2823 —

9822 — 56z — 81

2 =143 18422 — 11210 — |7 -1 | 2T1 1 1
212% + 10528 + 5527 + 7025 —

422% + 63z — 14723 — 2122 —

1122 4 73

e+ 723+ 49 7 -1 [2T1 1 -1
1t — 98213 — 35212 4+ 84211 + | 7 -1 2T1 1 -1
133210 + 1192° + 4928 + 6927 4

912% + 702° + 161z* — 9123 —

632 + 70z — 109

1 4925 + 49 7 | -1 |2T1,7T3 2 -1
2™+ 14213 + 49 7 -1 ]2T1 7 -1
2™ 42213 — 11922 + 702 + [ 7 | -1 | 2T1 7 -1
7720 — 1402° + 15428 + 16727 —

16828 — 1612° + 702* — 12623 +

12622 4+ 168z + 10

™ + 7213 + 98 7 -1 [2T1 7 -1
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Defining Polynomial j sgg Content | C.O. | Parity
o+ 42273 — 119212 + 7027 + -1 | 2T1 7 -1
7720 — 1402° + 15428 — 7827 —

16828 — 161x° + 702* — 12623 +

12622 + 168z + 157

2+ 422135 — 119212 + 70211 + -1 | 2T1 7 -1
7720 — 1402° + 15428 — 2927 —

16825 — 16125 + 70z — 12623 +

12622 + 168z + 59

2+ 422135 — 119212 + 70211 + -1 | 2T1 7 -1
7720 — 1402° + 15428 + 2027 —

16825 — 16125 + 70z* — 12623 +

12622 + 168z — 39

o 4+ 42213 — 119272 + 702 + -1 | 2T1 7 -1
7720 — 1402° + 15428 + 6927 —

16825 — 16125 + 70z* — 12623 +

12622 + 168z — 137

2™ — 56212 + 632t + 126210 — -1 | 2T1 1 -1
16827 + 7728 + 2727 + 632° —

5625 + 21z + 15422 + 14z — 32

o1t — 42213 — 42212 4 711 — -1 | 2T1 1 1
70210 + 4929 — 4928 — 16227 +

98z5 — 1262* — 11923 — 11222 —

422 + 122

o'+ 98213 — 28212 4 9121 4 -1 | 2T1, 7T4 2 -1
21210 — 142° + 15428 + 8327 —

142841122% —212* — 723 —2122 —

140z + 94

2™ 4+ 5625 + 133212 — 161211 — -1 | 2T1 1 -1
126210 +1542° — 16828 — 15527 +

11925 + 11925 + 1262* — 7723 —

9122 — 1472 + 52

x4 14213 — 98212 — 119211 + -1 | 2T1 7 -1
168210 — 11929 + 14728 — 14827 —

4226 — 16825 — 168z* — 4923 —

11222 — 56z — 39

x4 14213 — 98212 — 119211 + -1 [ 2T1 7 -1
168210 — 1192° 4+ 14728 — 9927 —

4228 — 1682°% — 168z* — 4923 —

11222 — 562 — 137

x4 14213 — 98212 — 119211 + -1 | 2T1 7 -1
168210 — 1192° 4+ 14728 — 5027 —

4225 — 1682° — 168z* — 4923 —

11222 — 56z + 108

o 4 14213 — 98212 — 119211 + -1 | 2T1 7 -1

168210 — 11929 + 14728 — 47 —
4228 — 168z° — 168x* — 4923 —
11222 — 56z + 10
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Defining Polynomial

sgg Content

Parity

o 14275 — 98212 — 11921 +
168210 — 11929 + 14728 4 4827 —
4225 — 1682° — 168z* — 4923 —
11222 — 56z — 88

2T1

-1

o 14273 — 98212 — 11921 +
168210 — 11929 + 14728 + 9727 —
4228 — 16825 — 168z* — 4923 —
11222 — 56 + 157

2T1

o™ 14273 — 98212 — 11921 +
168210 —1192° + 14728 + 14627 —
4245 — 16825 — 168z* — 4923 —
11222 — 562 + 59

2T1

=+ 4925 + 98

2T1, 713

™ 4+ 70213 + 140212 + 49211 +
161210 — 4229 — 4928 + 11127 —
3528 — 422° + 35z% + 11923 —
6322 + 28z + 94

2T1

x4+ 982° + 49

2T1, 7T1

14

™+ 1262 — 14212 4+ 168z —
91210 — 632° 4+ 4928 — 2227 +
2125 + 1332° + 140z* + 4223 +
3522 — 133z + 80

2T1, 7T1

14

21+ 12621 — 14212 + 16821 —
91210 — 63zY + 4928 + 2727 +
2125 + 1332° + 1402* + 4223 +
3522 — 1332 — 18

9T1, 7T1

14

1% + 12625 — 14212 + 16821 —
91210 — 63z% + 4928 + 7627 +
2125 + 13325 + 1402 4 4223 +
3522 — 1332 — 116

9T1, 7T1

14

21+ 12621 — 14212 + 16821 —
9120 — 632° 4 492 4 12527 +
2128 + 1332° + 140x* + 4223 +
3522 — 1332 + 129

2T1, 7T1

14

1%+ 12628 — 14212 + 16821 —
9120 — 632 + 4928 — 16927 +
2128 + 1332° + 140z* + 4223 +
3522 — 133z + 31

