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Abstract

We obtain improved bounds for the minimum weight of the dual
codes associated with the codes from finite geometries in the case
of odd order, and some results that apply also to the dual codes of
non-desarguesian planes of odd order.

1 Introduction

The duals of the codes associated with the designs from finite geometries
over fields of prime power order q are the so-called “geometric codes” ([2,
Chapter 2]) and are of importance in applications because they are cyclic
and because the structure of the geometry allows these codes to be decoded
using majority logic decoding: see, for example, [9]. The actual minimum
weight of these codes is not known in general, apart from the case where
the characteristic of the underlying geometry is even, or a prime, and other
sporadic small cases. In [4] we obtained the value of the minimum weight
when q = 2m for any m. Here we improve on the known bounds for the
odd case, and prove

Proposition 1 For any m > n ≥ 1 let D be the design PGm,n(Fq) of
points and n-dimensional subspaces of the projective geometry of dimension
m over the field of order q, where q = pt, with t > 1 and p odd. Let d⊥ be
the minimum weight of the dual code C⊥

p of the design. Then

4(qm − 1)
3(qn − 1)

+
2
3
≤ d⊥ ≤ 2qm−n.

If p 6= 3 then
3(qm − 1)
2(qn − 1)

+
1
2
≤ d⊥ ≤ 2qm−n.
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We exclude the case where q = p since in this case the value for d⊥ is
known and is precisely 2qm−n. Further, the result implies the same bounds
for the affine geometry designs, AGm,n(Fq), of points and n-flats.

Note that in fact the codes here are too large to be examined by current
standard computational facilities, for example using Magma [3]. However,
Magma was useful in searching for geometrical configurations of a particular
type.

2 Notation and background

We write PGm,n(Fq) for the design of points and n-dimensional subspaces
of the projective space PGm(Fq), i.e. a 2-(v, k, λ) design with v points, k
points per block, and any two points on exactly λ blocks, where

v =
qm+1 − 1

q − 1
, k =

qn+1 − 1
q − 1

, λ =
(qm−1 − 1) . . . (qm+1−n − 1)

(qn−1 − 1) . . . (q − 1)
.

Similarly, AGm,n(Fq) will denote the 2-design of points and n-flats (cosets
of dimension n) in the affine geometry AGm(Fq).

The code CF of the design D over the finite field F is the space spanned
by the incidence vectors of the blocks over F . We take F to be a prime field
Fp, in which case we write also Cp for CF ; in the case of the designs from
finite geometries, p will be the same as the characteristic of the field over
which the geometry is defined. In the general case of a 2-design, the prime
must divide the order of the design, i.e. r − λ, where r is the replication
number for the design, that is, the number of blocks through a point. If
the point set of D is denoted by P and the block set by B, and if Q is
any subset of P, then we will denote the incidence vector of Q by vQ.
Thus CF =

〈
vB |B ∈ B

〉
, and is a subspace of FP , the full vector space

of functions from P to F . For any code C, the dual or orthogonal code
C⊥ is the orthogonal under the standard inner product. If a linear code
over a field of order q is of length n, dimension k, and minimum weight d,
then we write [n, k, d]q to show this information. If c is a codeword then
the support of c is the set of non-zero coordinate positions of c.

For any design D, a set of points is called an (n1, n2, . . . , ns)-set if blocks
of the design meet the set in ni points for some i such that 1 ≤ i ≤ s, and
if for each i there exists at least one block meeting the set in ni points.
The ni’s are the intersection numbers for the set, and an ni-secant is
a block meeting the set in ni points.

The following construction is used in [4] and we mention it here as it can
be modified to help in the non-binary case for projective geometry designs
of larger dimension.
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Result 1 Let D = PGm,1(Fq) where q = 2t for t ≥ 1, and m ≥ 2. Let H
be a hyperplane in P, and let S be a set of points such that every line of H
meets S evenly. Let V be a point of P that is not in H. Then the set of
points

S∗ = {X|X on a line V Y for Y ∈ S} − {V }

has size q|S|, and is met evenly by every line of D.

The known bounds in the general case are summed up in [1, Theo-
rem 5.7.9] and are given as follows:

Result 2 Let C be the p-ary code of the design PGm,n(Fq) or of
AGm,n(Fq) where q = pt, t ≥ 1, m > n ≥ 1 and p is prime. Then the
minimum weight d⊥ of C⊥ satisfies

(q + p)qm−n−1 ≤ d⊥ ≤ 2qm−n.

