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Abstract. The geometric codes are the duals of the codes defined by the designs associated
with finite geometries. The latter are generalized Reed-Muller codes, but the geometric codes are,
in general, not. We obtain values for the minimum weight of these codes in the binary case, using
geometric constructions in the associated geometries, and the BCH bound from coding theory.
Using Hamada’s formula, we also show that the dimension of the dual of the code of a projective
geometry design is a polynomial function in the dimension of the geometry.

In fond memory of our friend and colleague Ed Assmus

1. Introduction

For any finite dimensional vector space V over a finite field Fq, the projective
geometry P(V ) and the affine geometry A(V ) provide combinatorial 2-designs by
taking the structures consisting of points and subspaces or flats of a fixed dimension.
The codes over Fp, the prime sub-field of Fq, are the well known Reed-Muller (for
q = 2) or generalized Reed-Muller codes; this was established in a series of papers
by Delsarte [7], [9], [10], Goethals [12] and MacWilliams [8] (see [2], Chapters 5
and 6, or [1], for more references). The dimensions of these codes can be computed
from various algorithms or formulas, and the minimum weight and the nature of
the minimum-weight vectors, in this special case when these codes are the codes of
designs from geometries, are also completely known: the minimum-weight vectors
are the scalar multiples of the incidence vectors of the blocks of the design, i.e. of
the flats or subspaces.

The situation regarding the duals of these codes is not as clear. These are the
so-called “geometric codes”(see [3], Chapter 2) and they are not generalized Reed-
Muller codes, in general, unless q is a prime. Furthermore, the minimum weight of
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these codes is also not generally known, although some bounds are given: see, for
example, [2], Chapter 5 for a summary of what is currently known.

In this paper we use the geometry of the projective space and some lower bounds
obtained by Delsarte [7] using the BCH bound to determine the minimum weight
when the order of the field is even. In particular we obtain

Theorem 1 The minimum weight of the dual of the binary code of the design of
points and r-subspaces of PGm(Fq) and that of the design of points and r-flats of
AGm(Fq), where q is even, 1 ≤ r < m, m ≥ 2, is (q + 2)qm−r−1.

We also obtain a simplification of Hamada’s well-known formula (see Section 4):

Theorem 2 Let q = pt and let D denote the design of points and r-dimensional
subspaces of the projective geometry PGm(Fq), where 0 < r < m. Then the p-rank
of D is given by

qm+1 − 1
q − 1

− h(m),

where, for any fixed value of r, h(m) is a polynomial in m of degree (q − 1)r.

The proof of Theorem 1 is in Section 3, and that of Theorem 2 is in Section 4.
We include also a short appendix showing the polynomials h(m) for some values of
r and q.

2. Background

Our notation and terminology for designs and codes will be standard and can be
found in [2], for example.

Notation will include PGm,r(Fq) to denote the design of points and r-dimensional
subspaces of the projective space PGm(Fq), i.e. a 2-(v, k, λ) design with v points,
k points per block, and any two points on exactly λ blocks, where

v =
qm+1 − 1

q − 1
, k =

qr+1 − 1
q − 1

, λ =
(qm−1 − 1) . . . (qm+1−r − 1)

(qr−1 − 1) . . . (q − 1)
.

Similarly, AGm,r(Fq) will denote the 2-design of points and r-flats (cosets of di-
mension r) in the affine geometry AGm(Fq).

For any design D, a set of points is called an (n1, n2, . . . , ns)-set if blocks of the
design meet the set in ni points for some i such that 1 ≤ i ≤ s, and if for each
i there exists at least one block meeting the set in ni points. The ni’s are the
intersection numbers for the set, and an ni-secant is a block meeting the set
in ni points. When the design has even order, and thus in particular in the case of
PGm,r(Fq) when q is even, a set of points is called a set of even type, or an even
set, if it is of type (n1, n2, . . . , ns) where all the ni are even. Elementary counting
shows that any set of even type will have even size. If the design is PGm,r(Fq)
where q is even, then a set that is an even set for r-subspaces (i.e. blocks) will be
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a set of even type for t-subspaces for t ≥ r. A hyperoval in a plane of even order
q is a set of q + 2 points such that every line of the plane meets the set in 0 or 2
points.