2T1, 7T1

14

1+ 12625 — 14212 + 168211 —
91210 — 632° + 4928 — 12027 +
2128 + 13325 + 1402* + 4223 +
3522 — 1332 — 67

2T1, 7T1

14

x4+ 7027 + 49

2T1, 7T4

x4+ 42218 4+ 91212 4 84211 —
49219 4+ 3529 4 16828 + 4827 +
11228 — 7725 — 492* — 5623 +
63z2 — 105z — 25

2T1
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Defining Polynomial e |] sgg Content | C.O. | Parity
21t 4+ 4201 4+ 91212 4 84211 — [ 7 0 2T1 1 -1
49210 4 3529 4 16828 4+ 9727 +

11228 — 7725 — 492* — 562 +

6322 — 1052 — 123

2+ 4221 4191212 4+ 8421 — |7 |0 2T1 1 -1
49219 4 3529 + 1682% + 14627 +

11228 — 772% — 492* — 5623 +

6322 — 105z + 122

2 4+ 4221 4+ 91212 4+ 8421 — |7 [0 2T1 1 -1
49210 + 352° + 1682® — 14827 +

11225 — 772% — 492* — 5623 +

6322 — 105z + 24

™ + 9827 + 98 710 2T1 1 -1
2t 4+ 4221 1 9122 + 84211 — [ 7 |0 2T1 1 -1
49210 4 3529 + 16828 — 5027 +

11226 — 7725 — 492* — 5623 +

6322 — 1052 + 171

o 4 422 1 912 4+ 8421 — [ 7 [0 2T1, 7T4 2 -1
49210 4+ 3529 4 16828 4+ 9727 +

11226 — 7725 — 492* — 5623 +

6322 — 1052 + 24

21t 4+ 42418 4+ 91212 4 84211 — [ 7 0 2T1 1 -1
49210 4 3529 + 1682% + 14627 +

11228 — 7725 — 492* — 562° +

6322 — 1052 — 74

2+ 4221 4191212 + 8421 — |7 [0 2T1 1 -1
49210 + 352° + 168z° — 14827 +

11228 — 7725 — 492* — 5623 +

6322 — 1052 + 171

1% + 3527 + 98 7 10 2T1 1 -1
x4+ 4228 4 91212 + 842 — [ 7 [0 2T1 1 -1
49210 + 3529 + 1682% — 5027 +

11228 — 7725 — 492* — 562° +

6322 — 1052 — 25

x4 2127 + 49 7 ]0 2T1 1 -1
1% 4+ 492% + 98 7 [0 |2T1,7T4 2 -1
=™ + 4927 + 98 710 2T1 1 -1
2t 4+ 4225 + 9122 4+ 842 — [ 7 |0 2T1 1 -1
49210 + 3529 4 16828 — 5027 +

11225 — 772% — 49z* — 562° +

6322 — 105z + 122

2™ 4+ 2827 + 49 7 ]0 2T1 1 -1
o' 4+ 4228 + 9122 4+ 842 — [ 7 ] O 2T1 1 -1
49210 + 3529 4 16828 + 4827 +

11228 — 7725 — 492* — 5623 +

6322 — 1052 — 74

o' 4928 + 49 7 [0 |2T1,7T4 2 -1
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Defining Polynomial e |] sgg Content | C.O. | Parity
o 7727 + 49 7 [0 |2T1 1 -1
2™ 4+ 4228 + 9122 + 8421 — [ 7 |0 2T1 1 -1
49210 1 3529 + 16828 + 48z7 +

