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Abstract

We produce a simple rule that will give information sets for the generalized Reed-

Muller codes over any finite field, and use these information sets to obtain new bases

of minimum-weight vectors for the codes of the designs of points and hyperplanes over

prime fields.

Joint work with T. P. McDonough and V. C. Mavron of the University of Wales,

Aberystwyth, [KMM].
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Coding theory terminology

� A q-ary linear code of length n is a subspace of the n-dimensional vector space

Fn
q over the finite field Fq.

� The (Hamming) distance between two vectors u, v ∈ Fn
q is the number of coor-

dinate position in which they differ.

� The weight of a vector is the number of non-zero coordinate entries. If a code

has smallest non-zero weight d then the code can correct up to t = bd−1
2 c errors

by nearest-neighbour decoding, i.e. if at most t errors occur in transmission then

the nearest codeword to the received vector is the one that was sent.

� If a code C over a field of order q is of length n, dimension k, and minimum weight

d, then we write [n, k, d]q to show this information.

� A generator matrix G for C is a k × n matrix made up of a basis for C =
[n, k, d]q. The set of coordinate positions corresponding to a set of k linearly

independent columns of G is an information set for C.

http://www.ces.clemson.edu/math/
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Coding theory terminology continued

� The dual code C⊥ is the orthogonal to C under the standard inner product (, ),
i.e. C⊥ = {v ∈ Fn|(v, c) = 0 for all c ∈ C}.

� A check matrix for C is a generator matrix H for C⊥.

� Two linear codes of the same length and over the same field are isomorphic if

they can be obtained from one another by permuting the coordinate positions.

� An automorphism of a code C is an isomorphism from C to C.

� Any code is isomorphic to a code with generator matrix in standard form,

i.e. the form [Ik |A]; a check matrix then is given by [−AT | In−k]. The first k

coordinates are the information symbols and the last n − k coordinates are

the check symbols.

� Encoding of a data-set vector x = (x1, . . . , xk) is by matrix multiplication, i.e.

xG, where G is a generator matrix. Decoding methods vary for different codes.

http://www.ces.clemson.edu/math/
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Generalized Reed-Muller codes

Let q = pt, p a prime, and V = Fm
q with standard basis. The codes are q-ary codes of

length qm in the function space FV
q , with the usual basis of characteristic functions of

the vectors of V .

Denote the elements f ∈ FV
q by functions of the m-variables denoting the coordinates

of a variable vector in V , i.e. if x = (x1, x2, . . . , xm) ∈ V, then f ∈ FV
q is given by

f = f(x1, x2, . . . , xm) and the xi take values in Fq. The codeword defined by f will

have f(v) at the coordinate position corresponding to v = (v1, v2, . . . , vm) ∈ V .

Every f ∈ FV
q can be written as a polynomial given uniquely as a linear combination

of the qm monomial functions

M = {xi1
1 xi2

2 . . . xim
m | 0 ≤ ik ≤ q − 1, for 1 ≤ k ≤ m}.

The degree ρ of a monomial is the total degree, i.e. ρ =
∑m

k=1 ik and 0 ≤ ρ ≤ m(q−1).

http://www.ces.clemson.edu/math/
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Definition 1 Let V = Fm
q , m ≥ 1, over Fq, where q = pt and p prime. For 0 ≤

ρ ≤ m(q − 1), the ρth-order generalized Reed-Muller code RFq
(ρ,m) is the

subspace of FV
q (with basis the characteristic functions of vectors in V ) of all m-variable

polynomial functions (reduced modulo xq
i − xi) of degree at most ρ. Thus

RFq
(ρ, m) = 〈xi1

1 xi2
2 · · ·x

im
m | 0 ≤ ik ≤ q − 1, for 1 ≤ k ≤ m,

m∑
k=1

ik ≤ ρ〉.

The codes have length qm and the codewords are obtained by evaluating the m-variable

polynomials in the code at all the points of the vector space V .

Further RFq
(ρ,m)⊥ = RFq

(µ,m) for ρ < m(q− 1) and where ρ+µ+1 = m(q− 1).

[For more about the generalized Reed-Muller codes, see [AK98] or [AK92].]
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Some properties of GRM codes

• RFq
(ρ,m) = [qm, fρ,m,q, dρ,m,q]q where

fρ,m,q =
m∑

i=0

(−1)i
(
m
i

)(
m+ρ−iq

m

)
and dρ,m,q = (q − b)qm−a−1,

where ρ = a(q − 1) + b, 0 ≤ b < q − 1.

• Aut(RFq
(ρ,m)) = AGLm(Fq) for 0 ≤ ρ ≤ m(q − 1).

