Special $L C D$ codes from products of graphs

W. Fish • J.D. Key • E. Mwambene

Received: date / Accepted: date

Abstract

We examine the binary codes from the adjacency matrices of various products of graphs, and show that if the binary codes of a set of graphs have the property that their dual codes are the codes of the associated reflexive graphs, and are thus $L C D$, i.e. have zero hull, then, with some restrictions, the binary code of the product will have the same property. The codes are candidates for decoding using this property, or also, in the case of the direct product, by permutation decoding.

Keywords $L C D$ codes • codes from graphs • products of graphs
Mathematics Subject Classification (2010) 05C50 • 94B05

1 Introduction

Various products of graphs are defined and discussed in [9]. We will examine some of these products of graphs for the property of their binary codes being $R L C D$ (see [16]) if the binary codes of their component graphs are $R L C D$. Here a code C from the row span of an adjacency matrix for a graph is said to be $R L C D$ if the code from the row span of the corresponding reflexive

[^0]graph (i.e. including all loops) is the dual code, C^{\perp}, so this implies that C is $L C D$. A code from an adjacency matrix of a graph that is $R L C D$ is useful for decoding purposes, not only from the method for $L C D$ codes as described by Massey [24], but also from a method described specifically for $R L C D$ codes in [17].

All the graphs will be undirected. In addition, in considering any of these products of n undirected graphs $\Gamma_{i}=\left(V_{i}, E_{i}\right)$, the vertex set of the product will be the cartesian product of the sets of vertices V_{i}, i.e. $V_{1} \times V_{2} \times \ldots \times V_{n}$. Adjacency, and hence edge sets, are defined differently for the various products.

A summary of our results addressing this problem for the most common of these products is the following theorem which is proved as Propositions 1, 2 and 3 in the following sections:

Theorem 1 Let Γ be the graph product of the n graphs Γ_{i}, for $i=1, \ldots, n$, where the product is the Cartesian product, \square, the Direct (Categorical) product, \times, or the Strong product, \boxtimes, of the graphs.

If all the the binary codes $C_{2}\left(\Gamma_{i}\right)$ are $R L C D$, then so is $C_{2}(\Gamma)$.
Some recent papers involving codes associated with graphs, and in particular, $L C D$ codes, although not necessarily $R L C D$, can be found, for example, in the following: $[6,18,19,27]$.

The full definition of $R L C D$ is given in Definition 2 in Section 2, where some other related concepts are defined, as well as some background results. Theorem 1 holds with some modifications for the other graph products examined. In addition, in the case of the direct product of graphs in Section 4, it is possible to obtain s-PD-sets for the code of the product if such sets are known for the codes of the individual graphs: see Lemma 8 and Proposition 8 for the triangular graphs. In the case of the direct product more can be said about the parameters of the binary code of the product, and these results are summarized in Theorem 2.

The definitions of the various graph products are given in Sections 3, 4, 5, 6 and 7 , and in each of these cases, other properties of the binary code of the product are examined, including minimum weight, information sets, and the possibility of using permutation decoding. Section 8 has some examples using graphs whose binary codes are known to be $R L C D$, in particular the triangular graphs and the Paley graphs.

2 Background

2.1 Definitions and previous results

Basic definitions not covered here can be found in [1], or see also [28,29] for other concepts related to designs, codes and graphs.

The graphs, $\Gamma=(V, E)$ with vertex set V and edge set E, discussed in this work are undirected with no loops, apart from the case where all loops are included, in which case the graph is called the reflexive associate of Γ,
denoted by $R \Gamma$. If $x, y \in V$ and x and y are adjacent, we write $x \sim y$, and $x y$ for the edge in E that they define. The complementary graph is denoted by $\bar{\Gamma}=(V, \bar{E})$ where for $x, y \in V, x \neq y, x \sim y$ in Γ if and only if $x \nsim y$ in $\bar{\Gamma}$. The set of neighbours of $x \in V$ is denoted by $N(x)$, and the valency of x is $|N(x)| . \Gamma$ is regular if all the vertices have the same valency.

An adjacency matrix $A=\left[a_{x, y}\right]$ for Γ is a symmetric $|V| \times|V|$ matrix with rows and columns labelled in the same order by the vertices $x, y \in V$, and with $a_{x, y}=1$ if $x \sim y$ in Γ, and $a_{x, y}=0$ otherwise. Then $R A=A+I$ is an adjacency matrix for $R \Gamma$, and $\bar{A}=J-I-A$ one for $\bar{\Gamma}$, where $I=I_{|V|}$ and J is the $|V| \times|V|$ all-ones matrix. The row corresponding to $x \in V$ in A will be denoted by r_{x}, that in $R A$ by s_{x}, and that in \bar{A} by c_{x}.

The codes here are linear codes, and the notation $[n, k, d]_{q}$ will be used for a q-ary code C of length n, dimension k, and minimum weight d, where the weight $\mathbf{w t}(\boldsymbol{v})$ of a vector v is the number of non-zero coordinate entries. The code over a field F of a graph $\Gamma=(V, E)$ is the row span over F of an adjacency matrix A for Γ, and written as $C_{F}(A), C_{F}(\Gamma)$, or $C_{p}(A), C_{p}(\Gamma)$, respectively, if $F=\mathbb{F}_{p}$. If $S \subseteq V$, the incidence vector of S is denoted by v^{S}.