The code CF of the design D over the finite field F is the space spanned by the
incidence vectors of the blocks over F . We take F to be a prime field Fp; in the
case of the designs from finite geometries that we consider here, p will be the same
as the characteristic of the field over which the geometry is defined. If the point
set of D is denoted by P and the block set by B, and if Q is any subset of P, then
we will denote the incidence vector of Q by vQ. Thus CF =

〈
vB |B ∈ B

〉
, and

is a subspace of FP . For any code C, the dual or orthogonal code C⊥, is the
orthogonal under the standard inner product. If a linear code over a field of order
q is of length n, dimension k, and minimum weight d, then we write [n, k, d]q to
show this information. In the case where p = 2, so that the code is binary, any set
of points that is met evenly by the blocks of D will have incidence vector in the
binary code C⊥ orthogonal to the binary code C of the design. Thus the search
for sets of even type of smallest size will yield the minimum words of C⊥, and the
minimum weight. Even in the case of the finite geometry designs, this minimum
weight is not always known. However, notice that in the case q = 2 the codes of the
designs, and their dual codes, are the Reed-Muller codes, and all the questions we
ask here have well-known answers. Other cases are also well known, for example if
m = 2 and q is even. The known bounds in the general case are summed up in [2],
Theorem 5.7.9 and are given as follows:

Result 1 1. Let C be the p-ary code of the design PGm,r(Fq) where q = pt,
0 < r < m and p is prime. Then the minimum weight d⊥ of C⊥ satisfies

qm−r+1 − 1
q − 1

+ 1 ≤ d⊥ ≤ 2qm−r.

2. Let C be the p-ary code of the design AGm,r(Fq) where q = pt, 0 < r < m and
p is prime. Then the minimum weight d⊥ of C⊥ satisfies

(q + p)qm−r−1 ≤ d⊥ ≤ 2qm−r.

See also Blake and Mullin [3], Section 2.2, Delsarte, Goethals and MacWilliams
[8] or Delsarte [9], [7]. The lower bounds are deduced in [7] from the BCH bound
using the fact that the projective codes are cyclic and the affine codes are extended
cyclic. In fact the lower bound for the projective case can be improved to be the
same as that for the affine, as an induction argument, using the affine result, will
show: see Proposition 1 below. Note that when q = p is prime, the upper and lower
bounds coincide in this inequality.
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3. Minimal sets of even type

We first obtain the improvement to the lower bound for the projective case in
Result 1.

Proposition 1 Let C be the p-ary code of the design PGm,r(Fq) where q = pt,
0 < r < m and p is prime. Then the minimum weight d⊥ of C⊥ satisfies

(q + p)qm−r−1 ≤ d⊥ ≤ 2qm−r.

Proof: Use Result 1 (2) and induction on m. First notice that if r′ ≥ r then
Cp(PGm,r(Fq)) ⊇ Cp(PGm,r′(Fq)), and so Cp(PGm,r(Fq))⊥ ⊆ Cp(PGm,r′(Fq))⊥.
Let S be the support of a word w ∈ C⊥, where C = Cp(PGm,r(Fq)), and let
|S| = s. If there is a hyperplane that does not meet S then we can use Result 1 (2)
to deduce that s ≥ (q + p)qm−r−1. Thus we will assume that every hyperplane
meets S.

For both the induction step and the base we will need to show that if every
hyperplane meets S then the size of S will be larger than the stated minimum.
For this we need the following standard count: suppose hyperplanes of PGm(Fq)
meet S in {n1, n2, . . . , nk} points where n1 < n2 < . . . < nk, and suppose that xni

hyperplanes meet S in ni points. Counting gives

xn1 + xn2 + · · · =
qm+1 − 1

q − 1
,

n1xn1 + n2xn2 + · · · = s
qm − 1
q − 1

,

where |S| = s. Multiplying the first by n1 and subtracting from the second yields

s ≥ n1
qm+1 − 1
qm − 1

≥ n1q. (1)

Take first m = 2 and r = 1, and suppose that every line of PG2,1(Fq) meets S.
Then n1 ≥ 2 in Equation (1), and so s ≥ 2q ≥ q + p, as required. Now suppose we
have the result that the minimum weight of Cp(PGn,r(Fq))⊥ is at least (q+p)qn−r−1

for all dimensions n up to and including m− 1 and all r such that 1 ≤ r ≤ m− 2.
Again let S be the support of a word w in C⊥ for the code of the design PGm,r(Fq),
where 1 ≤ r ≤ m−1, and suppose that S is met by every hyperplane. Thus clearly
n1 ≥ 2. If r = m−1 then s ≥ 2q ≥ q+p by Equation (1), as required. If r < m−1,
by induction we have that n1 ≥ (q + p)q(m−1)−r−1 = (q + p)qm−2−r. Thus

s ≥ (q + p)qm−2−r qm+1 − 1
qm − 1

≥ (q + p)qm−1−r,

which completes the proof. 2

The following construction is basic to our determination of the minimum weight.
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Proposition 2 Let D = PGm,1(Fq) where q = 2t for t ≥ 1, i.e. D is the 2-
( qm+1−1

q−1 , q+1, 1) design of points and lines in P = PGm(Fq). Let H be a hyperplane
in P, and let S be a set of even type in H, i.e. S is a set of points such that every
line of H meets S evenly. Let V be a point of P that is not in H. Then the set of
points

S∗ = {X|X on a line V Y for Y on S} − {V }

is a set of even type for D, of size q|S|.