• RFq
(ρ,m)∗ is the punctured GRM, of length qm−1, and is cyclic with GLm(Fq)

as automorphism group.

• With m = 1, RFq
(ρ, 1)∗ is the Reed-Solomon code and RFq

(ρ, 1) the extended

Reed-Solomon code, i.e.

RFq
(ρ, 1) = 〈xi | 0 ≤ i ≤ ρ〉,

where ρ ≤ q − 1 and dρ,1,q = (q − ρ), so the code is [q, ρ + 1, q − ρ]q and is an

MDS code.

http://www.ces.clemson.edu/math/
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If ρ = r(q− 1), the minimum distance of RFq
(r(q− 1),m) is qm−r and the minimum

words are the incidence vectors of the subspaces of dimension (m− r) and their cosets

(the (m− r)-flats), e.g.

p(x1, . . . , xm) =
r∏

i=1

(1− xq−1
i ) ∈ RFq

(r(q − 1),m)

is the incidence vector of the subspace of V given by the equations

X1 = X2 = · · · = Xr = 0

of dimension m− r.

The incidence (characteristic) vector of a point (vector) w = (w1, . . . , wm) ∈ V is

χw = vw =
m∏

i=1

(1− (xi − wi)q−1).

http://www.ces.clemson.edu/math/
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Information sets

The coordinate set of the codes are the vectors (v1, v2, . . . , vm) ∈ V , where vi ∈ Fq,

and the vectors can be ordered in any way. For a generator matrix to be in standard

form, we want the first k positions to form an information set, where k is the dimension

of the code.

The set of monomial functions of degree at most ν,

B = {xi1
1 xi2

2 . . . xim
m | 0 ≤ ik ≤ q − 1, for 1 ≤ k ≤ m,

m∑
k=1

ik ≤ ν},

is an Fq-basis of RFq
(ν, m). A subset S ⊆ V = Fq

m will be an information set of

the code if, and only if, the subspace of Fq
S spanned by the restriction of B to S has

dimension |B|.

http://www.ces.clemson.edu/math/
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Theorem 1 Let V = Fm
q , where q = pt and p is a prime, and Fq = {α0, . . . , αq−1},

and

S = {[i1, i2, . . . , im] | ik ∈ Z, 0 ≤ ik ≤ q − 1, 1 ≤ k ≤ m}.

Let ≤ denote the partial order defined on S by [i1, i2, . . . , im] ≤ [j1, j2, . . . , jm] if and

only if ik ≤ jk for all k such that 1 ≤ k ≤ m.

Let X ⊆ S have the property

x ∈ X ⇒ ((y ∈ S) ∧ (y ≤ x) ⇒ y ∈ X ).

and let

C = 〈xi1
1 xi2

2 · · ·x
im
m | [i1, i2, . . . , im] ∈ X〉.

Then the set of vectors

I = {(αi1 , . . . , αim) | [i1, i2, . . . , im] ∈ X}

is an information set for C.

http://www.ces.clemson.edu/math/
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In particular,

I = {(αi1 , . . . , αim) |
m∑

k=1

ik ≤ ν, 0 ≤ ik ≤ q − 1}

is an information set for RFq
(ν, m), and if q = p is a prime,

I = {(i1, . . . , im) | ik ∈ Fp, 1 ≤ k ≤ m,

m∑
k=1

ik ≤ ν}

is an information set for RFp
(ν, m), by taking αik = ik.

http://www.ces.clemson.edu/math/
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Examples

q = 3 0 0 0 1 1 2 1 2 2

m = 2 0 1 2 0 1 0 2 1 2

1 [0,0] 1 1 1 1 1 1 1 1 1

x2 [0,1] 0 1 2 0 1 0 2 1 2

x2
2 [0,2] 0 1 1 0 1 0 1 1 1

x1 [1,0] 0 0 0 1 1 2 1 2 2

x1x2 [1,1] 0 0 0 0 1 0 2 2 1

x2
1 [2,0] 0 0 0 1 1 1 1 1 1

Figure 1: RFq
(ρ, m) = RF3

(2, 2)

B = {xi1
1 xi2

2 | 0 ≤ ik ≤ 2, i1 + i2 ≤ 2}.

http://www.ces.clemson.edu/math/
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0 0 0 0 1 1 1 w w w2 1 w w w2 w2 w2