Notation 1 By abuse of language, we will also use r_{x} (respectively s_{x}) to denote the set of neighbours of $x, N(x)=\{y \in V \mid x \sim y\}$ (respectively $N(x) \cup\{x\})$. Furthermore, we shall be dealing with different graphs in this paper and use the same notation r_{x} (respectively s_{x}) for any of the graphs, with the understanding that $x \in V$ for the particular graph under consideration, so that the notation will be unambiguous. We will also use r_{x} (respectively s_{x}) to denote the word in the code, i.e. as a row of the matrix. This should also be clear.

The uniform subset graph $\Gamma(n, k, r)$ has for vertices $V=\Omega^{\{k\}}$, the set of all subsets of size k of a set of size n, with two k-subsets x and y defined to be adjacent if $|x \cap y|=r$. The valency of $\Gamma(n, k, r)$ is $\binom{k}{r}\binom{n-k}{k-r}$.

A graph $\Gamma=(V, E)$, neither complete nor null, is strongly regular of type (n, k, λ, μ) if it is regular on $n=|V|$ vertices, has valency k, and is such that any two adjacent vertices are together adjacent to λ vertices and any two non-adjacent vertices are together adjacent to μ vertices.

2.2 LCD codes

Definition 1 A linear code C over any field is an $L C D$ code (linear code with complementary dual) if $\operatorname{Hull}(C)=C \cap C^{\perp}=\{0\}$.

If C is an $L C D$ code of length n over a field F, then $F^{n}=C \oplus C^{\perp}$. Thus the orthogonal projector map Π_{C} from F^{n} to C can be defined as follows: for $v \in F^{n}$,

$$
v \Pi_{C}=\left\{\begin{array}{l}
v \text { if } v \in C, \tag{1}\\
0 \text { if } v \in C^{\perp}
\end{array}\right.
$$

and Π_{C} is defined to be linear. ${ }^{1}$ This map is only defined if C (and hence also C^{\perp}) is an $L C D$ code. Similarly then $\Pi_{C^{\perp}}$ is defined.

Note that for all $v \in F^{n}$,

$$
\begin{equation*}
v=v \Pi_{C}+v \Pi_{C^{\perp}} \tag{2}
\end{equation*}
$$

We will use [24, Proposition 4]:
Result 1 (Massey) Let C be an LCD code of length n over the field F and let φ be a map $\varphi: C^{\perp} \mapsto C$ such that $u \in C^{\perp}$ maps to one of the closest codewords v to it in C. Then the map $\tilde{\varphi}: F^{n} \mapsto C$ such that

$$
\tilde{\varphi}(r)=r \Pi_{C}+\varphi\left(r \Pi_{C^{\perp}}\right)
$$

maps each $r \in F^{n}$ to one of it closest neighbours in $C .{ }^{2}$
We make the following observation which will be of use in the next section:
Lemma 1 If C is a q-ary code of length n such that $C+C^{\perp}=\mathbb{F}_{q}^{n}$ then C is $L C D$.

Proof: Since $\left(C+C^{\perp}\right)^{\perp}=C^{\perp} \cap C=\left(\mathbb{F}_{q}^{n}\right)^{\perp}=\{0\}=\operatorname{Hull}(C), C\left(\right.$ and $\left.C^{\perp}\right)$ are $L C D$.

Note then that if $C=C_{p}(\Gamma)$ and $R C=C_{p}(R \Gamma)$ for a graph Γ on n vertices, p a prime, then $C+R C=\mathbb{F}_{p}^{n}$, so if $R C=C^{\perp}$, then C is $L C D$.

From [16]:
Definition 2 Let $\Gamma=(V, E)$ be a graph with adjacency matrix A. Let p be any prime, $C=C_{p}(A), R C=C_{p}(R A)$ (for the reflexive graph), and $\bar{C}=$ $C_{p}(\bar{A})$. Then

- if $C=R C^{\perp}$, then we call C a reflexive $L C D$ code, and write $R L C D$ for such a code;
- if Γ is regular and $C=\bar{C}^{\perp}$, then we call C a complementary $L C D$ code, and write $C L C D$ for such a code.

We note the following result from [8], which is given there for $p=2$ but it holds for all primes p, so we state it for all p :

Result 2 (Proposition 2.2 [8]) If A is a symmetric integral matrix, and C_{A}, C_{A+I} denote the row span over \mathbb{F}_{p}, where p is a prime, of $A, A+I$ respectively, then $C_{A}^{\perp} \subseteq C_{A+I}$ with equality if and only if $A(A+I) \equiv 0(\bmod p)$.

The following two results are lemmas in [16]:
Result 3 If $\Gamma=(V, E)$ is regular of valency $\nu,|V|=n$, p is a prime, then both $C_{p}(\Gamma)$ and $C_{p}(\bar{\Gamma})$ can be RLCD if and only if $(n-2 \nu-1) \equiv 0(\bmod p)$.

[^1]Note 1 If we know the eigenvalues of A, and if they are integral, we can use them to get information regarding the possible dimension of the codes C and $R C$. Since if λ is an eigenvalue for a matrix M then $\lambda+1$ is an eigenvalue for $M+I$, this will also give information about $R C$. If M is a $v \times v$ integral matrix with integral eigenvalues, then modulo p these will still be eigenvalues, but not necessarily all distinct. If none or at most one reduce to 0 modulo p then the p-rank of M will be v or $v-m_{j}$, respectively, where m_{j} is the multiplicity of the eigenvalue that is zero. In any case, the dimension of the zero eigenspace over \mathbb{F}_{p} of the matrix A or $A+I$ is at most the sum m of the multiplicities of the eigenvalues that reduce to 0 modulo p, and thus the p-rank of A or $A+I$ is at least $v-m$.