11228 — 7725 — 492* — 5623 +

6322 — 105z + 73

2™ 4+ 4228 19122 + 8421 — [ 7 |0 2T1 1 -1
49219 + 3529 + 16828 + 9727 +

11228 — 7725 — 492* — 5623 +

6322 — 1052 — 25

o 4 4221 £ 9122 4+ 8421 — [ 7 [0 | 2T1, 7T4 2 -1
49210 4+ 3529 4 16828 + 4827 +

11228 — 7725 — 492* — 562° +

63x2 — 1052 — 123

2t 4+ 4221 1 9122 + 84211 — [ 7 |0 2T1 1 -1
49210 4+ 3529 4 16828 4+ 9727 +

11228 — 7725 — 492* — 562° +

6322 — 1052 + 122

o 422 1+ 9127 4842 — [ 7 [0 | 2T1 1 -1
49210 4 3529 + 1682 + 14627 +

11228 — 7725 — 492* — 562° +

6322 — 105z + 24

1 4+ 982% + 98 7 [0 |2T1,7T4 2 -1
2™ 4+ 4228 + 9122 + 8421 — [ 7 |0 2T1 1 -1
49210 4 3529 + 16828 — 14827 +

11228 — 7725 — 492* — 562° +

6322 — 105z + 73

1 4+ 1427 + 98 7 [0 |2T1,7T4 2 -1
4 T7r 4+ 14 14 [ -6 |2T1 1 -1
o'+ T 428 14 ]-6 [ 2T1 1 -1
e 4T+ 7 14 -6 |2T1 1 -1
'+ Tr 4+ 21 14]-6 [2T1 1 -1
o T+ 42 14 [ -6 | 2T1 1 -1
% + 7z 4+ 35 14 ]-6 [2T1 1 -1
o' 1422 + 7 14 [ -5 | 2T1, 7T4 2 -1
o 2822 + 7 14 [ -5 | 2T1, 7T4 2 -1
o't 4222 + 7 14 [ -5 | 2T1, 7T4 2 -1
o+ T? + 7 14 [ -5 | 2T1, 7T4 2 -1
e 2122 + 7 14 | -5 | 2T1, 7T4 2 -1
x4+ 3527 + 7 14 [ -5 | 2T1, 7T4 2 -1
™ + 4222 + 21 14 | -5 | 2T1, 7T4 2 -1
!t 4+ 3527 + 21 14 [ -5 | 2T1, 7T4 2 1
! + 2822 + 21 14 | -5 | 2T1, 7T4 2 -1
4+ 2127 + 21 14 [ -5 | 2T1, 7T4 2 1
1+ 1427 + 21 14 [ -5 [ 2T1, 7T4 2 -1
4+ 72?2 +21 14 [ -5 | 2T1, 7T4 2 1
™ 4+ 723 + 28 14 |4 | 2T1 1 -1
e+ 7%+ 14 14 [ -4 [ 2T1 1 -1
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Defining Polynomial e |] sgg Content | C.O. | Parity
Iy s 14 -4 |2T1 1 -1
o™+ 723 21 14 | -4 | 2T1 1 -1
o1+ 723 + 35 14 -4 |2T1 1 -1
o'+ Tx3 + 42 14 | -4 | 2T1 1 -1
T+t F 14 14 [ -3 | 2T1, 7T3 2 -1
ot 4+ 72t + 28 14 [ -3 | 2T1, 7T3 2 -1
114212 + 14 14 [ -3 | 2T1, 7T4 2 -1
e Tt 47 14 | -3 [ 2T1, 7T3 2 -1
o421t + 7 14 [ -3 | 2T1, 7T4 2 -1
2127 + 28 14 [ -3 | 2T1, 7T4 2 -1
o' 4 2127 + 42 14 [ -3 | 2T1, 7T3 2 -1
4+ 2127 + 35 14 [ -3 | 2T1, 7T3 2 1
o4 + 72 + 35 14 [ -3 | 2T1, 7T4 2 -1
2127 + 21 14 [ -3 | 2T1, 7T3 2 1
o 4+ 72t + 42 14 | -3 [ 2T1, 7T4 2 -1
o+ 72t + 21 14 [ -3 | 2T1, 7T4 2 1
ol 4 14a° + 7 14 [ -2 [ 2T1 1 -1
o 212 + 7 14 [ -2 [2T1 1 -1
o 75+ 7 14 [ -2 [ 2T1 1 -1
o+ 72° + 21 14 -2 | 2T1 1 -1
1 4+ 1425 + 21 14 [ -2 [2T1 1 -1
o114+ 212 + 21 14 -2 [2T1 1 -1
ot 4+ 72% + 28 14 [ -1 | 2T1, 7T2 2 -1
o3+ 720 + 14 14 [ -1 | 2T1, 7T4 2 -1
x4+ 2125 + 28 14 [ -1 | 2T1, 7T4 2 -1
o+ 728+ 7 14 [ -1 | 2T1, 7T4 2 -1
e 2125 + 7 14 [ -1 | 2T1, 7T4 2 -1
o114+ 212% + 14 14 -1 | 2T1, 7T2 14 -1
x14 91x'? — 1427 +842% +56 | 14 [ -1 [ 2T1 7 -1
o 9122 — 2827 + 8425 — 140 | 14 [ -1 | 2T1 7 -1
o1 — 9122 — 4227 + 8425 +105 | 14 [ -1 | 2T1 7 -1
x14 +212% + 35 14 [ -1 | 2T1, 7T2 2 1
o 2125 + 42 14 [ -1 | 2T1, 7T4 2 -1
ol 4+ 720 + 42 14 | -1 [ 2T1, 7T4 2 1
1 2125 + 21 14 [ -1 | 2T1, 7T4 2 -1
2™ + 725 + 35 14 | -1 [ 2T1, 7T4 2 1
1:14 +72% + 21 14 [ -1 | 2T1, 7T2 14 -1
P — 772 — 9127 — 14025 —28 | 14 | -1 2T1 7 1
o —77eZ 16127 — 14025 —77 [ 14 [ -1 | 2T1 7 -1
o™ — 77212 4+ 7027 — 140254+ 70 | 14 | -1 | 2T1 7 1
1:14 + 3528 +7 141 |[2T1, 7T4 2 -1
p14 14281427 +492% +982+56 | 14 [ 1 | 2T1 1 -1
o1 1428 — 2827 +4927 —147xz— | 14 [ 1 | 2T1 1 -1
140

o1 — 1428 — 4207+ 4927 — 492+ [ 14 [ 1 | 2T1 1 -1
105
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Defining Polynomial e |] sgg Content | C.O. | Parity
e+ 2128+ 7 141 2T1, 7T4 2 -1
2t —2828 — 142" —1472° — 1472+ | 14 | 1 2T1 1 -1
56

212828 — 2827 —1472%+49x— [ 14 | 1 2T1 1 -1
140

o1 —2828 — 4227 — 14722 —98x+ | 14 | 1 2T1 1 -1
105

e TS 4T 14 ]1 2T1, 7T3 2 -1
21 —4228 14274+ 9822 —492+56 | 14 | 1 2T1 1 -1
2™ — 4208 — 2827 + 9822 98z — | 14 | 1 2T1 1 -1
140