Proof: We need to show that every line L of P meets S∗ evenly. If L is in H then
this is clear, since S is of even type. If L is not in H then L∩H = {X}, i.e. a single
point.

If X ∈ S and L = V X then L meets S∗ in q points and we are done. If L 6= V X
then let Π be the plane containing L and V . Since V 6∈ H, Π is not in H and thus
meets it in a line ` containing X. The line ` meets S evenly in a set T , say, and
for each Q ∈ T , V Q is in Π and thus meets L. Thus L has precisely |T | points of
S∗, and no more, and thus L meets S∗ evenly.

If X 6∈ S and V is not on L then again look at the plane Π containing L and
V , and let Π meet H in the line `. As in the last case, ` meets S evenly in a set
T which is possible empty, and the lines V Y for Y ∈ T will meet L in an even
number of points. If V is on L then clearly L does not meet S∗ at all. 2

Note. For any S, the set S∗ has q amongst its intersection numbers.

Corollary 1 The designs PGm,1(Fq) and AGm,1(Fq) for q even, m ≥ 2, have
even sets of size (q + 2)qm−2 of type (0, 2, q).

Proof: In the projective design PGm,1(Fq), starting with a hyperoval in the plane,
the set of size (q + 2)qm−2 can be built up in steps as described in Proposition 2.
That lines meet the set in 0, 2, or q points is clear from the construction.

To show that AGm,1(Fq) also has such sets, we need only show that there is
some hyperplane in PGm(Fq) that does not meet the even set of size qm−2(q + 2)
constructed as in Proposition 2 in PGm(Fq). We show this inductively: it is clear
for m = 2, choosing simply a line external to the hyperoval. Suppose it is true for
m− 1 and let S∗ be an even set from the construction of Proposition 2, and S the
set in the hyperplane H. By the induction hypothesis, let H′ by a hyperplane of H
that does not meet S. Then the hyperplane of PGm(Fq) that is spanned by H′ and
the point V of the proposition will clearly not meet S∗. The intersection numbers
are thus 0, 2, and q. 2

Before completing the proof of Theorem 1, we show that the even sets constructed
in Corollary 1 are unique when m = 3. In this case, when m = 3, the even set is a
hyperoval cone with its vertex deleted.

Proposition 3 For q ≥ 4 even, any even set in PG3,1(Fq) of type (0, 2, q) and of
size q(q + 2) is a hyperoval cone with its vertex deleted.
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Proof: Let S be such a set. We first show that there is exactly one q-secant on each
point of S, so that the q-secants partition S. Thus letting vj denote the number of
j-secants on a point of S, we have

v2 + vq = q2 + q + 1
v2 + (q − 1)vq = q2 + 2q − 1,

so that vq = 1, as asserted.
A similar count shows that the only sets of points in the projective plane PG2(Fq)

with intersection numbers from the set {0, 2, q} and at most one q-secant on each
point are the hyperoval (of size (q+2) and type (0, 2)) and the 2q-set, of type (0, 2, q),
consisting of the points on two lines from which the point of intersection has been
removed. Thus planes meet S in a hyperoval, a 2q-set of the type described, or not
at all.

Let L be a q-secant of S and let wj be the number of j-planes on L. Then

wq+2 + w2q = q + 1
(q + 2− q)wq+2 + (2q − q)w2q = q(q + 2)− q,

so that (q − 2)w2q = q2 − q − 2 = (q − 2)(q + 1), i.e. w2q = q + 1 and wq+2 = 0.
Thus all planes on the q-secant L are 2q-planes, and, clearly, the lines other than
L forming the 2q-sets on these planes all meet L in the same point, i.e. the unique
point of L not in S.

Next take a 2-secant L′ of S and look at the planes on it. This yields

wq+2 + w2q = q + 1
qwq+2 + (2q − 2)w2q = q(q + 2)− 2,

so that w2q = 1 and wq+2 = q. Thus the unique 2q-plane on L′ contains two lines
that meet off S, and, by the above, they meet at the deleted vertex of a hyperoval
cone. 2

We can now complete the proof of Theorem 1:

Proof of Theorem 1: Notice that if S is an even set for the design PGm,r(Fq),
then S will be an even set for the design PGm,s(Fq) for any s ≥ r. Furthermore,
S will be an even set for any PGm+t,r+t(Fq) containing the PGm(Fq), for t ≥ 1.
If there is a hyperplane H of PGm(Fq) that does not meet S, then S will be an
even set for the design AGm,r(Fq) obtained by deleting the hyperplane H from the
projective space.