From [16, Lemma 3]:
Result 4 Let $\Gamma=(V, E)$ be a graph with adjacency matrix A that has integral eigenvalues and suppose p is a prime for which $C_{p}(\Gamma)$ is $R L C D$. Then $\operatorname{dim}\left(C_{p}(\Gamma)\right)$ is the sum of the multiplicities of the eigenvalues that are non-zero modulo p.

A special decoding method for $R L C D$ binary codes is given in [17, Lemmas 1,2], and the discussion in that paper following those lemmas.

A summary of the algorithm for such decoding is as follows, and it assumes that the system allows at most s errors where $s \leq t$, the maximum number of errors nearest-neighbour decoding allows: suppose $C=C_{2}(\Gamma)$, where $\Gamma=(V, E)$, is $R L C D$ and has minimum distance d and $t=\left\lfloor\frac{d-1}{2}\right\rfloor$, and the transmitted word from C has no more than t errors. Let $|V|=n$. Then

- Compute separately all the sums $\sum_{x \in K} s_{x}$ for every subset $K \subset V$ of size k where $1 \leq k \leq t$. Let $\mathcal{S}_{k}=\left\{\sum_{x \in K} s_{x}|K \subset V,|K|=k\}\right.$, for $1 \leq k \leq t$.
- Suppose $w=v^{\bar{S}}$ is the received word and that $s \leq t$ errors have occurred. Form the sum $v=\sum_{x \in S} s_{x}$.
- If $v=0$ then no errors have occurred. If $v \neq 0$ then check the sets \mathcal{S}_{k} to see if $v \in \mathcal{S}_{k}$, starting with $k=1$ and then increasing k to s or at most t.
- When a set J is found such that $v=\sum_{x \in J} s_{x}$, decode as $\sum_{x \in S} r_{x}+$ $\sum_{x \in J} r_{x}=v^{S}+v^{J}$.
The worst case complexity for t errors is $\mathcal{O}\left(n^{t+1}\right)$. For a small number of errors s this could be feasible.

2.3 Permutation decoding

Permutation decoding was first developed by MacWilliams [22] and involves finding a set of automorphisms of a code called a PD-set. The method is described fully in MacWilliams and Sloane [23, Chapter 16, p. 513] and Huffman [10, Section 8]. In [12] and [21] the definition of PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 3 If C is a t-error-correcting code with information set \mathcal{I} and check set \mathcal{C}, then a PD-set for C is a set \mathcal{S} of automorphisms of C which is
such that every t-set of coordinate positions is moved by at least one member of \mathcal{S} into the check positions \mathcal{C}.

For $s \leq t$ an s-PD-set is a set \mathcal{S} of automorphisms of C which is such that every s-set of coordinate positions is moved by at least one member of \mathcal{S} into \mathcal{C}.
The algorithm for permutation decoding is as follows: we have a t-errorcorrecting $[n, k, d]_{q}$ code C with check matrix H in standard form. Thus the generator matrix $G=\left[I_{k} \mid A\right]$ and $H=\left[-A^{T} \mid I_{n-k}\right]$, for some A, and the first k coordinate positions correspond to the information symbols. Any vector v of length k is encoded as $v G$. Suppose x is sent and y is received and at most t errors occur. Let $S=\left\{g_{1}, \ldots, g_{s}\right\}$ be the PD-set. Compute the syndromes $H\left(y g_{i}\right)^{T}$ for $i=1, \ldots, s$ until an i is found such that the weight of this vector is t or less. Compute the codeword c that has the same information symbols as $y g_{i}$ and decode y as $c g_{i}^{-1}$.

Notice that this algorithm actually uses the PD-set as a sequence. Thus it is expedient to index the elements of the set S by the set $\{1,2, \ldots,|S|\}$ so that elements that will correct a small number of errors occur first. Thus if nested s-PD-sets are found for all $1<s \leq t$ then we can order S as follows: find an s-PD-set S_{s} for each $0 \leq s \leq t$ such that $S_{0} \subset S_{1} \ldots \subset S_{t}$ and arrange the PD-set S as a sequence in this order:

$$
S=\left[S_{0},\left(S_{1}-S_{0}\right),\left(S_{2}-S_{1}\right), \ldots,\left(S_{t}-S_{t-1}\right)\right]
$$

(Usually one takes $S_{0}=\{i d\}$.)
There is a bound on the minimum size that a PD-set S may have, due to Gordon [7], from a formula due to Schönheim [26], and quoted and proved in [10]:
Result 5 If S is a PD-set for a t-error-correcting $[n, k, d]_{q}$ code C, and $r=$ $n-k$, then

$$
\begin{equation*}
|S| \geq\left\lceil\frac{n}{r}\left\lceil\frac{n-1}{r-1}\left\lceil\ldots\left\lceil\frac{n-t+1}{r-t+1}\right\rceil \cdots\right\rceil\right\rceil\right\rceil=G(t) \tag{3}
\end{equation*}
$$

This result can be adapted to s-PD-sets for $s \leq t$ by replacing t by s in the formula and $G(s)$ for $G(t)$.

We note the following result from [14, Lemma 1]:
Result 6 If C is a t-error-correcting $[n, k, d]_{q}$ code, $1 \leq s \leq t$, and S is an s-PD-set of size $G(s)$ then $G(s) \geq s+1$. If $G(s)=s+1$ then $s \leq\left\lfloor\frac{n}{k}\right\rfloor-1$.