21— 4228 — 4227+ 9822 — 1472+ | 14 | 1 2T1 1 -1
105

e+ 42285+ 7 141 2T1, 7T4 2 -1
2™ —562% —14274+9822+49x+56 | 14 | 1 2T1 1 -1
1 — 5628 — 2827 +9827+98x— [ 14 | 1 2T1 1 -1
140

2™ —562% —4227 49822 + 1472+ | 14 | 1 2T1 1 -1
105

e 2828 + 7 1411 2T1, 7T3 2 -1
e 7028 1427 — 14722 +147z+ [ 14 | 1 2T1 1 -1
56

21 7028 — 2827 — 14722 —49x— | 14 | 1 2T1 1 -1
140

2™ —T02% — 4227 — 14722 +982x+ | 14 | 1 2T1 1 -1
105

o1+ 327 + 18 14 | 1 2T1, 7T3 2 -1
T4+ yT +2 141 2T1 1 -1
o1t +y" + 44 141 |2T1 1 -1
4+ 227 +8 141 2T1 1 -1
2™+ 728 21 14 |1 2T1, 7T4 2 -1
219128 - 9127+ 9822 — 1472 — | 14 [ 1 2T1 1 1
28

2™ —9128 4+ 16127 +9822+492x— | 14 | 1 2T1 1 -1
77

21 =918 +7027+9822—98x+70 | 14 | 1 2T1 1 1
o' +y" + 30 141 |2T1,7T4 2 -1
o4+ y"+9 41 |[2T1 1 1
™+ 227 + 43 1411 2T1 1 -1
2™+ 227 + 22 14 ]1 2T1 1 1
4+ 2128 + 21 141 2T1, 7T3 2 -1
27028 — 912" — 14722 —98x— | 14 | 1 2T1 1 1
28

o+ 702% + 16127 — 14727 + [ 14 | 1 2T1 1 -1
1472 — 77

e+ 7025+ 7027 — 14722 +492z+ | 14 | 1 2T1 1 1
70
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Defining Polynomial e |] sgg Content | C.O. | Parity
1 2828 + 21 1411 2T1, 7T4 2 -1
x4 =218 —9127 — 14722498z — | 14 | 1 2T1 1 1
28

2 = 2128 + 16127 — 14722 — [ 14 | 1 2T1 1 -1
147¢ — 77

22128+ 7027 — 14722 — 492+ [ 14 | 1 2T1 1 1
70

' + 3528 + 21 14 ]1 2T1, 7T3 2 -1
211205 —9127 44922 —492— | 14 | 1 2T1 1 1
28

21t 11228 +1612"+492°—98z— | 14 | 1 2T1 1 -1
7

2 —11228+702"+4922—147z+ | 14 | 1 2T1 1 1
70

o' 44228 + 21 14 |1 2T1, 7T3 2 -1
2™ +1402% —9127+ 9822+ 1472 — | 14 | 1 2T1 1 1
28

2414028 +1612"+9822—49z— | 14 | 1 2T1 1 -1
7

21+ 14028+ 7027 +9822+98z+ | 14 | 1 2T1 1 1
70

¥ 4+ 727 + 28 14 ]2 2T1 1 -1
x4 — 1429 — 1427+ 49221 +9822+ | 14 | 2 2T1 1 -1
56

2T —142%— 2827 +492T—14722— | 14 | 2 2T1 1 -1
140

21— 142% — 4227+ 4921 — 4922+ [ 14 | 2 2T1 1 1
105

x4 —142% — 5627 +4921+4922+ | 14 | 2 2T1 1 -1
105

2™ —142% — 702" +492*+14722— | 14 | 2 2T1 1 -1
140

21T —142% — 8427 +492T— 9822+ | 14 | 2 2T1 1 -1
56

e 472 + 14 14 |2 2T1 1 1
2t — 2829 — 1427 — 1472 — [ 14 | 2 2T1 1 -1
14722 + 56

22829 — 2827 —147x*+4922— | 14 | 2 2T1 1 -1
140

2112829 — 4227 — 14727 —98z%+ | 14 | 2 2T1 1 -1
105

22849 — 5627 —147xT+9822+ | 14 | 2 2T1 1 -1
105

212829 — 7027 — 14727 —4922— [ 14 | 2 2T1 1 -1
140

o — 2829 — 847 — 1472 + [ 14 | 2 2T1 1 1
1472% + 56
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Defining Polynomial e |] sgg Content | C.O. | Parity
e T+ 7 1412 2T1 1 -1
x4 =429 — 142749821 —4922+ | 14 | 2 2T1 1 -1
56

