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Abstract

By finding explicit PD-sets we show that permutation decoding can be used for the binary code
obtained from an adjacency matrix of the triangular graégh) for anyn > 5.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

For anyn the triangular graphr (n) is defined to be the linergph of the complete
graphKp. It is astrongly regular graph on = (rz‘) vertices, i.e. on the pairs of lettefis j}
wherei, j € {1,...,n}. The binary codes formed fronne span of adjacency matrices
of triangular graphs have been examined by ToncH&y p. 171] and Haemers et al.

[7, Theorem 4.1] (see alsdl[ 2, 4, 5]). Note that the dimension and weight enumerator
are easily determined. Here we examine the codes and their duals further, and in particular
show how he casen = 6 distinguishes itself. We proveéP¢oposition 3.4that S, is the

full automorphism group of the code far> 5 except in the casa = 6. We also look at

the question of minimum-weiglgenerators for the code, and for its dual, and use these to
obtain explicit permutation-decoding sets for the code:

Theorem 1.1. Let 7 denote the subset
P]_:{lvn}a P2: {Zvn}a"'v Pnflz {n_ lvn}

of vertices of the triangular graph T (n) wheren > 5, and let C denote a binary code of
T (n) with Z in thefirst n — 1 positions. Then
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(1) Cisa[(3).n—1,n— 1], codefor n odd and, with Z asthe information positions,
S={lg}u{i,m|1l<i=<n-1}

isa PD-set for C of n elementsin &;
(2) Cisa[(3).n—2.2(n—1)], code for n even, and with Z excluding P,_; as the
information positions,

S={lglu{i,m|1<i<n-1)
U{lG,n=D(.m*F | 1<i,j<n-2
isa PD-set for C of n2 — 2n + 2 dlementsin S,.

The code formed by the span of the acincy matrix is also the code of the 1-
((). 2(n = 2), 2(n — 2)) design obtained by taking the rows of the adjacency matrix as
the incidence vectorsfdhe blocks; the automorphism group of this design will contain
the aubmorphism group of the graph, the latter of which is easily seen & b8imilarly,
the aubmorphism group of the code will contafh. However forn = 6 thegroup of the
design and code is larger than the group of the gr&g) &nd we will use the words of
weight-3 in thedual code to explain this: séeemma 3.2andProposition 3.4

In Section 2we give the necessary definitions and backgroundetion 3we prove
Proposition 3.4and a number of lemmas concerning the codes, and finallyeation 4
we proveTheorem 1.1

2. Background and ter minology

An incidence structureD = (P, B, ), with point setP, block set3 and incidenc&
is at-(v, k, 1) design, if|P| = v, everyblock B € B is incident with preciselk points,
and everyt distinct points are together incident with preciseélplocks. The design is
symmetricif it has the sam@&umber of points and blocks.

The code Cg of the design D over the firite field F is the space smned by the
incidence vectors of the blocks ovét. If the point set of D is denoted byP and the
block set by, and if Q is any sibset of P, then we vill denote the incidence vector of
Q by v<. ThusCr = (vB | B € B), and is a sbspace of 7, the full vector space of
functions fromP to F.

All our codes will bdinear codes, i.e. subspaces of the ambient vector space. If a code
C over afieldof orderq is of lengthn, dimensiork, and mhimum weightd, then we write
[n, k, d]q to show this information. Agenerator matrix for the code is & x n matix
made up of a basis fo€. Thedual or orthogonal codeC~ is the athogonal under the
standard inner produdt ), i.e.C+ = {v € F" | (v,c) = O forallc € C}. A check (or
parity-check) matrix for C is a generator matrixd for C*; the syndrome of a vector
y € F"is Hy'. A codeC is self-orthogonal if C € C' and isself-dual if C = C*.