In [13, Lemma 7] the following was proved:
Result 7 Let C be a linear code with minimum weight d, \mathcal{I} an information set, \mathcal{C} the corresponding check set and $\mathcal{P}=\mathcal{I} \cup \mathcal{C}$. Let G be an automorphism group of C, and n the maximum value of $|\mathcal{O} \cap \mathcal{I}| /|\mathcal{O}|$, over the G-orbits \mathcal{O}. If $s=\min \left(\left\lceil\frac{1}{n}\right\rceil-1,\left\lfloor\frac{d-1}{2}\right\rfloor\right)$, then G is an s-PD-set for C.

This result holds for any information set. If the group G is transitive then $|\mathcal{O}|$ is the degree of the group and $|\mathcal{O} \cap \mathcal{I}|$ is the dimension of the code.

The worst-case time complexity for the decoding algorithm using an s-PDset of size z on a code of length n and dimension k is $\mathcal{O}(n k z)$.
2.4 Kronecker product of matrices

The adjacency matrices of products of graphs are conveniently described in terms of Kronecker products of matrices, so we give a brief background of this product.

The Kronecker product is a special case of the tensor product.
The Kronecker product of two matrices A and B is denoted by $A \otimes B$ and if A is $m \times n$ and B is $p \times q$ then $A \otimes B$ is $m p \times n q$. If $A=\left[a_{i j}\right]$ then

$$
A \otimes B=\left[\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \vdots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right]
$$

Properties of Kronecker products

Assuming products where written are defined and that k is a scalar:

$$
\begin{array}{ll}
A \otimes(B+C)=A \otimes B+A \otimes C ; & (A+B) \otimes C=A \otimes C+B \otimes C ; \\
k A \otimes B=A \otimes(k B)=k(A \otimes B) ; & (A \otimes B) \otimes C=A \otimes(B \otimes C) ; \\
(A \otimes B)(C \otimes D)=A C \otimes B D ; & (A \otimes B)^{-1}=A^{-1} \otimes B^{-1} ; \\
\operatorname{rank}(A \otimes B)=\operatorname{rank}(A) \operatorname{rank}(B) ; & I_{n} \otimes I_{m}=I_{n m} .
\end{array}
$$

Furthermore, if A is $n \times n$ and B is $m \times m$, and λ_{i} for $i=1, \ldots, n$ the eigenvalues of A, and μ_{i} for $i=1, \ldots, m$ those of B, then the eigenvalues of $A \otimes B$ are $\lambda_{i} \mu_{j}$ for $i=1, \ldots, n, j=1, \ldots, m$.

Note 2: In the following, graphs are defined from graphs $\Gamma_{i}=\left(V_{i}, E_{i}\right), i=$ $1, \ldots, n$, to have vertex set $V_{1} \times \ldots \times V_{n}$. If $\alpha_{i} \in \operatorname{Aut}\left(\Gamma_{i}\right), i=1, \ldots, n$, then $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ defined by

$$
\begin{equation*}
\left(\alpha_{1}, \ldots, \alpha_{n}\right):<x_{1}, \ldots, x_{n}>\mapsto<x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}> \tag{4}
\end{equation*}
$$

is an automorphism of the graph defined on the vertex set $V_{1} \times \ldots \times V_{n}$.
Since we will be using adjacency matrices, we will need an ordering on the vertices of the vertex set V_{i} of each each of the graphs $\Gamma_{i}=\left(V_{i}, E_{i}\right)$. For the vertex set of the graph product, $V_{1} \times \ldots \times V_{n}$, we use lexicographical ordering, i.e. dictionary reading from left to right. Thus, for example for $n=2,\left|V_{1}\right|=m$, $\left|V_{2}\right|=k, V_{1}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $V_{2}=\left\{y_{1}, \ldots, y_{k}\right\}$, as ordered sets, then the ordering for $V_{1} \times V_{2}$ is

$$
\begin{gathered}
\left\{<x_{1}, y_{1}>,<x_{1}, y_{2}>, \ldots<x_{1}, y_{k}>,<x_{2}, y_{1}>, \ldots,<x_{2}, y_{k}>, \ldots,\right. \\
\left.<x_{m}, y_{1}>, \ldots,<x_{m}, y_{k}>\right\}
\end{gathered}
$$

3 Cartesian products of graphs $\Gamma_{1} \square \Gamma_{2}$

If $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ for $i=1,2$ are graphs with $\left|V_{i}\right|=n_{i}$ and adjacency matrix A_{i} then $\Gamma_{1} \square \Gamma_{2}$ will denote the cartesian product of the graphs, with vertex set $V=V_{1} \times V_{2}$. Here if $\langle x, y\rangle,\langle u, v\rangle \in V$, then

- adjacency is defined by $<x, y>\sim<u, v>$ in Γ if and only if $x=u$ and $y \sim v$ in Γ_{2}, or $y=v$ and $x \sim u$ in Γ_{1};
- if Γ_{1} and Γ_{2} are regular of valency ν_{1}, ν_{2} respectively, then $\Gamma_{1} \square \Gamma_{2}$ is regular of valency $\nu_{1}+\nu_{2}$;
- an adjacency matrix for $\Gamma_{1} \square \Gamma_{2}$ is given by

$$
A_{1 \square 2}=A_{1} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2} .
$$

Note 3 From $[16,6]$ and Result 2 we know that a code $C_{p}(\Gamma)$ is $R L C D$ if and only if an adjacency matrix A for Γ satisfies $A^{2}=-A$ over \mathbb{F}_{p}. Clearly this implies that the null graph, i.e. the complement of the complete graph K_{n}, which has the zero code over any field, is thus $R L C D$. We will exclude this graph from our discussions, i.e. we assume that the Γ_{i} are not null.