1% 4227 — 2827+ 9827 — 9822 — | 14 | 2 2T1 1 -1
140

o1 =422 — 4227+ 9821 — 14722+ | 14 | 2 2T1 1 -1
105

x4 —4229 — 5627498z + 1472+ | 14 | 2 2T1 1 -1
105

21 —422° — 7027 +9821 +9822— | 14 | 2 2T1 1 -1
140

2= 4229 — 8427+ 9821 +4927+ | 14 | 2 2T1 1 -1
56

¥+ 729 21 14 ]2 2T1 1 -1
217 —9129—91274+982T—14722— | 14 | 2 2T1 1 -1
28

21 =912 416127 +982T+492%2— | 14 | 2 2T1 1 -1
77

21— 9129+ 702" +982* — 0822+ | 14 | 2 2T1 1 -1
70

21 —912% — 2127 +9821+9822+ | 14 | 2 2T1 1 -1
70

21T —9129— 11227 +982T—4922— | 14 | 2 2T1 1 -1
77

z — 91z% + 14027 + 98z + [ 14 | 2 2T1 1 -1
14722 — 28

2™+ 729 + 35 14 ]2 2T1 1 -1
217 4+1612°—9127 +4927+4922— | 14 | 2 2T1 1 -1
28

% + 16127 + 16127 + 4927 + [ 14 | 2 2T1 1 -1
982 — 77

¥ 4+ 1612° + 7027 + 492* + [ 14 | 2 2T1 1 -1
1472% 4+ 70

2™ 4+ 1612° — 2127 + 492* — [ 14 | 2 2T1 1 -1
1472% 4+ 70

21T+ 16129 — 11227 + 4922 — [ 14 | 2 2T1 1 -1
982 — 77

™ 4+ 1612° + 14027 + 4922 — [ 14 | 2 2T1 1 -1
4922 — 28

™ 4+ 7Y + 42 14 |2 2T1 1 -1
e 4+702°— 912" — 14727 —982%2— | 14 | 2 2T1 1 -1
28

x4+ 702 + 16127 — 147z + [ 14 | 2 2T1 1 -1
14722 — 77

21 47027 +702" — 14722 +492%+ | 14 | 2 2T1 1 -1
70
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Defining Polynomial e |] sgg Content | C.O. | Parity
247027 212" — 14727 =492+ | 14 | 2 2T1 1 -1
70

1t 4+ 7029 — 11227 — 47z — [ 14 | 2 2T1 1 -1
14722 — 77

¥ 4+ 702 + 14027 — 147z + [ 14 | 2 2T1 1 -1
9822 — 28

x4+ 21210 + 28 14 |3 2T1, 7T4 2 -1
21t 14210 1427 +49254+982%+ | 14 | 3 2T1 1 -1
56

2™ — 14210 — 2827 + 4925 — [ 14 | 3 2T1 1 -1
14723 — 140

21421042574+ 4925 4923+ [ 14 | 3 2T1 1 -1
105

21211047 143 2T1, 7T4 2 1
2t — 28410 — 1427 — 14725 — [ 14 | 3 2T1 1 -1
14723 + 56

2 — 28210 — 9827 — 14728 + [ 14 | 3 2T1 1 -1
4923 — 140

21t — 28210 — 4227 — 14725 — [ 14 | 3 2T1 1 -1
9823 + 105

a4 7047 14 |3 2T1, 7T4 2 -1
242210 1427498254923+ | 14 | 3 2T1 1 -1
56

21t 42210 9847+ 982°5—08x°— [ 14 | 3 2T1 1 -1
140

a2t — 42210 — 4227 + 9825 — [ 14 | 3 2T1 1 -1
14723 + 105

2+ 21210+ 14 14 |3 2T1, 7T4 2 -1
24 —56210 —1427+98254+4923+ | 14 | 3 2T1 1 -1
56

2™ —56210—28274+9825+9823— | 14 | 3 2T1 1 -1
140

2 — 56210 — 4227 + 9825 + [ 14 | 3 2T1 1 -1
14723 + 105

o 4+ 7210 + 28 14 |3 2T1, 7T4 2 1
2 — 70210 — 1427 — 14725 + [ 14 | 3 2T1 1 -1
14723 + 56

2 — 70210 — 2827 — 14725 — [ 14 | 3 2T1 1 -1
4923 — 140

1t — 70210 — 4227 — 14725 + [ 14 | 3 2T1 1 -1
9823 + 105

2 720114 14 |3 2T1, 7T4 2 -1
284710 1427 4+4925-9823+ | 14 | 3 2T1 1 -1
56

21t — 84210 — 2827 + 4925 + [ 14 | 3 2T1 1 -1
14723 — 140
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Defining Polynomial e |] sgg Content | C.O. | Parity
21184210 — 4227+ 492514923+ | 14 | 3 2T1 1 -1
105

o+ 7210 4 21 14 ] 3 2T1, 7T4 2 -1
™ — 91210 — 9127 + 9825 — [ 14 [ 3 2T1 1 1
1472% — 28

' — 91210 4+ 16127 4+ 982° + | 14 | 3 2T1 1 -1
4923 — 77

2™ —91210470274+9825—9823+ | 14 | 3 2T1 1 1
70

2+ 7210+ 42 14 ] 3 2T1, 7T4 2 -1
o' + 16120 — 9127 4 4925 + [ 14 | 3 2T1 1 1
4923 — 28

™+ 161210 + 16127 + 4925 + | 14 | 3 2T1 1 -1
983 — 77

2 + 16120 4+ 7027 4+ 4925 + [ 14 | 3 2T1 1 1
14723 4+ 70

2T+ 21210 4 21 1413 2T1, 7T4 2 -1
2™ 4+ 70210 — 912" — 14725 — [ 14 | 3 2T1 1 1
9823 — 28

2™ 4+ 70210 + 16127 — 14725 + [ 14 | 3 2T1 1 -1
14723 — 77

o 4+ 70210 4 7027 — 14725 + [ 14 [ 3 2T1 1 1
4923 + 70

ot 4+ 7210 4+ 35 14 ] 3 2T1, 7T4 2 -1
2 = 21210 — 9127 — 14725 + [ 14 [ 3 2T1 1 1
98123 — 28