See also Blake and Mullin [2, Section 2.2], Delsarte, Goethals and Mac-
Williams [6] or Delsarte [7, 5]. The lower bounds for the affine case are
deduced in [5] from the BCH bound using the fact that the projective
codes are cyclic and the affine codes are extended cyclic; the bound for the
projective case follows by an induction argument given in [4]. The precise
value for the binary case is determined in [4]; here we improve on the values
for some cases when q is odd.

3 New bounds

Suppose D is a 2-(v, k, λ) design with b blocks and with replication number
r, the number of blocks through a point. Let n = r − λ be the order of D,
and let p be a prime dividing n. Let S be any set of points of D that is the
support of a word in Cp(D)⊥. Let |S| = s. For i = 0, . . . , k, let xi denote
the number of i-secants to S; for a fixed point y 6∈ S, let yi (or yi(y)) denote
the number of i-secants that pass through y; for a fixed point z ∈ S, let zi

(or zi(z)) be the number of i-secants passing through z. Standard counting
gives the following sets of equations, noting first that x1 = y1 = z1 = 0
since S is the support of a codeword in the dual:

k∑
i=0

xi = b;
k∑

i=2

ixi = sr;
k∑

i=2

i(i− 1)xi = s(s− 1)λ, (1)

and hence
k∑

i=3

i(i− 2)xi = s((s− 1)λ− r), (2)
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(where the last equation is obtained from the previous two);

k∑
i=0

yi = r;
k∑

i=1

iyi = sλ, (3)

and
k∑

i=2

zi = r;
k∑

i=2

(i− 1)zi = (s− 1)λ, (4)

and hence
k∑

i=3

(i− 2)zi = (s− 1)λ− r, (5)

(where the last equation is obtained from the previous two).
Using this notation,

Definition 1 A non-empty set of points S in a design D will be called a
j-secant set if there exists an integer j ≥ 3 such that xi = 0 for 2 < i < j,
but xj 6= 0.

Thus any non-empty set of points that is not an arc will be a j-secant
set for some j ≥ 3.

In the following lemmas let C = Cp(D) where p is an odd prime and
where D is a 2-(v, k, λ) design. Further, let w be a non-zero codeword in C⊥

with support S. The coordinate of w at the point x will be written w(x).
If S is not a j-secant set for any j ≥ 3, then s = r

λ + 1, from Equation (2),
which is not possible.

Lemma 2 For any x ∈ S, z2(x) ≥ 2r − (s− 1)λ.

Proof: Write zi = zi(x). Then
∑

i=2 zi = r, so that

z2 = r −
∑
i=3

zi ≥ r −
∑
i=3

(i− 2)zi = r − {(s− 1)λ− r} = 2r − (s− 1)λ

by Equation (5). 2

Note that since every block through x ∈ S must meet S again, s ≥ r
λ +1.

In our applications the design D will be either (i) a desarguesian projec-
tive geometry design, PGm,n(Fq), where q = pt is odd, or (ii) an odd-order
projective plane. In the first case, we are looking for minimal words, so
we can assume that s ≤ 2qm−n, since words of that weight are known to
exist: see [1, Chapter 5]. Also we can assume the BCH bound that gives
s ≥ (q + p)qm−n−1. Here, r

λ = qm−1
qn−1 , and thus s ≤ 2qm−n < 2 r

λ + 1. Thus
from Lemma 2, we must have 2-secants. Further, if q = p then we know
that the minimum weight is 2qm−n, so we will omit this case.
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In (ii), r = q + 1 and λ = 1, and D need not be desarguesian. Although
no non-desarguesian planes of prime order are known, they have not been
proved not to exist, and thus in the plane case we will allow q to be a prime.

Lemma 3 If S is a j-secant set of size s, then

1. for any x ∈ S,

z2(x) ≥ r
j − 1
j − 2

− λ
s− 1
j − 2

;

2.

s ≥ 2
j

[
r(j − 1)

λ
+ 1

]
.

Proof: For (1), note that for every x ∈ S, zi = 0 for 2 < i < j and
zj(x) 6= 0 for some x. Thus, for any point in S, z2 = r −

∑
i=j zi, and∑

i=j

(i− 2)zi = λ(s− 1)− r ≥ (j − 2)
∑
i=j

zi = (j − 2)(r − z2),

which simplifies to the stated result.
For (2), by (1), every x ∈ S has z2 ≥ 1

j−2 [r(j − 1) − λ(s − 1)]. For
some x ∈ S, let S ′(x) = {y ∈ S |xy is a 2-secant}. Then with s′ = |S ′(x)|,
we have λs′ ≥ z2, so that s′ ≥ 1