Proposition 1 Let $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ for $i=1, \ldots, n$ be graphs with $\left|V_{i}\right|=n_{i}$ and adjacency matrix A_{i}. Let Γ be the cartesian product $\square_{i=1}^{n} \Gamma_{i}$. Then $C_{2}(\Gamma)$ is $R L C D$ if $C_{2}\left(\Gamma_{i}\right)$ is RLCD for each $i=1, \ldots, n$. If precisely one of the $C_{2}\left(\Gamma_{i}\right)$ is not $R L C D$ and all the others are, then $C_{2}(\Gamma)$ is not $R L C D$.

Proof: We need only prove this for the cartesian product of two graphs. With the same notation as above, we have, for an adjacency matrix $A_{1 \square 2}$ for $\Gamma_{1} \square \Gamma_{2}$,

$$
A_{1 \square 2}=A_{1} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2} .
$$

Suppose $C_{2}\left(\Gamma_{i}\right)$ for $i=1,2$ is $R L C D$. Then $A_{i}^{2}=-A_{i}=A_{i}, i=1,2$, over \mathbb{F}_{2}. By the rules of multiplication of Kronecker products of matrices,

$$
\begin{aligned}
A_{1 \square 2}^{2} & =\left(A_{1} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2}\right)^{2} \\
& =\left(A_{1} \otimes I_{n_{2}}\right)^{2}+\left(I_{n_{1}} \otimes A_{2}\right)^{2}+\left(A_{1} \otimes I_{n_{2}}\right)\left(I_{n_{1}} \otimes A_{2}\right)+\left(I_{n_{1}} \otimes A_{2}\right)\left(A_{1} \otimes I_{n_{2}}\right) \\
& =\left(A_{1}^{2} \otimes I_{n_{2}}\right)+\left(I_{n_{1}} \otimes A_{2}^{2}\right)+2\left(A_{1} \otimes A_{2}\right) \\
& =A_{1} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2}=A_{1 \square 2},
\end{aligned}
$$

and so $C_{2}\left(\Gamma_{1} \square \Gamma_{2}\right)$ is $R L C D$.
Now suppose $C_{2}(\Gamma)$ is $R L C D$ where $\Gamma=\Gamma_{1} \square \Gamma_{2}$. Suppose $C_{2}\left(\Gamma_{1}\right)$ is not $R L C D$, but $C_{2}\left(\Gamma_{2}\right)$ is $R L C D$. We have

$$
A_{1 \square 2}^{2}-A_{1 \square 2}=\left(A_{1}^{2}-A_{1}\right) \otimes I_{n_{2}}+I_{n_{1}} \otimes\left(A_{2}^{2}-A_{2}\right)=\left(A_{1}^{2}-A_{1}\right) \otimes I_{n_{2}}=0
$$

But according to the properties of Kronecker products, $\operatorname{rank}_{2}(A \otimes B)=$ $\operatorname{rank}_{2}(A) \operatorname{rank}_{2}(B)$, so $\operatorname{rank}_{2}\left(A_{1}^{2}-A_{1}\right)=0$ and hence $A_{1}^{2}-A_{1}=0$, and $C_{2}\left(\Gamma_{1}\right)$ is $R L C D$.

Clearly this can be extended to any number of components in the product.

Note 4 If all the Γ_{i} are equal to a graph Γ then $\square_{i=1}^{n} \Gamma$ is written $\Gamma^{\square, n}$.
Lemma 2 Let $\Gamma=(V, E)$ be regular of valency ν, A an adjacency matrix. If $C_{p}(\Gamma)$ is $R L C D$ and $p \mid \nu$, then $C_{p}(\Gamma) \subseteq C_{p}(\bar{\Gamma})^{\perp}$. If in addition Γ has integral eigenvalues and $p \nmid(|V|-1)$, then $C_{p}(\Gamma)$ is $C L C D$.

Proof: We have $A^{2}=-A$, so $A \bar{A}=A(J-I-A)=A J-\left(A+A^{2}\right)=A J=$ $\nu J=0$. The second statement follows from [16, Proposition 2].

Lemma 3 If $\Gamma_{i}, i=1,2$ are regular of valency $\nu_{i}, i=1,2$ respectively, and if both $C_{2}\left(\Gamma_{i}\right)$ for $i=1,2$ are $C L C D$, then if both ν_{1}, ν_{2} are even, $C_{2}\left(\Gamma_{1} \square \Gamma_{2}\right)$ is $R L C D$. If in addition at least one of $\left|V_{1}\right|,\left|V_{2}\right|$ is even, and Γ_{i} for $i=1,2$ have integral eigenvalues, then $C_{2}\left(\Gamma_{1} \square \Gamma_{2}\right)$ is $C L C D$.

Proof: If $A_{i}, i=1,2$, is an adjacency matrix for Γ_{i} then $A_{i}\left(J-I-A_{i}\right)=$ $0=\nu_{i} J-A_{i}-A_{i}^{2}$. So if ν_{i} is even, $A_{i}=-A_{i}^{2}$, and $C_{2}\left(\Gamma_{i}\right)$ are both $R L C D$, and thus so is $C_{2}\left(\Gamma_{1} \square \Gamma_{2}\right)$. By Lemma 2, since the valency of $\Gamma_{1} \square \Gamma_{2}$ is $\nu_{1}+\nu_{2}$, which is even, $C_{2}\left(\Gamma_{1} \square \Gamma_{2}\right)$ is $C L C D$ if $2 \chi\left(\left|V_{1}\right|\left|V_{2}\right| \mid-1\right)$.