If cis a codeword then thaupport of c is the set of non-zero coordinate positionscof

A constant vector in a odeC overF is one for which all the coordinate entries are either
0 or take a constant non-zero valae F. Theall-one vector will be denoted byy, and is

the constat vector of weight the length of the code and all entries equal to 1. Two linear
codes of the same length and over the same fieldsaneor phic if they can beobtained
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from one another by permuting the coordimpositons. Any code is isomorphic to a code
with generator matrix in so-calleddandard form, i.e. the form[lx | A]; a check matrix
then is given by[—AT | In_x]. The firstk coordinates are thimfor mation symbols and
the lastn — k coordinates are theneck symbols. An automorphism of a codeC is an
isonmorphism fromC to C. The automagohism group will be denoted by A(E). Any
automorphism clearly preserves each weight clags. of

Terminology for graphs is standard: the graphs’ = (V, E) with vertex setV and
edge sek, are undirected and thealency of a vertex is the number of edges containing
the vertex. A graph isegular if all the vertices have the same valency; a regular graph is
strongly regular of type(n, k, A, w) if it hasn vertices, valenc¥, and if any two adjacent
vertices are together adjacentitwertices, while any two non-gdcent vertices are together
adjacent tqu vertices. Thdine graph of a graphl” = (V, E) is the graph™ = (E, V)
wheree and f are adjacent id™ if eand f share a vertex id’. Thecomplete graph K,
onn vertices has foE the set of all 2-subsets &f. Theline grgph of K, is thetriangular
graph T(n), and it is strongly regular of typé(3), 2(n — 2), n — 2, 4).

An alternative way to approach the designs, graphs and codes that we will be looking
at is through the primitive rank-3 action of the simple alternating graggfor n > 5, on
the 2-sibsets 212, of a setf? of sizen. Theorbits of the gbilizer in A, of a 2-subset
P = {a, b} consist of{P} and one of length @ — 2) and the other of Iengtlﬁ”gz).
We take agoints the 2-subsets d? and for eachP € 2{? we define ablock P to be
{(Qe 2% | PNQ #3, Q+# P} ie.the menbers of the orbit of length(® — 2).
The 2-subset® and blocksP form a symmetric 1{3), 2(n — 2), 2(n — 2)) design whose
binary code we will be examining.

Permutation decoding was first developed by MacWilliams §]. The method is
described fully in MacWilliams and Sloand (, Chapter 15] and Huffman§, Sedion 8].
A PD-set for at-error-correcting cod€ is a setS of automorphisms o€ which is such
that every possiblereor vector of weights < t can be moved by some member ®f
to another vector where the non-zero entries have been moved out of the information
positions. In other words, evettyset of coordinate positions is moved by at least one
member ofS to at-set consisting only of check-position coordinates. That such a set,
should it exist, will fully use the error-correction potential of the code follows easily and is
proved in Huffman §, Theorem 8.1]. Furthermore, there is a bound on the minimum size
that the setS may have, due to Gordo®][(using a reult of Sclohheim [L1]), and quoted
and poved in B, Theorem 8.2]:

Result 2.1. If S is a PD-set for a-error-correctingn, k, d]q codeC, andr = n —k, then

R EE R

Note that this is simply the smallest possible size of a PD-set and computations indicate
that this bound is only met for some rather small cases.

The algorithm for permutation decoding is as follows: givert-arror-correcting
[n, k, d]q codeC with generator matrixc = [Ix | A] and check matribH = [AT | In—x],
for someA, the firstk coordinate positions correspond to the information symbols and any
vectorv of lengthk is encoded asG. Supposex is sent andy is received and at most
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errors occur. LeS = {gs, ..., gs} be the PD-set. Compute the weights of the syndromes
H(yg)T fori = 1,...,suntl ani is found such that the weight isor less. Find the
codewordc that hashe same information symbols gg; and decodg ascgi‘l.

3. Thebinary codes

Let n be any integer and I (n) denote the triangular graph with vertex g&the (2)
2-subsets of a se® of sizen. The 1-designD = (P, B) will have point setP and for
each point (2-subsety, b} € P,a # b, a, b € (2, a block, which we denote b{a, b}, is
defined inthe following way:

{a.b} ={{a,x},{b.y} Ix#a,b;y+#a, b}
Thus
B={{a,b}|a,be ,a#Db}.