We have shown that the even set in PGm,1(Fq) of size (q + 2)qm−2 constructed
in Corollary 1 is not met by some hyperplanes, and thus it is an even set for some
AGm,1(Fq). To obtain an even set of size (q + 2)qm−r−1 in PGm,r(Fq), we take a
subspace W of dimension m − r + 1 in our projective geometry of dimension m,
and construct an even set for PGm−r+1,1(Fq) of size (q + 2)qm−r−1, according to
Corollary 1. That this is an even set for PGm,r(Fq) follows by considering that
any subspace U of dimension r must meet W in at least a line, by the dimension
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equation. Since a hyperplane can be constructed that does not meet this set, we
also get an even set of this size for AGm,r(Fq).

Thus sets of the required size exist, and that they are minimal follows from
Result 1 (2) and Proposition 1. 2

Note. 1. The theorem gives an algorithm to construct an even set of minimal
size in the design PGm,r(Fq) for q even: start with a hyperoval in a plane; this is
an even set for the design of hyperplanes. Now choose a point outside of the plane
as described in Corollary 1 and obtain an even set of size (q + 2)q for the design
of (m− 2)-dimensional spaces. Continue this process for m− r steps to obtain an
even set of size (q + 2)qm−r−1 for the design PGm,r(Fq).
2. The regular hyperovals in the projective planes, giving vectors of weight q + 2,
actually generate the dual code in the case of m = 2: the orbit of a regular hyperoval
under a Singer cycle will give a spanning set, as was proved by Pott [21]. In fact,
we believe a similar argument will prove that the orbit of a regular hyperoval under
a Singer cycle on PGm,m−1(Fq) will give a spanning set for the dual binary code
in this general case.

Corollary 2 The even set of Corollary 1 of size (q + 2)qm−2 in PGm,m−1(Fq),
q even, m ≥ 2, is a set of type (0, 2) for m = 2, and of type (0, (q +2)qm−3, 2qm−2)
for m ≥ 3.

Proof: We prove this by induction on m. For m = 2 it is clear, but we need to
start the induction at m = 3. Let H be a hyperplane in PG3(Fq) that contains a
hyperoval S of our set S∗, and let V be the vertex point of the construction. Let
H be any hyperplane (plane). If H = H then the result is clear. If H 6= H, let
L = H ∩ H. Then L meet S in 0 or 2 points. If V ∈ H then H meets S∗ in 2q
or 0 points; if V 6∈ H, then H meets S∗ in q + 2 points, since H meets every line
through V exactly once. This proves the result for m = 3.

Suppose now that it is true for m − 1. With the same notation as above, H is
a hyperplane in PGm(Fq). If H = H then H meets S∗ in S, i.e. in (q + 2)qm−3

points. Otherwise H meets S in t points, where t ∈ {0, (q + 2)qm−4, 2qm−3}, by
the induction hypothesis. If V ∈ H then H meets S∗ in qt points; if V 6∈ H then
H meets each line through V exactly once, in distinct points, and thus it meets S∗
in (q + 2)qm−3 points. This gives the result. 2

Note. 1. For q ≥ 4 a power of 2, by forming a matrix whose columns are the
(q+2)qm−2 vectors of length m+1 corresponding to the points of the even set, and
using this as the generator matrix of a q-ary code, Corollary 2 provides us with a
construction of linear q-ary codes of length (q+2)qm−2, dimension m+1, minimum
distance qm−1, and just three non-zero weights, i.e. {qm−1, (q− 1)(q +2)qm−3, (q +
2)qm−2}. Thus we have, for m ≥ 3,

[(q + 2)qm−2,m + 1, qm−1]q
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three-weight codes. We can give the weight enumerator for such a code, since we
can solve the three equations we get from counting: denoting by xni

the number
of hyperplanes that meet the even set S in ni points, for i = 0, 1, 2, where n0 = 0,
n1 = (q + 2)qm−3 and n2 = 2qm−2, the standard equations

xn0 + xn1 + xn2 =
qm+1 − 1

q − 1
,

n1xn1 + n2xn2 = s
qm − 1
q − 1

,

n1(n1 − 1)xn1 + n2(n2 − 1)xn2 = s(s− 1)
qm−1 − 1

q − 1

yield

xn0 =
1
2
q(q − 1), xn1 = q3 qm−2 − 1

q − 1
xn2 =

1
2
(q + 1)(q + 2).