Corollary 1 If $\Gamma=\square_{i=1}^{n} \Gamma_{i}$ where $C_{2}\left(\Gamma_{i}\right)$ is $C L C D$ for $i=1, \ldots, n$ and all the $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ are regular of even valency, then $C_{2}(\Gamma)$ is $R L C D$, and if in addition, all the eigenvalues are integral and at least one of the $\left|V_{i}\right|$ is even, then $C_{2}(\Gamma)$ is $C L C D$.

Lemma 4 Let $\Gamma=\Gamma_{1} \square \Gamma_{2}$, where $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ for $i=1,2$. Let $w_{i} \in C_{2}\left(\Gamma_{i}\right)^{\perp}$ be of weight d_{i}, with $S_{1}=\operatorname{Supp}\left(w_{1}\right)=\left\{a_{1}, \ldots, a_{d_{1}}\right\}, S_{2}=\operatorname{Supp}\left(w_{2}\right)=$ $\left\{b_{1}, \ldots, b_{d_{2}}\right\}$, where $a_{i} \in V_{1}, b_{j} \in V_{2}$. Then the word with weight $d_{1} d_{2}$ and support

$$
S=\left\{<a_{i}, b_{j}>\mid i=1, \ldots d_{1}, j=1, \ldots d_{2}\right\}
$$

is in $C_{2}(\Gamma)^{\perp}$.
Proof: Let $X=<x, y>\in V_{1} \times V_{2}$. If r_{X} meets v^{S} in a point $<a_{i}, b_{j}>\in$ $V_{1} \times V_{2}$, then either $x=a_{i}$ and $y \sim b_{j}$ or $x \sim a_{i}$ and $y=b_{j}$. Suppose the former. Then since $w_{2} \in C_{2}\left(\Gamma_{2}\right)^{\perp}$, it meets r_{y} (from the adjacency matrix for Γ_{2}) evenly and thus there are an even number of points $\left\langle a_{i}, b\right\rangle$ in r_{X} for $b \in S_{2}$. The same hold in the other case, and thus $v^{S} \in C_{2}(\Gamma)^{\perp}$.

Note 5 This can be extended in the obvious way to words in $C_{2}\left(\square_{i=1}^{n} \Gamma_{i}\right)^{\perp}$ for n graphs Γ_{i}, giving a word of weight $\prod_{i=1}^{n} d_{i}$ from words of weight d_{i} in Γ_{i}, and in particular, if $\Gamma=\Gamma_{i}$ for all i, a word of weight d^{n} in $C_{2}\left(\Gamma^{\square, n}\right)$ from words of weight d in $C_{2}(\Gamma)$. In this case just one word suffices. Thus the minimum weight of $C_{2}\left(\Gamma^{\square, n}\right)$ is $\leq d^{n}$.

Lemma 5 Let $\Gamma=\Gamma_{1} \square \Gamma_{2}$, where $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ for $i=1,2$. Suppose both $C_{2}\left(\Gamma_{i}\right)$ for $i=1,2$ are RLCD. Let $w_{1} \in C_{2}\left(\Gamma_{1}\right)$ and $w_{2} \in C_{2}\left(\Gamma_{2}\right)^{\perp}$, with $S_{1}=\operatorname{Supp}\left(w_{1}\right)=\left\{a_{1}, \ldots, a_{d_{1}}\right\}, S_{2}=\operatorname{Supp}\left(w_{2}\right)=\left\{b_{1}, \ldots, b_{d_{2}}\right\}$, where $a_{i} \in$ $V_{1}, b_{j} \in V_{2}$. Then the word with weight $d_{1} d_{2}$ and support

$$
S=\left\{<a_{i}, b_{j}>\mid i=1, \ldots d_{1}, j=1, \ldots d_{2}\right\}
$$

is in $C_{2}(\Gamma)$.

Proof: Since $C_{2}(\Gamma)$ is $R L C D$ we need only show that the inner product $\left(v^{S}, s_{X}\right)=0$ for all $X \in V_{1} \times V_{2}$. If A is an adjacency matrix for Γ, the row s_{X} of the matrix $A+I$ has 1's at X and at the neighbours of X. By abuse of language we can write, as explained in Notation 1, for $X=\langle x, y\rangle$,

$$
\begin{equation*}
s_{X}=\{<x, y>\} \cup\left\{<x, y_{i}>\mid y_{i} \sim y\right\} \cup\left\{<x_{i}, y>\mid x_{i} \sim x\right\} \tag{5}
\end{equation*}
$$

If $X=<a_{i}, b_{j}>$ then since $w_{1} \in C_{2}\left(\Gamma_{1}\right)=C_{2}\left(R \Gamma_{1}\right)^{\perp}, w_{1}$ meets the row $s_{a_{i}}$ of $A_{1}+I$, where A_{1} is an adjacency matrix for Γ_{1}, evenly, so s_{X} contains an even number of points of the the form $<a_{k}, b_{j}>$, including $k=i$. Since $w_{2} \in C_{2}\left(R \Gamma_{2}\right)$, the row $r_{b_{j}}$ of an adjacency matrix A_{2} for Γ_{2} meets w_{2} evenly so v^{S} meets s_{X} in an even number of points of the form $<a_{i}, b_{k}>$ (where $k \neq j$). Thus ($\left.v^{S}, s_{X}\right)=0$.

If $X=<a_{i}, b>$ where $b \notin S_{2}$, then if $b \nsim b_{j}$ for any $b_{j} \in S_{2}$, then s_{X} does not meet v^{S} at all. If $b \sim b_{j}$ for some j, then r_{b} meets w_{2} evenly so there are an even number of points of the form $<a_{i}, b_{j}>$ in s_{X}.