The incidence vector of the blodhk, b} is then

vlabl — Z plaxt Z oy} (1)
X#£a y#b
where, as usual with the notation fror],[the incidence vector of the subs¥tC P is
denoted bywX. Sinceour points here are actually pairs of elements fr@imote that we
are using the notationt®?} instead ofv!®P!, as discssed i [1]. Further, ifa, b, c are
distinct points inf2, we write

v{a,b,c} — v{a,b} + U{b,c} + v{a,c} 2)

to denote this vector of weigl in the ambient space. Notice also that for any distinct
a,b,c,

p@Bl 4 yfac _ bl 3)

To avoid trvial cases we will tak& > 5. Then in all the followingC will denote the
binary code ofP and of T (n), andC will be its dual code.

Wefirstquote from 7] the falowing result, which is easy to obtain, as is the full weight
enumerator:

Result 3.1. If nis odd, thenC is a[(3).n—1,n— 1], code and ifn is even,C is a
[(5).n—2,2(n - 2)], code.

Lemma 3.2. The minimumweight of C for n > 5is 3 and any word of the form v{a--c},
wherea, b, c aredistinct, isin CL. If n # 6, these are all the words of weight 3in C+, and
the number of words of weight 3 is thus (g) If n = 6, further words of weight 3 have the
form v{@b} 4 yicdt 4 yie Tl where 2 = {a, b, ¢, d, e, f}; in this case there are 35 words
of weight 3.

Proof. Firstcheckthat the minimum weight cannot be smaller: supposey (@b} 4 yic.d}
wherea, b, c, d are all distinct. Ife € 2 is distinct from all thes (suchan element will



J.D. Key et al. / European Journal of Combinatorics 25 (2004) 113-123 117

exist snce we are takinq1 > 5), then(w, v@¥) = 1. If w = v@P 4 @) then

(w, v@) = 1. So the nrmimum weight is at least 3, and precisely this since it is easy
to check that any vectap = @b 35 defined in Eq.9), isin C*. Looking for other
possible vectors of weight 3 i@+, the only case that is not immediately ruled out is
w = viabl 4 yledh 4 ylefl wherea, b, c,d, e, f are all distinct (s; > 6). If there is
another elemeng € 2, then(w,v®9) = 1, butifn = 6 thenw e C*, giving 15
additional weight-3 vectors i6+. O

Lemma3.3. If niseventhen C < C* and C is doubly-even; if nisodd, C & C+ = FJ.
For anyn, y € Ct.

Proof. Since blocks are of even siz&2— 2), thatj € Ct is immediate. For the first
staement, consideqv!@P!, vi¢dhy If {a, b} = {c, d} then this is zero. Ifl = a, then the
inner product is1 + 2 = 0 if nis even. Ifa, b, ¢, d are all distinct, then the inner product
is 4= 0(mod 2).

For anya, b € 2, we have

Z v{a’b’C} — Z U{a,b} + Z v{a’C} + Z U{bVC} — (n—2)v{a’b} +v@.
c#a,b c#a,b c#a,b c#a,b

Thusifnis odd,v'@P} ¢ C 4 C+ for anya, b, while for n even weobtain once again that
viabl ¢ L. ClearlyC is doubly-even whem is even. [

Proposition 3.4. For n > 5, the automorphism group of the binary code C of the
triangular graph T(n) is S, unlessn = 6, in which case the automorphism group of
thecodeis PGL4(2) = Ag.

Proof. In all cases, any automorphism of the graph will define an automorphism of the
design and of the code. Since the group of the complete graph is obvigysind the
group of its line graph is the same (by a theorem of Whitdg})[ the automorphism group
of the code will contairg,. We now ug the fict that, fom = 6, the automorphism group
preserves (and is transitive on) both pairs of letter€ @nd triples of letters of? to show
that any autmorphism ofC induces a permutation ofd. Indeed, forg € G = Aut(C), g
preserves the words of weight 3@-, and hus, forn # 6, g maps pairs of elements to
pairs of elements, and triples of elements tplés of elements; this will be used to define
an action ofg on {2.

