
POTENTIAL PROBLEM DESCRIPTIONS

I. Combinatorics

(a) Problem 1: Partitions

We define a partition of a number, n, to be a sequence of non-increasing positive
integers that sum to n. We want to examine the number of partitions of n
into powers of 2, in which no term is repeated more than twice. To accomplish
this we can use the generating function b(x) =

∏∞
j=0(1 + x2j + x2j+1

). Define

bk = [xk]b(x). Using b(x), we find the following recursion relations b2n = bn+bn−1

and b2n+1 = bn. So, we have the sequence

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, . . . .

We will next show how we can use these coefficients to prove thatQ+ is countable.
Label a complete binary tree as follows. Define the root node to be 1

1
. Then

for a parent node, a
b
, we define the children to be a

a+b
and a+b

b
. The binary tree

with labels defined in this way is the Calkin-Wilf Tree. Reading the entries from
the tree we can list all of the positive rational numbers, thus proving that Q+ is
countable. In fact, these numbers are b0

b1
, b1
b2
, b2
b3
, b3
b4
, . . . .

There are several open problems we can explore using the sequence {bn} and the
Calkin-Wilf Tree. Can we prove that every third term in the bn sequence is even
and the rest are odd? Is there a way to state this question with a similar result
modulo certain prime numbers? Create a new sequence from the terms bi+ bi+1.
Can we say anything about the parity of the terms in this sequence? Is there a
way to classify which numbers appear “later”? For example, 7 appears in the
sequence before 6 appears.

(b) Problem 2: Random Trees

We want to explore how we can randomly select a tree. One way to randomly
select a tree is as follows. Pick a random permutation of 1, 2, . . . , N, where
N =

(

n

2

)

, and assign this permutation of weight to the edges of the complete
graph on {1, 2, . . . , n}. Then find the minimum weight spanning tree for this
graph. We notice that using this method will result in permutations that result
in the same minimum spanning tree. The total number of trees we find using
this method is

(

n

2

)

!.
Cayley’s theorem says that the number of labeled trees on n vertices is nn−2.
The method above will vastly over count the number of labeled trees. We want
to examine the trees that we find using this method. Do isomorphic trees appear
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with the same probability? What about non-isomorphic trees? Does the Prüfer
code or degree sequence tell us anything about the probability in which they
appear?

II. Computational algebra / algebraic geometry:

(a) Project 1. Consider the polynomial ring, k[x], in one variable over a field k. A
set of polynomials {f, g} is said to form a SAGBI bases if the leading monomials
of f and g generate the algebra generated by the lead monomial of k[f, g]. The
term SAGBI is an acronym for Subalgebra Analogue to Gröbner Bases for Ideals.
Torstensson, et.al., “Using resultants for SAGBI basis verification in the univari-
ate polynomial ring” J. Symbolic Comput. 40 (2005), no. 3, 1087− 1105. They
characterize when two such polynomials form a SAGBI bases. In this project we
like to understand their work and address some generalizations
1.1. If f, g doesn’t form a SAGBI bases, how many additional polynomials from
k[f, g] do we need so that the new set will form a SAGBI bases?
1.2. Can we get a similar result for three polynomials?

(b) Project 2. Consider the polynomial ring k[x1, . . . , xn] in n-variables. Let
α be an element of the symmetric group Sn. α act on the variables xi by
α(xi) = xα(i). Extend the action to any f ∈ k[x1, . . . , xn] by α(f(x1, . . . xn)) =
f(α(x1), . . . , α(xn)). An element f ∈ k[x1, . . . xn] is called invariant or fixed
under action of α if α(f) = f . The set of all invariant polynomials form a sub-
algebra of k[x1, . . . , xn]. We will introduce the concept of SAGBI bases to study
generators for such subalgebras. It is known that the ring of invariants of the
alternating group An, n ≥ 3 have no finite SAGBI bases with respect to any
monomial ordering. But Manfred Göbel in “A finite SAGBI bases for polynomial
invariants of conjugates of the Alternating Groups”, Math. Comp. 71 (2002),
no. 238, 761 - 765; showed that there is a non singular matrix δn ∈ GLn(Z) such
that the invariant ring of conjugate of the alternating group An w.r.t. δn have a
finite SAGBI bases for lexicographic ordering. In this project;
2.1. One interesting problem of investigation is to understand δn more closely
and identify other matrices with similar properties. (This problem is posed as
open problem by Göbel him self)
2.2. Another problem is to study if similar result can be obtained for other
monomial orders. (other than the Lexicographic order).

III. Number Theory:

(a) Amicable pairs for elliptic curves:

Recall that if we set s(n) to be the function

s(n) =
∑

d|n
d6=n

d,
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then we say integers m,n form an amicable pair if s(m) = n and s(n) = m.
Silverman and Strange have generalized this to an elliptic curve E/Q. In par-
ticular, if p, q are primes of good reduction for E they say they are an amicable
pair if #E(Fp) = q and #E(Fq) = p. Set

QE(X) = #{amicable pairs (p, q) for E/Q with p < q and q ≤ X}.