If $X=<a, b_{j}>$ where $a \notin S_{1}$, then if $a \nsim a_{i}$ for any $a_{i} \in S_{1}$, then s_{X} does not meet v^{S} at all. If $a \sim a_{i}$ for some i, then s_{a} meets w_{1} evenly so there are an even number of points of the form $<a_{i}, b_{j}>$ in s_{X}.

If $X=<a, b>$ where $a \notin S_{1}$ and $b \notin S_{2}$, then s_{X} does not meet v^{S} at all, and the proof is complete.

The rank of the adjacency matrix from the Cartesian product is not given directly from the construction. However, we can use the eigenvalues of the graphs to get information regarding the possible dimension of the codes of the product graph. Since if λ is an eigenvalue for a matrix M then $\lambda+1$ is an eigenvalue for $M+I$. If M is a $v \times v$ integral matrix with integral eigenvalues, then modulo p these will still be eigenvalues, but not necessarily all distinct. If none or at most one reduce to 0 modulo p then the p-rank of M will be v or $v-m_{j}$, respectively, where m_{j} is the multiplicity of the eigenvalue that is zero. In any case, the dimension of the zero eigenspace over \mathbb{F}_{p} of the matrix A or $A+I$ is at most the sum m of the multiplicities of the eigenvalues that reduce to 0 modulo p, and thus the p-rank of A or $A+I$ is at least $\binom{n}{k}-m$.

This, together with the following result quoted in [2, Theorem 3], but due to [5], and also quoted in [25] allows one to get the 2-rank of the Cartesian product if the eigenvalues and multiplicities of all the constituents are known and integral, and if the constituents are all RLCD, using Result 4:

Result 8 If $\Gamma=\Gamma_{1} \square \Gamma_{2}$, where $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ with $\left|V_{i}\right|=N_{i}$ then if $\left\{\lambda_{i} \mid\right.$ $1 \leq i \leq r\}$ are the eigenvalues of Γ_{1}, with multiplicities $n_{i}, 1 \leq i \leq r$ and $\left\{\mu_{i} \mid 1 \leq i \leq s\right\}$ are the eigenvalues of Γ_{2}, with multiplicities $m_{i}, 1 \leq i \leq s$ then the eigenvalues of Γ are $\left\{\lambda_{i}+\mu_{j} \mid 1 \leq i \leq r, 1 \leq j \leq s\right\}$ with multiplicities $\left\{n_{i} m_{j} \mid 1 \leq i \leq r, 1 \leq j \leq s\right\}$.

4 Direct (or Categorical) products of graphs $\Gamma_{1} \times \Gamma_{2}$

If $\Gamma_{i}=\left(V_{i}, E_{i}\right), i=1,2$, are graphs with $\left|V_{i}\right|=n_{i}$ and adjacency matrix A_{i}, then $\Gamma=\Gamma_{1} \times \Gamma_{2}$ will denote the direct product of the graphs, with vertex set $V=V_{1} \times V_{2}$. Here if $\langle x, y\rangle,\langle u, v\rangle \in V$ then

- adjacency is defined by $<x, y>\sim<u, v>$ in Γ if $x \sim u$ in Γ_{1} and $y \sim v$ in Γ_{2};
- if Γ_{i} are regular of valency $\nu_{i}, i=1,2$, respectively, then $\Gamma_{1} \times \Gamma_{2}$ is regular of valency $\nu_{1} \nu_{2}$;
- an adjacency matrix $A_{1 \times 2}$ for $\Gamma_{1} \times \Gamma_{2}$ is $A_{1 \times 2}=A_{1} \otimes A_{2}$;
$-\operatorname{rank}\left(A_{1 \times 2}\right)=\operatorname{rank}\left(A_{1}\right) \operatorname{rank}\left(A_{2}\right)$.
This last item follows from the properties of Kronecker products.
Proposition 2 Let $\Gamma=\times_{i=1}^{n} \Gamma_{i}$. Then $C_{2}(\Gamma)$ is $R L C D$ if all the $C_{2}\left(\Gamma_{i}\right)$ are $R L C D$ for $i=1, \ldots, n$. If p is an odd prime and the $C_{p}\left(\Gamma_{i}\right)$ are $R L C D$ for $i=1, \ldots, n$, then $C_{p}(\Gamma)$ is RLCD if n is odd.

Proof: Consider $\Gamma_{1} \times \Gamma_{2}$. If $A=A_{1 \times 2}=A_{1} \otimes A_{2}$, then $A^{2}+A=A_{1}^{2} \otimes A_{2}^{2}+$ $A_{1} \otimes A_{2}$. Thus $A^{2}+A=0$ if $A_{i}^{2}+A_{i}=0$ for both i. This extends to a product of n graphs.

For $p>2,\left(\otimes_{i=1}^{n} A_{i}\right)^{2}=\left(\otimes_{i=1}^{n} A_{i}^{2}\right)=\otimes_{i=1}^{n}\left(-A_{i}\right)=-\otimes_{i=1}^{n} A_{i}$ if n is odd.
Corollary 2 Let $\Gamma=\Gamma_{1} \times \Gamma_{2}$. If $C_{2}(\Gamma)$ and $C_{2}\left(\Gamma_{1}\right)$ are $R L C D$, then $C_{2}\left(\Gamma_{2}\right)$ is $R L C D$.