Letg € G. Theng s given as a elemet of S(g). We wish to defie an action of on £2.

Letx € 2. For abitrary a, b € 2, a, b, x distinct, supposg : v{&P-X}  ylabrxi} gg

a map isinduced on triples of elements ¢f by g : {a, b, x} — {a1, b1, X1}. Sinceg
preserves incidence of points Bfon words ofC+, i.e. g preserves incidence of pairs of
elements of? on triples, we have, without loss of generality,

{a,b,x} — (a1, by, x1}
{a,b} — {ag, by}
{a,x} + {an x1)
{b,x} +— {b1,xa}.

g:
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To pre®rve incidence then we will attempt to defigeon 2 by g : {a, x} N {b, X}
{a1, X1} N {b1, X1}, i.e.g : X — X1 (anda — a1, b — by).

We reed to check that this is indeed well-defith Take first another triple of the form
{a,c, x} wherec # b. Sinceg : {a, x} — {a1, X1} we must havea, x1} incident
with ({a, ¢, x})9, and sog : {a,c,x} — f{a1,c1,x1}. Thusg : {c,x} — {c1,x1}
or {aj, c1}. Supposeg : {c,x} — {a1,c1} and hence als@ : {a,c} — {X1,c1}.
Then ({b, ¢, x})9 must containbs, X1, a1, ¢1, and so wemust haveb; = c;. But then
({a, b, x})9 = (a1, by, x1} = {a1,¢1, X1} = ({a, ¢, x})Y, which isimpossble sinceg is
a permut#ion on triples. Thug : {c, x} — {x1, c1} and again we g&g : X — X1, and
g : ¢ — c1. If we now take any triplgx, y, z} containingx, we look first at{a, y, X} as
above, and then &z, y, X} and havey : X — X1, as r@uired. Thereforg is defined ing,,
and AulC) = S,.

In casen = 6, there are more words of weight 3@, so we cannot use this argument
since we cannot assume that the vectors of the foff?¢! are mapped to one another.
In this caseC is a[15, 4, 8], code and its dual is 5, 11, 3]> code. A generator matrix
for C must thus have every pair of columns linearly independent, i.e. distinct, a@dsso
thedual of the Hamming code of length 15. Its automorphism group is well known to be
PGL4(2). O

Now we look for bases of minimum-weight vectors f6randC-=. Clearly if n is even
thenC has a basis of minimum-weight vectors since the incidence vectors of the blocks
are the minimum-weight vectors and spaiy definition.

Lemma3.5. Let 2 ={aj, ay, ..., an}. Theset of n — 1 vectors
S=@d|1<i<n-1

is a spanning set for C. For n odd S is a basis; for n even S\{v{&-13}} js a basis of

minimum-weight vectors.

Proof. Note that for 2 < i < n, v@&1 = 075 0@ .4, and thus @ 3 =

vlal 4 ylaeail can be written as a sum of vectorsdhand soS spansC. Since for
n odd the &e of S is the dimension o€, the setS gives a basis fo€ whenn is odd.

If n = 2m we know that}_ @bl — 0, where the sum ranges over a setroflisjoint
pairs d elements off2. Herce forn even we hae, from Y""—1 v@-@i+1) = yl@vanl and

plauan] "MLy &) = 0, a non-trivial linear relation amongst the vectorssin
from which it follows that the vectors are karly dependent. Since

v{alyaz} + 0{33,34} 4t v{an—laan} — v{az,as} + v{a4735} 4t U{an—zaan—l}’

we can omity!@-1.2} from the spanning set.[
Lemma 3.6. C hasa basis of minimum-weight vectors.