Thus the weight distribution is given by the table:

Weight 0 qm−1 (q − 1)(q + 2)qm−3 (q + 2)qm−2

Number of words 1 1
2
(q2 − 1)(q + 2) q3(qm−2 − 1) 1

2
q(q − 1)2

2. Corollary 2 can be generalized: using the notation of Proposition 2, suppose
that S has type (n1, n2, . . . , nt) with respect to hyperplanes of H. Then S∗ has
intersection numbers {s, qn1, qn2, . . . , qnt} with respect to hyperplanes, where |S| =
s. In particular, starting with an even set of size s in the plane PG2(Fq), and
intersection numbers (n1, . . . , nt) with respect to lines, using the construction of
Proposition 2 recursively, we obtain S∗ with intersection numbers for hyperplanes
{qm−3s, qm−2n1, . . . , q

m−2nt}. Thus we have an (m + 1)-dimensional code with
t + 1 non-zero weights, length qm−2s and minimum weight qm−2(s − nt). Notice,
of course, that here s ≥ q + 2 and nt ≤ q, so that s− nt ≥ 2.
3. Even sets for the designs PGm,1(F4), and parameters for the associated binary
codes, have been extensively studied: see [16], [22], [15], [18], [19], [20]. In particular,
the formula we prove in Proposition 4 as a special case of Theorem 2 was obtained
by Sherman [22], Corollary 2. We thank J. W. P. Hirschfeld for pointing out these
references to us.

4. Dimension formulas

The dimension of any of these codes from finite geometries can be computed from
the general formula of Hamada [13], [14] (see [2], Theorem 5.8.1), or by counting
the cardinality of a set of integers that satisfy certain conditions on their q-weight,
as given in [2], Theorem 5.7.9. See also Brouwer and Wilbrink [5], Theorem 4.8.
We will use Hamada’s formula:
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Result 2 (Hamada [13], [14]) Let q = pt and let D denote the design of points
and r-dimensional subspaces of the projective geometry PGm(Fq), where 0 ≤ r < m.
Then the p-rank of D is given by

∑
s0

. . .
∑
st−1

t−1∏
j=0

L(sj+1,sj)∑
i=0

(−1)i

(
m + 1

i

)(
m + sj+1p− sj − ip

m

)
,

where st = s0 and summations are taken over all integers sj (for j = 0, 1, . . . , t−1)
such that

r + 1 ≤ sj ≤ m + 1, and 0 ≤ sj+1p− sj ≤ (m + 1)(p− 1),

and
L(sj+1, sj) = bsj+1p− sj

p
c,

i.e. the greatest integer not exceeding (sj+1p− sj)/p, i.e. the floor function.

Notice that the formula for r = 0 gives simply the number of points of the
geometry. We thank H. N. Ward for pointing out to us that this observation can
be used in the proofs of Proposition 4 and Theorem 2 to considerably shorten the
proofs.

For particular parameter sets there are more concise formulas for the p-rank: see
[2], Chapter 5 or [1] for a summary of these, and also [6], [11], [17]. It turns out
that Hamada’s formula can be simplified in the general case, and used to construct
a polynomial function in m for the dimension of the dual codes.

Since the case q = 4 and r = 1 is particularly simple, we will first give a proof of
this before turning to the general formula, for which the results are more technical.

4.1. Formulas for q = 4

Throughout this section we will work under the convention that a sum
∑

s is the
sum over all integer values of s for which the summands are non-zero: we will only
place conditions on the limits of the summands if there are some non-zero terms
which we wish to discard. Notation will be as in Hamada’s theorem, Result 2.

Proposition 4 The dimension of the dual of the binary code of the design
PGm,1(F4) for m ≥ 2 is 1

3 (m + 1)(m2 + 2m + 3).

Proof: The sum under consideration is∑
s0

∑
s1

1∏
j=0

∑
i

(−1)i

(
m + 1

i

)(
m + 2sj+1 − sj − 2i

m

)
together with restrictions which are equivalent to

• 2 ≤ sj ≤ m + 1;
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• the entries in the binomial coefficients are all non-negative;

• 2sj+1 − sj − 2i is non-negative.

Then we can rewrite the sum as

∑
s0

∑
s1

1∏
j=0

∑
i

(−1)i

(
m + 1

i

)(
m + 2sj+1 − sj − 2i

2sj+1 − sj − 2i

)

=
∑
s0

∑
s1

1∏
j=0

∑
i

(−1)i

(
m + 1

i

)
(−1)2sj+1−sj−2i

(
−(m + 1)

2sj+1 − sj − 2i

)

=
∑
s0≥2

∑
s1≥2

1∏
j=0

(
m + 1

2sj+1 − sj

)
by an application of Vandermonde’s identity (with negative upper binomial coef-
ficient). Here all the other restrictions are implied by the standard conventions
about binomial coefficients.