λ(j−2) [r(j − 1) − λ(s − 1)]. Recalling
that w is a word with support S, if w(x) = a then w(y) = −a for all
y ∈ S ′(x). Any such y is also on z2(y) 2-secants, and this number is also
bounded below by (1). Clearly S ′(x)∩S ′(y) = ∅, so s ≥ |S ′(x)|+ |S ′(y)| ≥

2
λ(j−2) [r(j − 1)− λ(s− 1)], which simplifies to give the stated result. 2

Corollary 4 1. If D = PGm,n(Fq) where q = pt is odd, t ≥ 1, m >
n ≥ 1, then the minimum weight d⊥ of the dual code of the p-ary code
of D satisfies

d⊥ ≥ 4
3

(qm − 1)
(qn − 1)

+
2
3
.

If p ≥ 5 then

d⊥ ≥ 3
2

(qm − 1)
(qn − 1)

+
1
2
.

2. If D is a projective plane of odd order q = pt, then d⊥ ≥ 4
3q + 2. If

p ≥ 5 then d⊥ ≥ 3
2q + 2.
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Proof: The first parts in each case follow from Lemma 3 (2), by taking
j ≥ 3 and recalling that r

λ = qm−1
qn−1 .

Now take p ≥ 5. If x3 6= 0 then there exists a 3-secant. The values of
w(x) for these three points must be distinct, since p ≥ 5. Thus arguing as
in the proof of Lemma 3 (2), we see that

s ≥ 4
λ

(2r − λ(s− 1)) = 8
r

λ
− 4(s− 1),

which simplifies to

s ≥ 8
5

(qm − 1)
(qn − 1)

+
4
5
.

If x3 = 0 then S is a j-secant set where j ≥ 4, so Lemma 3 (2) with
j = 4, gives immediately

s ≥ 3
2

(qm − 1)
(qn − 1)

+
1
2
.

Since
8
5

(qm − 1)
(qn − 1)

+
4
5
≥ 3

2
(qm − 1)
(qn − 1)

+
1
2
,

we have the result. 2

Note:
1. The bound 4

3q + 2 for odd-order planes was also found by Sachar [10].
2. The bounds given in Corollary 4 are better than

(i) the BCH bound (q + p)qm−n−1 if q = pt where p is odd and t ≥ 2,
when D = PGm,n(Fq);

(ii) q + p for planes of order q = pt where p is odd and t ≥ 2.

3. The bounds will hold for the dual codes of the affine designs AGm,n(Fq)
as well.

4 Words of small weight

When the order of the plane is a square, we have the following small words
(also noted in Sachar [10]):

Proposition 5 A projective plane of square order q2 that contains a Baer
subplane has words of weight 2q2 − q in its p-ary dual code, where p|q.
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Proof: Suppose Π is the projective plane containing a Baer subplane, π. If
Q is the set of points of π, and L is a line of Π that is a line of π, i.e. meets
Q in q + 1 points, then, writing vX for the incidence vector of a set X of
points, we find that the vector vQ − vL is in the dual code of the design,
and is of weight 2q2−q. The intersection numbers for the set S which is the
symmetric difference of Q and L are (0, 2, q, q2− q). This set can clearly be
found in an affine plane as well by taking for the line at infinity a tangent
to the Baer subplane that meets L in π. 2

Actual values for the minimum weight of the dual codes of the p-ary
codes of the geometry for p > 2 are known, in general, only for q = p. In this
case the minimum weight for the designs of points and n-dimensional sub-
spaces or flats in an m-dimensional projective or affine geometry is 2pm−n,
since the codes here are generalized Reed-Muller codes and the lower and
upper bounds in the affine case of Result 2 actually coincide. The minimum
vectors are not constant in this case, and are unlikely to be in the general
case. Words of weight 2qm−n are easily constructed, and this does provide
an upper bound for the minimum weight: see [1, Chapter 5].

Recall that we have the following inclusions:

Cp(PGm,1(Fq)) ≥ Cp(PGm,2(Fq)) ≥ . . . ≥ Cp(PGm,m−1(Fq)),

so that

C⊥
p (PGm,1(Fq)) ≤ C⊥

p (PGm,2(Fq)) ≤ . . . ≤ C⊥
p (PGm,m−1(Fq)).

Thus we see that if D = PGm,n(Fq) and if c ∈ C⊥
p (D), then c′ ∈

C⊥
p (PGm+1,n+1(Fq)) for any larger space, where c′ has the same support

as c, and zeros in the new positions. This gives

Proposition 6 For any q = pt and m > n ≥ 1, if C⊥
p (PG2,1(Fq)) con-

tains a word of weight a, then C⊥
p (PGm,n(Fq)) contains a word of weight

aqm−n−1.