0 1 w w2 0 1 w 0 1 0 w2 w w2 1 w w2

1 [0,0] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

x2 [0,1] 0 1 w w2 0 1 w 0 1 0 w2 w w2 1 w w2

x2
2 [0,2] 0 1 w2 w 0 1 w2 0 1 0 w w2 w 1 w2 w

x3
2 [0,3] 0 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1

x1 [1,0] 0 0 0 0 1 1 1 w w w2 1 w w w2 w2 w2

x1x2 [1,1] 0 0 0 0 0 1 w 0 w 0 w2 w2 1 w2 1 w

x1x
2
2 [1,2] 0 0 0 0 0 1 w2 0 w 0 w 1 w2 w2 w 1

x2
1 [2,0] 0 0 0 0 1 1 1 w2 w2 w 1 w2 w2 w w w

x2
1x2 [2,1] 0 0 0 0 0 1 w 0 w2 0 w2 1 w w w2 1

x3
1 [3,0] 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Figure 2: RF4
(3, 2), F4 = {α0, α1, α2, α3} = {0, 1, w, w2}

http://www.ces.clemson.edu/math/
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Example

The extended Reed-Solomon code,

RFq
(ρ, 1) = 〈xi | 0 ≤ i ≤ ρ〉,

where ρ ≤ q − 1 and dρ,1,q = (q − ρ), is a [q, ρ + 1, q − ρ]q. Taking

{α0, . . . , αq−1} = {0, 1, w, w2, . . . , wq−2}

where w is a primitive element for Fq, then our information set is the usual set

{0, 1, w, w2, . . . , wρ−1}

giving the usual generating matrix as for BCH codes (puncturing first at 0).

http://www.ces.clemson.edu/math/
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The proof puts X in lexicographic order by ≺, i.e. x = [i1, . . . , im] ≺ y = [j1, . . . , jm]
if, and only if, for some k with 1 ≤ k ≤ m, ik < jk and i` = j` for ` < k. So � is a

total order consistent with the partial order ≤.

It is then shown that the |X | × |X | matrix M with

Mx,y = αi1
j1

αi2
j2

. . . αim
jm

is the product of two matrices, one lower triangular, one upper triangular, whose

determinant is easy to find.

http://www.ces.clemson.edu/math/
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Illustration (not GRM)

Let X == {[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2]}, q ≥ 3 and Fq = {α0, α1, . . . , αq−1}.

L =

26666666666666666664

1 0 0 0 0 0

α0 1 0 0 0 0

α0
2 α0 + α1 1 0 0 0

α0 0 0 1 0 0

α0
2 α0 0 α0 1 0

α0
3 (α0 + α1) α0 α0 α0

2 α0 + α1 1

37777777777777777775

,

R =

26666666666666666664

1 1 1 1 1 1

0 α1 − α0 α2 − α0 0 α1 − α0 α2 − α0

0 0 (α2 − α0) (α2 − α1) 0 0 (α2 − α0) (α2 − α1)

0 0 0 α1 − α0 α1 − α0 α1 − α0

0 0 0 0 (α1 − α0)2 (α2 − α0) (α1 − α0)

0 0 0 0 0 (α2 − α0) (α2 − α1) (α1 − α0)

37777777777777777775

http://www.ces.clemson.edu/math/
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For x = [i1, . . . , im] and y = [j1, . . . , jm] then

Mx,y = αi1
j1

αi2
j2

. . . αim
jm

and

M = LR =



(α0, α0) (α0, α1) (α0, α2) (α1, α0) (α1, α1) (α1, α2)

1 1 1 1 1 1 1

x2 α0 α1 α2 α0 α1 α2

x2
2 α0

2 α1
2 α2

2 α0
2 α1

2 α2
2

x1 α0 α0 α0 α1 α1 α1

x1x2 α0
2 α0α1 α0α2 α0α1 α1

2 α1α2

x1x
2
2 α0

3 α0α1
2 α0α2

2 α0
2α1 α1

3 α1α2
2
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Design theory background

An incidence structure D = (P,B, I), with point set P, block set B and incidence I
is a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident with precisely k points,

and every t distinct points are together incident with precisely λ blocks.

E.g. A 2-(n2 + n + 1, n + 1, 1) is a projective plane of order n;

a 2− (16, 6, 2) is a biplane.

The code CF of the design D over the finite field F is the space spanned by the

incidence vectors of the blocks over F , i.e. the row span over F of an incidence matrix.

http://www.ces.clemson.edu/math/
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For any finite field Fq of order q, the set of points and r-dimensional subspaces (re-

spectively flats) of an m-dimensional projective (respectively affine) geometry forms a

2-design which we will denote by PGm,r(Fq) (respectively AGm,r(Fq)). The auto-
morphism groups, PΓLm+1(Fq) or AΓLm(Fq), respectively, of these designs (and

codes) are the full projective or affine semi-linear groups, and always 2-transitive on

points.

If q = pe where p is a prime, the codes of these designs are over Fp and are subfield

subcodes of the generalized Reed-Muller codes. The dimension and minimum weight

is known in each case.