Now, this sum is∑
s0

∑
s1

(
m + 1

2s1 − s0

)(
m + 1

2s0 − s1

)
−

(
m + 1

0

)(
m + 1

0

)

−
(

m + 1
1

)(
m + 1

1

)
−

(
m + 1

3

)(
m + 1

0

)
−

(
m + 1

0

)(
m + 1

3

)
i.e. we consider the full sum with no restrictions on the sj ’s and just subtract off
the terms which have a non-zero contribution: those for which 0 ≤ sj ≤ 2 and
sj+1 ≤ 2sj , and so on.

We can evaluate the full sum by setting u = 2s1 − s0 so that s0 = 2s1 − u and
the sum becomes∑

s0

∑
s1

(
m + 1

2s1 − s0

)(
m + 1

2s0 − s1

)
=

∑
u

∑
s1

(
m + 1

u

)(
m + 1

3s1 − 2u

)
.

Observe now that the inner sum (which is by convention over all integer values
of s1) is a trisected sum:

∑
u

(
m + 1

u

) ∑
s1

(
m + 1

3s1 − 2u

)
.

The standard method for handling trisections is to use a cube root of unity, ω, in
any extension field of the rationals. Recall that if we take a generating function
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f(x) =
∑

akxk then
∑

k a2kx2k = 1
2 (f(x) + f(−x)). Similarly,∑

k

a3kx3k =
1
3
(f(x) + f(ωx) + f(ω2x)),

∑
k

a3k+1x
3k+1 =

1
3
(f(x) + ω−1f(ωx) + ω−2f(ω2x)),

∑
k

a3k+2x
3k+2 =

1
3
(f(x) + ω−2f(ωx) + ω−4f(ω2x)),

i.e. ∑
k

a3k+ux3k+u =
1
3
(f(x) + ω−uf(ωx) + ω−2uf(ω2x)).

Thus with f(x) = (1 + x)m+1,∑
s1

(
m + 1

3s1 − 2u

)
=

1
3
(2m+1 + ω−u(1 + ω)m+1 + ω−2u(1 + ω2)m+1)

=
1
3
(2m+1 + (−1)m+1(ωm+u+1 + ω2(m+u+1))).

Therefore the full sum is∑
s0

∑
s1

(
m + 1

2s1 − s0

)(
m + 1

2s0 − s1

)

=
∑

u

(
m + 1

u

)
1
3
(2m+1 + (−1)m+1(ωm+u+1 + ω2(m+u+1)))

=
4m+1

3
+ (−1)m+1 1

3
((1 + ω)m+1ωm+1 + (1 + ω2)m+1ω2(m+1))

=
4m+1 + 2

3
.

Hence the dimension in this case is

4m+1 + 2
3

− 1− (m + 1)2 − 2
(

m + 1
3

)
=

4m+1 − 1
3

− 1
3
(m + 1)(m2 + 2m + 3).

2

Corollary 3 The dimension of the dual of the binary code of the design
AGm,1(F4) for m ≥ 2 is m2 + m + 1.

Proof: Use the fact that, for any m, r such that 1 ≤ r ≤ m− 1, and q = pt where
p is a prime,
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dim(Cp(AGm,r(Fq))) = dim(Cp(PGm,r(Fq)))− dim(Cp(PGm−1,r(Fq)))

(see [2], Lemma 5.7.1 for a proof of this statement), and the formula we have just
obtained. 2

We observe now that the same techniques work for any value of the parameter r,
where r is the dimension of the subspaces under consideration: the only change is
that we have to subtract off all the terms

(
m+1

2s1−s0

)(
m+1

2s0−s1

)
for which at least one of

the s′js is at most r. For example, the term subtracted for r = 2 is(
m + 1

0

)2

+
(

m + 1
1

)2

+ 2
(

m + 1
3

)(
m + 1

0

)
+

(
m + 1

2

)2

+ 2
(

m + 1
4

)(
m + 1

1

)
+ 2

(
m + 1

6

)(
m + 1

0

)
,

corresponding to (s0, s1) being in the set of pairs

{(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (2, 4), (4, 2)}.

This gives the formula for the dimension of the binary code of the design PGm,2(F4):

4m+1 − 1
3

− 1
360

(m + 1)(m + 2)(m4 + 18m3 + 29m2 + 72m + 180).

4.2. The general Hamada formula

We now consider the situation for general values of the main parameters m, r, p, t.
Clearly these come into play at different points of the analysis: the parameter p
being 2 was essential in the evaluation of the sum over i at the begining, and the
parameter t being 2 enabled us to compute the sum

∑
s0

∑
s1

(
m+1

2s1−s0

)(
m+1

2s0−s1

)
. If

t ≥ 2, then we will have a larger product to evaluate. Furthermore, we will have
more terms to subtract off from the full sum to compute the sum restricted to
sj ≥ r + 1.