Proof. For n even, this éllows from Lemma 3.5 For n odd, the minimum weight of
C isn — 1 and there @ exactly n minimum-weight vectors, which have the form, for
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eacha e 2,

Wy = Zv{aiaaj}’
where the sum is over a set @f — 1)/2 digoint pairs of elements of2\{a}. Then for
a # b, we can write

wa + wp = v+ v 4y 4 @ — D]

showing hat thew, spanC, andhenceC is also spanned by mimum-weight vectors
whenn is odd. Notice that

n
Z Wa = (Way + Way) + -+ + (Wa,_, + Wa, ;) + Wa,
i=1

— plasaal NI p(@n-2.8n-1} + wa,
= wan + wan = O,
andthujwgy | 1 <i <n-—1}isabasisfoC. O
Lemma3.7. C1 hasa basis of minimum-weight vectors for n odd, but not for n even.

Proof. Takef2 = {1, 2, ..., n}. Forn # 6, the minimum-weight vectors @ are of the
form

vaber _ tab} + e + vibct
Let Shbe the following set of these vectors:
S={ I+ 1<i<j<n-1).

Notice thatS has size(”gl). We order tle points of P in the following way:

{1,2},{3,3},...,{L,n=-1},{2,3},....{2n—-1},...,{n—2,n — 1}, 4)
followed by the renaining points
{Ln},{2,n},...,{n—1,n} (5)

We show that fon # 6 everyvector of weight 3 is in the span &. Using the odering
of the points as given above, it will follow that the vectorsSspan a sace of dimension
(”51) = (3) — (n— 1). Thus forn odd the span o8 is thedual codeC+, whereas forn
even itis not. In the even case the all-one vecjaneeds to be adjoined. If this is done at
the bottom ofhe generator matrix fo€+ then thepoints from Eq. §) up to{n — 2, n} can
be taken as the last— 2 coordinates, while the position correspondingto— 1, n} can
be placed in front of this set.

For this, wehave, forl<i < j < j+1<k=<n,

(R N N VR SR N SN R R

and induction will show that every vector of the foutt k! is in the span oS. Further,
ordering the points as given, and the vectorsSoh the same way, by the smallest two
elements, produces an upper triangular matrix which clearly has the rank given ahove.
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Note. The generator matrix obtained f@" in the above afering can be reduced to the
form [Ix | A] wherek is the dimension o€=. If the points are re-ordered with the firlst
put at the end thethe matrix is[A | Ik]. This is now sandard form for the cod€, and the
corresponding generator matrix forhas the fornfIn_k | AT] whereN = (3).

4. PD-sets

In this section we prov&@heorem 1.1
In order to get our generator matrix into standard form, as described above, we order
thepoint setP by taking the set from Eq5}, i.e.

Pb={Ln},P={2,n},...,P_1={n—-1,n}, (6)
first, followed by the sefrom Eq. @), i.e.
Ph=1{12,Pn1={13},....Pn2=(23},...., Py ={n-2n-1}. (7

The generator matrix fo€+, using the wrds of weight 3 (withy if n is even), is then
a check matrix forC in standard form. Thus the generator matrix fGrwill also be in
stendard form, with the firsh — 1 coordinates the information symbols foiodd, and the
firstn — 2 for n even.

Proof of Theorem 1.1. Suppose first thah is odd. Order the points of the coordinate set
‘P as described in Eqs6) and (/) so that he firstn — 1 points are in the information
positions.

Now C can correct = (n — 3)/2 erors. We need a s of elements oG = §, =
Aut(C) such that everyt-set of elements oP is moved by somelement of S into the
check positions. If the < t positions are all in the check positions, then we can use the
identity element, &, to keep these in the check positions.

Suppose the < t positions occur at

{a1,n}, {az,n}, ..., {ar, N},
distinct points in the information positions, and at
{blv Cl}, {va CZ}s DR {bma Cm}’

distinct points in the check positions, where- m = s < t. Thenumber of elements a?
in the set

T={ag,...,a}U{by,...,bpluUf{cs,...,cm} C 2\{n}

is at mostr + 2m. Sincer + m <t = (n — 3)/2, we have 2+ 2m < n — 3, and so
r +2m < n — 3. Thus there are elements other timan (2 that are not irZ’; letd be one
of these. The transpositien= (d, n) will map ther elements

{a1,n}, {az, n}, ... {ar, n}

out of the information positions, as required, and fix thelements already in the check
positions.
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It follows that the given sef = {1g} U {(i,n) | 1 <i < n — 1} forms a PD-set oh
group elements for the code. This completes the proof for thercadd.