In particular, the code RFp
((m−r)(p−1),m) is the p-ary code of the affine geometry

design AGm,r(Fp).

http://www.ces.clemson.edu/math/
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Projective geometry

We can construct information sets for the code Cp(PGm,r(Fp)) using what we have

found for the affine case:

if I is an information set for Cp(AGm,m−1(Fp)), then

{(0, . . . , 0, 1)} ∪ {(1, x1, . . . , xm) | (x1, . . . , xm) ∈ I},

is an information set for Cp(PGm,m−1(Fp)).

More generally, if I is an information set for Cp(AGm,r(Fp)) and J is an information

set for Cp(PGm−1,r(Fp)), then I∗ ∪ J † is an information set for Cp(PGm,r(Fp)),
where

I∗ = {(1, x1, . . . , xm) | (x1, . . . , xm) ∈ I},

J † = {(0, x1, . . . , xm) | (x1, . . . , xm) ∈ J }.

http://www.ces.clemson.edu/math/
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Using this inductive construction, we get

{(0, . . . , 0, 1)} ∪
⋃

1≤i≤r

Ki

is an information set for Cp(PGm,r(Fp)), where Ki is the set of vectors

{(0, . . . , 0︸ ︷︷ ︸
r − i

, 1, ar−i+1, . . . , am︸ ︷︷ ︸
m− r + i

)|0 ≤ aj ≤ p−1, r−i+1 ≤ j ≤ m,
m∑

j=r−i+1

aj ≤ i(p−1)}.

http://www.ces.clemson.edu/math/
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As a by-product of this construction of information sets for the projective geometry

designs, in the case of the design of points and hyperplanes we can use homogeneous

coordinates to obtain a set of hyperplanes whose incidence vectors will form a basis for

the code in the prime case.

This construction can be compared with the basis found in [GK98], where a basis of

hyperplanes for the affine prime case was constructed and this then applied to the

projective case.

Here the dimension of the code is

fq−1,m,q =
(

m + q − 1
m

)
in the affine case, and fq−1,m,q + 1 in the projective case.

http://www.ces.clemson.edu/math/
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Proposition 2 If C = Cp(PGm,m−1(Fp)), where p is a prime and m ≥ 2, then, using

homogeneous coordinates, the incidence vectors of the set

{(1, a1, . . . , am)′ | ai ∈ Fp,
m∑

i=1

ai ≤ p− 1} ∪ {(0, . . . , 0, 1)′}

of hyperplanes form a basis for C.

Similarly, a basis of hyperplanes for Cp(AGm,m−1(Fp)) for m ≥ 2, p prime is the set

of incidence vectors of the hyperplanes with equation

m∑
i=1

aiXi = p− 1

with
m∑

i=1

ai ≤ p− 1,

where ai ∈ Fp for 1 ≤ i ≤ m, and not all the ai are 0, along with the hyperplane with

equation Xm = 0.

http://www.ces.clemson.edu/math/
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Example

A basis of minimum-weight vectors for C3(PG2,1(F3)).

0 1 1 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 2 1 2 2 1 1 1

1 0 1 2 0 1 0 2 1 2 0 1 2

(0, 0, 1)′ 0 1 0 0 1 0 1 0 0 0 1 0 0

(1, 0, 0)′ 1 0 0 0 0 0 0 0 0 0 1 1 1

(1, 0, 1)′ 0 0 0 1 0 0 0 1 0 1 1 0 0

(1, 0, 2)′ 0 0 1 0 0 1 0 0 1 0 1 0 0

(1, 1, 0)′ 1 0 0 0 0 0 1 0 1 1 0 0 0

(1, 1, 1)′ 0 0 0 1 0 1 1 0 0 0 0 0 1

(1, 2, 0)′ 1 0 0 0 1 1 0 1 0 0 0 0 0

Figure 3: C3(PG2,1(F3))

http://www.ces.clemson.edu/math/
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Example

A basis of minimum-weight vectors for RF3
(2, 2) = C3(AG2,1(F3)).

0 0 0 1 1 2 1 2 2

0 1 2 0 1 0 2 1 2

X2 = 0 1 0 0 1 0 1 0 0 0

X2 = 2 0 0 1 0 0 0 1 0 1

X2 = 1 0 1 0 0 1 0 0 1 0

X1 = 2 0 0 0 0 0 1 0 1 1

X1 + X2 = 2 0 0 1 0 1 1 0 0 0

2X1 = 2 0 0 0 1 1 0 1 0 0

Figure 4: RF3
(2, 2) = C3(AG2,1(F3))

Compare with the generator matrix using the polynomial basis 1.

http://www.ces.clemson.edu/math/
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