Proof of Theorem 2: Write

Nr =
∑

s ≥ r

t∏
j=1

∑
i

(−1)i(−1)psj+1−sj−pi

(
m + 1

i

)(
−(m + 1)

psj+1 − sj − pi

)
,

where s denotes the t-tuple (s1, s2, . . . , st) in Hamada’s formula. If we define

f(x) =
(1− xp)m+1

(1− x)m+1
,
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then we obtain∑
i

(−1)i(−1)u−pi

(
m + 1

i

)(
−(m + 1)

u− pi

)
= [xu] f(x),

where the right-hand side denotes the coefficient of xu in f(x). Note that f(x),
although presented as a rational function, is a polynomial in x of degree (p−1)(m+
1), and f(1) = pm+1. Thus

Nr =
∑
s≥r

t∏
j=1

[
x

psj+1−sj

j

]
f(xj).

We now change variables to allow us to compute N0. (Note that, as pointed out
by H. N. Ward, this value can be obtained from Hamada’s formula directly, but we
include the proof here as it serves a useful purpose in itself.) Define uj = psj+1−sj

for j = 1, . . . , t− 1, so that

ps1 − st = p2s2 − pu1 − st

...
= ptst − pt−1ut−1 − pt−2ut−2 − . . .− p2u2 − pu1 − st

= (pt − 1)st − pt−1ut−1 − pt−2ut−2 − . . .− p2u2 − pu1.

Thus

N0 =
∑

u ≥ 0

∑
st≥0

t−1∏
j=1

[
x

uj

j

]
f(xj)

 [
x

(pt−1)st−pt−1ut−1−...−pu1
t

]
f(xt)

=
∑

u ≥ 0

t−1∏
j=1

[
x

uj

j

]
f(xj)

 ∑
st≥0

[
x

(pt−1)st−pt−1ut−1−...−pu1
t

]
f(xt).

Now let g(x) =
∑∞

i=0 aix
i. Then, with b = q − 1 and ω a primitive (q − 1)th root

of unity, for any integer a

∑
i≡a(mod b)

aix
i =

1
b

b−1∑
l=0

ω−lag(ωlx),

so that∑
st≥0

[
x

(pt−1)st−pt−1ut−1−...−pu1
t

]
f(xt)

=
1

pt − 1

pt−2∑
l=0

ωl(pu1+p2u2+...+pt−1ut−1)f(ωl)
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and thus

N0 =
1

pt − 1

pt−2∑
l=0

∑
u≥ 0

t−1∏
j=1

[
x

uj

j

]
ωlpjuj f(xj)

 f(ωl)

=
1

pt − 1

pt−2∑
l=0

f(ωl)
t−1∏
j=1

∑
u≥ 0

[
x

uj

j

]
ωlpjuj f(xj)

=
1

pt − 1

pt−2∑
l=0

f(ωl)
t−1∏
j=1

f(ωlpj

)

=
1

pt − 1

pt−2∑
l=0

t∏
j=1

f(ωlpj

),

since ωpt

= ω.
If l = 0 then f(ωlpj

) = pm+1. Further, if 1 ≤ l ≤ pt − 2, then
∏t

j=1 f(ωlpj

) = 1,
as is easily seen by writing out terms: the numerators and denominators cancel
cyclically. Hence

N0 =
pt(m+1) + pt − 2

pt − 1
=

pt(m+1) − 1
pt − 1

+ 1.

Finally, to determine Nr+1, which is the dimension of the code arising from the
r-dimensional subspaces, we need to subtract off all terms in the original sum which
have some sj ≤ r. There are only finitely many of these (a priori upper bounds
are easy to obtain on their number). For any fixed p, r, t, these terms are easily
computed: they contribute a polynomial amount to the sum, and thus

Nr+1 = N0 − g(m) =
pt(m+1) − 1

pt − 1
+ 1− g(m) (2)

where g(m) = h(m)+1 is a polynomial of degree (q−1)r. The proof of Theorem 2,
as stated in the introduction, is now complete. 2

Note. To compute the polynomial g(m) in any particular case we need to evaluate

∑
s

t∏
j=1

∑
i

(−1)i

(
m + 1

i

)(
m + psj+1 − sj − pi

m

)

over s where at least one of the si’s satisfies si ≤ r. Notice that si = 0 only occurs
if all the sj ’s are 0, and the term contributed is the term “1” in Equation (2).
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5. Appendix

We include here some computations of the polynomials h(m) from Theorem 2.
These, and further polynomials, can be found at the web site
http://www.math.clemson.edu/faculty/Key/poly.ps or Key/poly1 for a text file
with further polynomials. All computations related to this work were done with
Magma [4] or Maple.