In [?] it is conjectured (and a great deal of evidence supporting these conjectures
is provided) that if E does not have complex multiplication then

QE(X) ∼
√
X

(logX)2

and if E has complex multiplication there is a constant AE > 0 so that

QE(X) ∼ AE

X

(logX)2

as X → ∞.
Let K be a number field and let E/K be an elliptic curve. In this case, if p and
q are primes of K, we say (p, q) is an amicable pair if #E(Fp) = Nm(q) and
#E(Fq) = Nm(p). We will generalize the conjectures in [?] and investigate to
what extent the results given there hold in the more general case. One would
like to see to what extent the conjectures hold, how one can modify them if they
do not hold, and if we can prove any of them on average.

(b) Lang-Trotter conjecture:

The distribution of primes has long been a central theme in number theory.
One important conjecture in this area is the Lang-Trotter conjecture. Let E :
y2 = x3 + Ax + B be an elliptic curve defined over Q and let aE(p) denote
the number of points on the reduction of E modulo the prime p. Let r ∈ Z
and put πE,r(X) = #{p < X | p is prime and aE(p) = r}. Lang and Trotter
[?] conjectured that if E does not have complex multiplication (this is true for
almost all curves) or if r 6= 0, then

(1) πE,r(X) ∼ CE,r

√
X

logX
,

where the constant depends only on E and r. To appreciate the importance of
this conjecture one should note that this is a refinement of the recently proved
Sato-Tate conjecture and is more precise than what can be deduced from the
Chebotarev density theorem in this setting.

(i) Champion primes:



4 POTENTIAL PROBLEM DESCRIPTIONS

An interesting related topic is the distribution of champion primes for
an elliptic curve, that is a prime p for which aE(p) achieves the maxi-
mal/minimal value allowed by Hasse’s theorem ±[|2√p|]. Put

πmax
E (X) = {p < X : aE(p) = −⌊2√p⌋}
πmin
E (X) = {p < X : aE(p) = ⌊2√p⌋}.

Participants will compute the values of these functions for many curves
E and for X as large as possible. They will combine these with heuris-
tic arguments to formulate a conjecture on the asymptotic behavior of

π
max/min
E (X). They will also attempt to prove their conjecture holds on

average as in the work of previous REUs [?, ?].
Since the above problem may prove to be beyond elementary analytic
techniques (even to obtain an average result), we will also consider related
prime counting functions. Let f(t) be a positive valued function which
grows more slowly than

√
p (-e.g. f(t) = log t).

πf
E(X) = {p < X : aE(p) = [|2√p− f(p)|]}

(ii) Lang-Trotter Constant Computation:

The constant in the Lang-Trotter conjecture is given explicitly in terms
of the Galois representations arising from E. However, it is difficult to
explicitly compute the constant for a given curve E and integer r. In our
2003 REU, together with Bilbro and Manley, the Co-PIs investigated the
Lang-Trotter conjecture computationally. In particular, we computed the
ratio of primes p < 107 with ap(E) = r to

√
X/ logX for various curves E,

r ∈ Z. In light of the Lang-Trotter conjecture, we expect that this ratio
should tend to the constant CE,r of equation (1). In our 2008 REU, partic-
ipants made some progress in developing algorithms to explicitly compute
the constant CE,r. Participants in future REUs will continue this work
allowing one to extend the minimal computational evidence for the Lang-
Trotter conjecture.

(iii) Lang-Trotter For Modular Forms:

The Lang-Trotter conjecture can be generalized to the setting of modular
forms [?, ?]. More generally, it can be formulated to the case of Galois
representations for certain Galois representations. As a first step in this
project we would produce more computational evidence for this form of the
conjecture in the case of elliptic modular forms by using SAGE. Once the
students are comfortable using SAGE, we would move on to studying the
conjecture for Siegel modular forms. These are modular forms that live on
Siegel upper half-space (a generalization of the complex upper half-plane)
and transform under subgroups of Sp2n(Z). In this setting there has been
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no computational evidence, so we will produce the appropriate SAGE code
to compute with such forms and then test the conjecture. In the case that
n = 2 it is known these modular forms have an associated 4-dimensional
Galois representation so we can also check whether these Galois represen-
tations fit into the class of representations the conjectures apply to.

(c) Extensions of Local Fields:

Given a prime p, one has the p-adic absolute value given by
∣

∣pr a
b

∣

∣

p
= p−r if

p ∤ ab. One can complete Q with respect to this absolute value to obtain a local
field Qp. In fact, it is known by a theorem of Ostrowski that along with the
usual absolute value these are the only possible valuations on Q. Furthermore,
it is known that for a fixed degree n there are only finitely many extensions of
Qp. John Jones and his collaborators have done a great deal of work into giving
precise descriptions of the extensions for fixed degrees. There are two avenues of
potential investigation here. First, one could consider a number field K/Q and
complete K at a prime ℘. One could hope to determine the isomorphism classes
of all field extensions of K℘ of a fixed degree.