zt — 21210 + 16127 — 14725 — [ 14 | 3 2T1 1 -1
14723 — 77

1 — 21210 4 7027 — 14725 — [ 14 [ 3 2T1 1 1
4923 4+ 70

2™ + 21219 435 14 ] 3 2T1, 7T4 2 -1
™ — 11220 — 9127 4+ 4925 — [ 14 | 3 2T1 1 1
4923 — 28

x4 — 112210 + 16127 + 4925 — [ 14 | 3 2T1 1 -1
98z3 — 77

2t — 112210 4+ 7027 4+ 4925 — [ 14 | 3 2T1 1 1
14723 4+ 70

2121210+ 42 1413 2T1, 7T4 2 -1
2™ + 140210 — 9127 + 9825 + [ 14 | 3 2T1 1 1
14723 — 28

' 4+ 140210 + 16127 + 982° — | 14 | 3 2T1 1 -1
4923 — 77

% + 14020 + 7027 + 982% + [ 14 [ 3 2T1 1 1
9823 4 70

e 14+ 7 14 [ 4 2T1 1 -1
214211 +4928 — 1427 +98z7+ | 14 [ 4 2T1 1 -1
56
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Defining Polynomial e |] sgg Content | C.O. | Parity
21— 14x™ 4 4928 — 2827 — [ 14 [ 4 2T1 1 -1
1472* — 140

214511 44928 — 4257 — 4921+ | 14 | 4 2T1 1 -1
105

21— 14211 +4928 5627 +49zT+ | 14 | 4 2T1 1 -1
105

2 — 142 4 4925 — 7027 + [ 14 [ 4 2T1 1 -1
1472* — 140

e =142 +4928 8427 —98zT+ | 14 | 4 2T1 1 -1
56

A 21+ 7 14 |4 2T1 1 -1
2 = 28Tl — 1478 — 1427 — [ 14 [ 4 2T1 1 -1
1472* + 56

o1 — 2821 — 1472% — 2827 + [ 14 | 4 2T1 1 -1
49z* — 140

= 28zl — 14728 — 4227 — [ 14 | 4 2T1 1 -1
98z% + 105

2 = 28211 — 14728 — 5627 + | 14 [ 4 2T1 1 -1
9824 + 105

zt — 2820 — 14728 — 7027 — [ 14 [ 4 2T1 1 -1
49z* — 140

a1 — 28zl — 14728 — 84" + | 14 | 4 2T1 1 -1
1472* + 56

e T 7 1414 [2T1 1 -1
o1 =420 49828 — 1427 — 4923+ [ 14 | 4 2T1 1 -1
56

21— 42211419828 —2827—98z1— | 14 | 4 2T1 1 -1
140

xt — 422 4 9828 — 4227 — [ 14 [ 4 2T1 1 -1
1472* 4+ 105

21— 4221 + 9828 — 5627 + | 14 [ 4 2T1 1 -1
1472* + 105

21t =421 419828 —7027+98z7— | 14 | 4 2T1 1 -1
140

21142211 1 98,8 8447 +492%+ | 14 | 4 2T1 1 -1
56

2 7T 21 144 2T1 1 -1
2™ — 91zt + 9828 — 912" — [ 14 | 4 2T1 1 -1
147z* — 28

ot — 912!l 4 9828 + 16127 + | 14 | 4 2T1 1 -1
49z* — 77

2% —912M 4982847027 —98z* + | 14 | 4 2T1 1 -1
70

2110121149828 —2127+98z%+ | 14 | 4 2T1 1 -1
70

x4 — 91zl 49828 — 11227 — [ 14 | 4 2T1 1 -1
49z* — 77

o1




Defining Polynomial e |] sgg Content | C.O. | Parity
¥ — 91T + 982% 4 14027 + [ 14 | 4 2T1 1 -1
1472* — 28

x4 14z + 21 14 | 4 2T1 1 -1
2™ + 16120 + 4928 — 9127 + [ 14 | 4 2T1 1 -1
49z* — 28

™ + 1612t 4+ 492% + 16127 + | 14 [ 4 2T1 1 -1
98z* — 77

2™ + 161z + 4928 + 7027 + [ 14 | 4 2T1 1 -1
1472* 4+ 70

2™ + 161z 4 4928 — 2127 — [ 14 | 4 2T1 1 -1
1472* 4+ 70

¥ 4+ 161t + 4928 — 11227 — [ 14 | 4 2T1 1 -1
984 — 77

o + 161zt 4 492°% + 14027 — [ 14 [ 4 2T1 1 -1
4921 — 28

4212 421 14 | 4 2T1 1 -1
2 4+ 702 — 14728 — 9127 — [ 14 | 4 2T1 1 -1
98z+ — 28

2™ 4+ 7021t — 14728 + 16127 + | 14 | 4 2T1 1 -1
1472 — 77

21t 4+ 7021 — 14728 + 7027 + | 14 | 4 2T1 1 -1
49z* + 70

2 4+ 702 — 14728 — 2127 — [ 14 | 4 2T1 1 -1
49z + 70

o 7021 — 14728 — 11227 — [ 14 [ 4 2T1 1 -1
1472 — 77

™ 4+ 7021 — 14728 + 14027 + | 14 | 4 2T1 1 -1
98z* — 28

o 4+ 21212 + 14 14 [ 5 | 2T1,7T3 2 -1
e =142 449210 —1427+982°+ | 14 | 5 2T1 1 -1
56