In each case the polynomial given is the value of the p-rank of the dual code of
the design of point and r-dimensional subspaces over Fq, where q = pt is a power
of the prime p, in the projective space of dimension m. The degree is (q − 1)r and
the coefficient of m(q−1)r is t

((q−1)r)! .

q = 4, r = 2

2
6!

(m + 2)(m + 1)(m4 + 18m3 + 29m2 + 72m + 180)

q = 4, r = 3

2
9!

(m+1)(m8+44m7+826m6+1064m5+9289m4+25676m3+85644m2+149616m+181440)

q = 4, r = 4

2
12!

(m+2)(m+1)(m10+75m9+2490m8+37590m7−164247m6+1245795m5+167660m4+
8592060m3 + 26605296m2 + 43346880m + 119750400)

q = 4, r = 5

2
15!

(m + 1)(m14 + 119m13 + 6461m12 + 181909m11 + 2735733m10 − 27390363m9 +
226658003m8 − 287580293m7 + 2393897506m6 + 5448887444m5 + 35100765336m4 +
92455219584m3 + 296459386560m2 + 548983008000m + 653837184000)

q = 4, r = 6

2
18!

(m + 2)(m + 1)(m16 + 168m15 + 13060m14 + 554736m13 + 13436374m12 +
165307968m11−5539922740m10+73291099728m9−438573851551m8+2073529633560m7−
4530978319000m6 + 15864574614336m5 + 12967596594576m4 + 90381188306304m3 +
383263652954880m2 + 567413363865600m + 1600593426432000)

q = 8, r = 1

3
7!

(m + 1)(m6 + 27m5 + 295m4 + 825m3 + 1744m2 + 2148m + 1680)

q = 8, r = 2

3
14!

(m + 2)(m + 1)(m12 + 102m11 + 4697m10 + 129030m9 + 2353263m8 + 29994426m7 +
213181331m6 + 528949410m5 + 1498825636m4 + 4977145272m3 + 8664003072m2 +
13144844160m + 14529715200)
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q = 8, r = 3

3
21!

(m + 1)(m20 + 230m19 + 24795m18 + 1664970m17 + 78056826m16 + 2714110860m15 +
72575557990m14 + 1519524165140m13 + 24975789135141m12 + 296234479265790m11 +
2094571157806335m10 + 3092495888499810m9 + 37937916310602736m8 +
124817683908495920m7 + 552488014222165680m6 + 1609891392776482080m5 +
4701785318691175296m4 + 10318877740334707200m3 + 19034689212941875200m2 +
23220102048933888000m + 17030314057236480000)

q = 9, r = 1

2
8!

(m + 2)(m + 1)(m6 + 33m5 + 445m4 + 3135m3 + 7114m2 + 9432m + 10080)

q = 9, r = 2

2
16!

(m + 1)(m15 + 135m14 + 8365m13 + 315315m12 + 8078707m11 +
148873725m10 +2036157695m9 +21021002145m8 +143137602608m7 +538812794520m6 +
1275930459440m5 + 3608050577040m4 + 7656330893184m3 + 13485570405120m2 +
15114532608000m + 10461394944000)

q = 9, r = 3

2
16!

(m + 3)(m + 2)(m + 1)(m21 + 294m20 + 40775m19 + 3547110m18 + 217077546m17 +
9935114364m16 + 352888691950m15 + 9963304105020m14 + 226720656078581m13 +
4175171164790094m12 + 61915308721874475m11 + 730273881191085630m10 +
6125341298104500496m9 + 25536649010991259344m8 + 26885942701524930800m7 +
424257484869193513440m6+1741099397685570389376m5+3157857514019742395904m4+
12683891387466885888000m3 + 25475132724320072908800m2 +
34014467173874761728000m + 51704033477769953280000)

q = 16, r = 1

4
15!

(m + 1)(m14 + 119m13 + 6461m12 + 211939m11 + 4687683m10 + 73870797m9 +
854224943m8 +7093943857m7 +40012868896m6 +123817477784m5 +293768734896m4 +
511468133904m3 + 689704398720m2 + 621631584000m + 326918592000)

q = 25, r = 1

2
24!

(m + 4)(m + 3)(m + 2)(m + 1)(m20 + 290m19 + 39615m18 + 3388650m17 +
203522946m16 + 9121022580m15 +
316404601630m14 +8697685698500m13 +192374726145381m12 +3456380926339770m11 +
50707508702323395m10 + 608324168861056050m9 + 5955504667302749896m8 +
47306207576243088560m7 + 301807600055278941360m6 + 1522207900529046496800m5 +
5386524779294396971776m4 + 11761978590406197388800m3 +
15849008498187131904000m2+16828581707597721600000m+12926008369442488320000)
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