Now supposen is even. Agairwe order the points as in Eq)Xand (7) so that now the
pointsP1, P>, ..., Ph_2 are in the information position$, and the emaining points of,
starting withP,_1 = {n—1, n}, then bllowed by P,, ..., P(g), are inthe checlpositions,
£. In thiscase we need to correlc= n — 3 erors, sincghe minimum weight is th — 2).

We claim that

S={lclU{i,n|1l<i<n-1U{lin-D(G,m*1<i,j<n-2)

is a PD-set foC. Note hat|S| =1+ n—14+2Nn—2)+ (n—2)(n—3) =n? —2n+ 2.
We reed to show that everituple T of points of P can be moved into the check
positions€ by some member af. Consider the various cases for the members of

(i) if all thet positions are ir€ then 1 will do;
(i) if all the t positions are irY then(n — 1, n) will do;
(iii) if somea € £\{n} does not occur in any member Bfthen(a, n) will do.

We can thus restrict attention to those s€&t$or which everya € {2 appears in some
2-subset inr. We show hat if {a, b} € T anda does not occur again in any elemenfigf
then an element of can be found to map into £. Consider the possible cases:

(iv) a=nandb=n—1,then k will do; if b £ n— 1, then(b, n — 1) will do;

(V) a # nandb = nthenifa =n—-1,(n,n — 1) willdo and ifa # n — 1 then
(a,n,n—1) = (a,n)(a,n — 1) will do;

(vi) a# nandb # nthenifa=n—1, (b,n— 1)(b, n) will do; if a £ n — 1, then if
b=n-1,(,n)willdoandifb #n -1, (a,n)(b,n— 1) will do.

Soifthere s a 2-sibset{a, b} € T suchthata occurs only once, our set of permutations
will form a PD-set. Now every € (2 occurs and if every element appears more than once
we would have 2 elements to place int2= 2(n — 3) positions, which is impossible.]

Note. (1) The computational complexity of the decoding by this method may be quite low,
of the ordem® if the elements of the PBet are appropriately ordered. The codes are low
density parity check (LDPC) codes.

(2) The permutations given in the s&heed to be written as permutations on the points
P1, P, ..., P(g). Thus, br example, ih = 6, then wth the ordering of the points as given

in Egs. 6) and (7),
(1, 6) = (P2, Ps)(P3, P7)(Pa, Pg)(Pg, Ps)
(1,5)(1, 6) = (P, Py, Ps)(Pa2, Ps, P12)(P3, Pz, P14)(P4, Pg, P15).

(3) Forn > 5 odd the lower bound iRResult 2.1has an exlicit form, i.e. (n — 1)/2.
This follows directly from the given formula.

(4) For n ewven the lower bound oResult2.1is not as easily simplified. From
computations (using Magma]) up to a large value of, the fdlowing formula appears
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to hold for this bound fon > 18 (smaller values afi seem to be unrepresentative of the
gened rule): writingk = %(mod 6 € {0, 1, 2, 3, 4,5}, the lower bound fon is

n—=6 k
n—2+10 —— k =.
w07 e
In this case the size of the PD-sets we have found are of the ord&; sbme Magma
output below illustrates the comparison of this with the lower bound. The first column

gives the value oh, the seond the code length, the third the number of errors corrected,
the fourth the value of the lower bound, and the fifth the size of the PD-set we constructed.

n, length, n-3, bound, PDset

15 3 5 26

8 28 5 8 50

10 45 7 11 82
12 66 9 15 122
14 91 11 18 170
16 120 13 22 226
18 153 15 26 290
20 190 17 29 362
22 231 19 33 442
24 276 21 36 530
26 325 23 40 626
28 378 25 43 730
30 435 27 48 842
32 496 29 51 962
34 561 31 55 1090
36 630 33 58 1226
38 703 35 62 1370
40 780 37 65 1522
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