Proof: Notice that the vertex-cone construction allows us to construct a
word of weight aq in the dual code of Cp(PGm,1(Fq)) from a word of weight
a in the dual code of Cp(PGm−1,1(Fq)). This is achieved by placing the
entry α in a coordinate position of the side of the cone if the side meets the
hyperplane at a point with entry α. Now use the facts discussed above. 2

Using the Baer subplane construction in the plane of square order we
thus obtain:

Corollary 7 For any q = p2t, where t ≥ 1, if C is the p-ary code of
PGm,n(Fq) where m > n ≥ 1, and d⊥ is the minimum weight of C⊥, then

4(qm − 1)
3(qn − 1)

+
2
3
≤ d⊥ ≤ (2q −√

q)qm−n−1.
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We note also that the vertex-cone construction will also give a word of
weight qs in the dual of the p-ary code of the design PGm+1,r(Fq) from
a word of weight s in the dual code of the design PGm,r(Fq), as a simple
argument will show.

5 Special cases

It is not easy to be more precise about the bounds in the general case. We
can say the following for the design PGm,m−1(F9):

Proposition 8 Let D be the design PGm,m−1(F9), m ≥ 2, and let C be
the ternary code of D. If d⊥ denotes the minimum weight of C⊥, then
d⊥ ∈ {14, 15}.

Proof: By Corollary 4,

d⊥ ≥ 4
3

(qm − 1)
(qm−1 − 1)

+
2
3
,

so that with q = 9 this gives d⊥ ≥ 13. (We know that for m = 2, d⊥ = 15
by [8].) We prove that 13 is impossible by induction, knowing this to be
true for m = 2.

Let S be the support of a word c ∈ C⊥ where C is the ternary code of
the design D = PGm,m−1(F9). Then |S| = s ≥ 13. If S is a j-secant set in
D for some j ≥ 4 then, by Lemma 3 (2), we have

s ≥ 1
2

[
3

(qm − 1)
(qm−1 − 1)

+ 1
]

,

which with q = 9 yields that s ≥ 15, as required. Thus we can assume
that S is not a j-secant set for j ≥ 4. This implies that x3 6= 0, using
the notation of Equation (1), since if not we would have, by Equation (2),
s = r

λ + 1, which is impossible.
If S is inside some hyperplane of D, then we have the result by the

induction hypothesis that s 6= 13, since S would give the support of a
codeword in the dual of the ternary code of the hyperplane’s design. So
suppose that xn 6= 0 where n < s, i.e. S meets a hyperplane H in n < s
points. Let T = H ∩ S and look at the codeword c restricted to H; call
it c∗. If c∗ is in the dual of the code of the ternary code of the design of
points and hyperplanes of H, then we contradict the induction hypothesis.
Thus the incidence vector of some hyperplane H1 of H does not have inner
product 0 with c∗, and so every hyperplane of D that contains H1 must
meet S again. There are 9 more hyperplanes, so we obtain s ≥ 9 + n, i.e.
n ≤ 4 if s = 13, and n ≤ 5 if s = 14. Either way, xn = 0 for n ≥ 6.
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Denote by Xn the number of lines of PGm(F9) meeting S in n points,
and suppose that s = 13. Then xn = 0 for n ≥ 5 and hence also Xt = 0
for t ≥ 4. We also have that x3 6= 0; if X3 = 0 then S is an arc and this is
not possible for s = 13 (since then s− 1 = r, which is too large for m ≥ 3).
Thus X3 6= 0, and there is a line ` meeting S in three points, a, b and c
say. Denote the remaining points of S by pi for i ∈ {1..10}; each must
be on a distinct hyperplane with `. Since S is the support of a word in
the dual code, the only possible arrangement of the field elements at the
coordinate positions corresponding to S is effectively +1 at a and b and −1
at all the other positions. We show that this cannot happen. Consider a
hyperplane containing {a, p1, p2}. It must contain another point, and the
only possibility is b, and hence c also, which is a contradiction, since xi = 0
for i ≥ 5. Thus we have shown that we cannot have s = 13. 2

An apparently non-contradictory possibility for a word of weight 14 is
one inside 3-space with the following properties, using the same notation
as in the last proposition, and taking m = 3: xi = 0 except for i = 0, 2, 3, 5
and x3 = 72, x5 = 22 and Xi = 0 except for i = 0, 1, 2, 4 and X4 = 1. We
have not been able to determine if such a set can be constructed. If it can,
then the minimum weight will be 14 for all m ≥ 3.
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