2™ — 142" 4+ 49210 — 2827 — [ 14 | 5 2T1 1 -1
14725 — 140

214212 4492104227 — 4925+ | 14 | 5 2T1 1 -1
105

e 4212 7 1415 2T1, 7T3 2 -1
2™ — 28212 — 147210 — 142" — [ 14 | 5 2T1 1 -1
1472 + 56

2 — 28212 — 147210 — 2827 + [ 14 [ 5 2T1 1 -1
4925 — 140

ztt — 28212 — 147210 — 4227 — [ 14 | 5 2T1 1 -1
982° 4 105

2 T 7 14]5 2T1, 7T2 2 -1
2 —42212 498210 —1427—492°+ | 14 | 5 2T1 1 -1
56

211 —42212498210 2827 —98x5°— | 14 | 5 2T1 1 -1
140
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Defining Polynomial e |] sgg Content | C.O. | Parity

T 49212 1 98210 — 4227 — [ 14 [ 5 2T1 1 -1
1472° + 105

o 42212 + 7 14 ] 5 2T1, 7T1 14 -1
x14 + 2122+ 77 1415 2T1, 7T1 14 -1
™+ 21212 428 14 ] 5 2T1, 7T1 14 -1
o' 4+ 42212 + 56 14 [ 5 [2T1,7T1 14 -1
21— 56212 + 98210 — 42 1415 2T1, 7T1 14 1
1% — 56212 + 98210 — 140 14 [ 5 [2T1,7T1 14 -1
=™ + 35212 + 63 1415 2T1, 7T1 14 1

2156212498210 —1427+4925+ | 14 | 5 2T1 7 -1
56
25622498210 —1427+492°— | 14 | 5 2T1 7 -1
42
2125612498210 —14274+4925— [ 14 | 5 2T1 7 -1
140
21256212 4+98210 1427 +4925+ [ 14 | 5 2T1 7 -1
105
25622498210 —1427+492°+ | 14 | 5 2T1 7 -1
7
25622498210 1427 +492°— | 14 | 5 2T1 7 -1
91
2125621249810 1427 +4925+ [ 14 | 5 2T1 7 -1
154
2 —56212498210—2827+98z°— | 14 | 5 2T1 7 -1
140
2156212498210 —2827+9825+ | 14 | 5 2T1 7 -1
105
212 56212498210 -28274+9825+ [ 14 | 5 2T1 7 -1
7
211 —562124+982410 -28474+9825— [ 14 | 5 2T1 7 -1
91
2T =562 498210 —2827+9825+ | 14 | 5 2T1 7 -1
154
215622 4+98210—2827+9825+ | 14 | 5 2T1 7 -1
56
212 —562124+982410 2847 4+982°— [ 14 | 5 2T1 7 -1
49

4 56212 + 98210 — 4227 + [ 14 [ 5 2T1 7 -1
14725 + 105

1T 56012 + 98210 — 4227 + [ 14 [ 5 2T1 7 -1
14725 + 7

156012 + 08210 — 4227 + [ 14 [ 5 2T1 7 1
1472° — 91

4 _ 562 + 98210 — 4227 + [ 14 |5 2T1 7 -1
14725 + 154

T 56012 + 98210 — 4227 + [ 14 [ 5 2T1 7 -1
14725 + 56

53




Defining Polynomial

.

sgg Content

Parity

™ — 562 + 98210 — 4227 + [ 14 | 5 2T1 7 -1
1472° — 42

21t — 56212 + 08210 — 4227 + [ 14 | 5 2T1 7 -1
1472° — 140

2+ 7212 + 14 14 ] 5 2T1, 7T4 2 -1
2 70212 — 147210 — 1427 + [ 14 [ 5 2T1 1 -1
1472° + 56

1 — 70212 — 147210 — 2827 — [ 14 [ 5 2T1 1 -1
4925 — 140

2™ — 70212 — 147210 — 422" + [ 14 | 5 2T1 1 -1
985 + 105

™+ 722 28 1415 2T1, 7T4 2 -1
21 —84512 4492101427982+ | 14 | 5 2T1 1 -1
56

™ — 84212 4+ 49210 — 2827 + [ 14 | 5 2T1 1 -1
147x% — 140

2 1434 7 1416 2T1 1 -1
A+ 7B 14 1416 2T1 1 -1
2+ 21213+ 28 1416 2T1 1 -1
x4 + 14213 + 56 14 ] 6 2T1 1 -1
21— 14273 + 49212 — 42 1416 2T1 1 -1
o — 14213 + 49212 — 140 14 1 6 2T1 1 -1
™+ 723+ 63 1416 2T1 1 -1
421+ 7 14 1 6 2T1 1 -1
P P 1416 2T1 1 -1
2™ 4+ 7213 28 14 1 6 2T1 1 -1
™ 4+ 21213 + 56 1416 2T1 1 -1
o1 — 28218 — 147212 — 42 1416 2T1 1 -1
21— 28213 — 147212 — 140 1416 2T1 1 -1
=™ + 14273 + 63 1416 2T1 1 -1
e T4 T 1416 2T1 1 -1
e+ 1423 + 77 1416 2T1 1 -1
o™+ 14213 + 28 1416 2T1 1 -1
™ + 7213 + 56 1416 2T1 1 -1
x — 42213 + 98212 — 42 1416 2T1 1 -1
21— 42213 4+ 98212 — 140 1416 2T1 1 -1
x4+ 21213 + 63 1416 2T1 1 -1
™ — 91213 + 98212 — 126 1416 2T1 1 -1
A+ 7B 421 14 ] 6 2T1 1 -1
% — 91213 + 98212 + 168 1416 2T1 1 -1
x4 — 9125 + 9821 — 28 14 1 6 2T1 1 -1
2+ 14273 + 84 1416 2T1 1 -1
2128 401 14 1 6 2T1 1 -1
4+ 723 4+ 70 1416 2T1 1 -1
161213 + 49212 — 126 14 1 6 2T1 1 -1
o+ 14213 + 21 1416 2T1 1 -1
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Defining Polynomial

sgg Content

o

j C
' + 161213 4 4922 + 168 1416 2T1 1 -1
2™+ 161213 + 49212 — 28 1416 2T1 1 -1
% 4+ 21213 + 84 1416 2T1 1 -1
2+ 723491 1416 2T1 1 -1
e+ 723+ 42 1416 2T1 1 -1
2™ 4+ 70213 — 147212 — 126 14 16 2T1 1 -1
e+ 723+ 35 1416 2T1 1 -1
2™+ 70213 — 147212 + 168 14 16 2T1 1 -1
21+ 70213 — 147277 — 28 146 2T1 1 -1
2™+ 7213+ 84 14 1 6 2T1 1 -1
x4+ 14213 + 91 1416 2T1 1 -1
o1+ 14213 + 42 146 2T1 1 -1
1%+ 9822 + 14 14 [ 7 | 2T1,7T4 2 -1
1% 4+ 9827 + 28 14 [7 |2T1,7T4 2 -1
1% 4+ 4922 + 63 147 [2T1,7T4 2 -1
o 4927 + 7 14 [7 |2T1,7T4 2 -1
™+ 4922 + 14 1417 2T1, 7T4 2 -1
1 4927 + 28 14 [7 |2T1,7T4 2 -1
™ + 4922 + 56 147 2T1, 7T4 2 -1
=™ + 98z + 56 14 [7 [2T1 1 -1
1 — 1427 — 42 14 | 7 2T1 1 -1
2 — 1427 — 140 1417 271 1 -1
=¥ + 49z + 63 147 2T1 1 -1
498z + 7 147 [2T1 1 -1
¥+ 49z + 14 147 2T1 1 -1
%+ 2127 + 28 1417 [27T1 1 -1
2™ — 2827 — 140 147 2T1 1 -1
=™ + 98z + 63 147 [2T1 1 -1
2 421"+ 7 147 2T1 1 -1
e 492 + 77 1417 [2T1 1 -1
1 + 49z 4 28 1417 2T1 1 -1
™ 4+ 2127 + 56 1417 2T1 1 -1
o1 — 2827 — 42 14 [ 7 [2T1 1 -1
2™ 4+ 2127 + 63 1417 2T1 1 -1
2™ 4492 + 7 1417 2T1 1 -1
™ + 98z + 77 1417 2T1 1 -1
2™ 4+ 982 + 28 1417 2T1 1 -1
' + 49z + 56 1417 2T1 1 -1
™ + 727 + 98 14 [7 [2T1 1 -1
™ — 4227 — 140 1417 2T1 1 -1
1%+ 4922 + 42 14 [7 [2T1,7T4 2 1
1% 4+ 9822 + 42 147 [2T1, 7T4 2 -1
1% 4+ 4927 + 21 14 [7 [2T1,7T4 2 1
% 49822 + 21 147 [2T1,7T4 2 -1
o1 4 492° + 84 14 [7 | 2T1,7T4 2 1
1 44927 + 84 147 [2T1,7T4 2 -1
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Defining Polynomial e |] sgg Content | C.O. | Parity | G
™ 44927 + 91 14 [7 [2T1,7T4 2 1
x4 —91x7 — 28 1417 2T1 1 -1
™ + 98z + 84 1417 271 1 1
42127+ 91 1417 2T1 1 -1
™ + 49z + 70 1417 2T1 1 1
™ — 9127 — 126 147 2T1 1 -1
™ + 49z + 21 1417 2T1 1 1
2™ — 912" + 168 147 2T1 1 -1
™ + 49z + 91 1417 2T1 1 1
1 + 49z + 42 147 2T1 1 -1
2™ + 6327 + 49 1417 2T1 1 1
2™ 4+ 982 + 21 147 2T1 1 -1
=¥+ 16127 + 168 1417 [2T1 1 1
1+ 16127 — 28 147 [271 1 -1
2™+ 2127 + 84 1417 2T1 1 1
2™ 4+ 982 + 42 14 |7 2T1 1 -1
2™ 4+ 7027 — 126 1417 2T1 1 1
z + 49z + 35 1417 2T1 1 -1
=¥ + 7027 + 168 1417 2T1 1 1
2™ 4+ 7027 — 28 1417 2T1 1 -1
1% + 49z + 84 14 |7 2T1 1 1
z™ + 98z + 91 1417 271 1 -1
ot +y+4 1 [-13 | 2T1, 7T1 14 -1
2+ 4927+ 1029210 + -12 | 2T1, 7T1 14 -1
120172% + 8z27 + 8285925 —
11762 + 352947x* + 1372023 +
88120322 — 19160z + 794999
2 + 9921 + 50272 — 88211 — [ 2 [ -12 [ 2T1, 7T1 14 1
106210 + 512° — 628 — 1927 +
8520 +1925+902* — 2723 +60x2 +
13z — 73
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