Proof: With notation as above, $0=A^{2}+A=A_{1}^{2} \otimes A_{2}^{2}+A_{1} \otimes A_{2}=A_{1} \otimes$ $A_{2}^{2}+A_{1} \otimes A_{2}=A_{1} \otimes\left(A_{2}^{2}+A_{2}\right)$. Since this has rank 0 , and A_{1} does not have rank 0 , we must have $A_{2}^{2}+A_{2}=0$, so $C_{2}\left(\Gamma_{2}\right)$ is $R L C D$.

Note 6 If all the Γ_{i} are equal to a graph Γ then $\times{ }_{i=1}^{n} \Gamma$ is written $\Gamma^{\times, n}$.
Lemma 6 Let $\Gamma=\times_{i=1}^{n} \Gamma_{i}$, where $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ for $i=1, \ldots, n$. Let $w_{i} \in$ $C_{2}\left(\Gamma_{i}\right)^{\perp}$ be of weight d_{i}, with $S_{i}=\operatorname{Supp}\left(w_{i}\right)=\left\{a_{i, 1}, \ldots, a_{i, d_{i}}\right\}$, for $i=$ $1, \ldots, n$, where $a_{i, j} \in V_{i}$ for $j=1, \ldots, d_{i}$. Then for any i and any choice of $b_{j} \in V_{j}, j=1, \ldots, n, j \neq i$, the word with support

$$
\left.S=\left\{<b_{1}, \ldots, b_{i-1}, a, b_{i+1}, \ldots, b_{n}\right\rangle \mid a \in S_{i}\right\}
$$

is in $C_{2}(\Gamma)^{\perp}$ and has weight d_{i}. If there are m_{i} words of weight d_{i} in $C_{2}\left(\Gamma_{i}\right)^{\perp}$ then there are $m_{i} \prod_{j \neq i}\left|V_{j}\right|$ words of weight d_{i} of this form in $C_{2}(\Gamma)^{\perp}$, for each $i=1, \ldots, n$.

If the Γ_{i} are all equal to a graph $\Lambda=(V, E), d_{i}=d, m_{i}=m$, then the number of words of this form of weight d in $C_{2}\left(\Lambda^{\times, n}\right)^{\perp}$ is $m n|V|^{n-1}$.
Proof: If $X=<x_{1}, \ldots, x_{n}>\in V_{1} \times \ldots \times V_{n}$, then if v^{S} meets r_{X}, we must have $b_{j} \sim x_{j}$ for $j \neq i$, and $a \sim x_{i}$ for some $a \in S_{i}$. But since $w_{i}=v^{S_{i}} \in C_{2}\left(\Gamma_{i}\right)^{\perp}$ there must be an even number of such a, and thus v^{S} meets r_{X} evenly, showing that $v^{S} \in C_{2}(\Gamma)^{\perp}$. Counting the number of words is direct.

Corollary 3 Let $\Gamma=\times_{i=1}^{n} \Gamma_{i}$, where $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ for $i=1, \ldots, n$. Suppose $C_{2}\left(\Gamma_{i}\right)^{\perp}$ has minimum weight d_{i} for $i=1, \ldots, n$, and let $d=\min \left\{d_{i} \mid i=\right.$ $1, \ldots, n\}$. Then the minimum weight of $C_{2}(\Gamma)^{\perp}$ is at most d.

Lemma 7 Let $\Gamma=\Gamma_{1} \times \Gamma_{2}$, where $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ for $i=1,2$. Suppose both $C_{2}\left(\Gamma_{i}\right)$ for $i=1,2$ are RLCD. Let $w_{1} \in C_{2}\left(\Gamma_{1}\right)$ and $w_{2} \in C_{2}\left(\Gamma_{2}\right)$, with $S_{1}=$ $\operatorname{Supp}\left(w_{1}\right)=\left\{a_{1}, \ldots, a_{d_{1}}\right\}, S_{2}=\operatorname{Supp}\left(w_{2}\right)=\left\{b_{1}, \ldots, b_{d_{2}}\right\}$, where $a_{i} \in V_{1}$, $b_{j} \in V_{2}$. Then the word with weight $d_{1} d_{2}$ and support

$$
S=\left\{<a_{i}, b_{j}>\mid i=1, \ldots d_{1}, j=1, \ldots d_{2}\right\}
$$

is in $C_{2}(\Gamma)$.
Proof: Since $C_{2}(\Gamma)$ is $R L C D$ we need only show that $\left(v^{S}, s_{X}\right)=0$ for all $X \in V_{1} \times V_{2}$, where, for $X=<x, y>$,

$$
\left.s_{X}=\{<x, y>\} \cup\left\{<x_{i}, y_{i}\right\rangle \mid x_{i} \sim x, y_{i} \sim y\right\}
$$

If $X=<a_{i}, b_{j}>$ then $s_{a_{i}}$ meets w_{1} evenly, so in a_{i} and an odd number of a_{k}, and likewise $s_{b_{j}}$ meets w_{2} evenly, so in b_{j} and an odd number of b_{l}. Thus s_{X} meets v^{S} in $\left.<a_{i}, b_{j}\right\rangle$ and an odd number of points $\left.<a_{k}, b_{l}\right\rangle$ where $a_{k} \sim a_{i}$ and $b_{l} \sim b_{j}$. Thus s_{X} meets v^{S} evenly.

If $X=<a_{i}, b>$, where $b \notin S_{2}$, then if $b \nsim b_{j}$ for any b_{j}, s_{X} does not meet v^{S} at all. If $b \sim b_{j}$ for some j then since s_{b} meets w_{2} evenly, i.e. it meets S_{2} evenly. Since w_{1} meets $s_{a_{i}}$ evenly, there are an odd number of points in S_{2} adjacent to a_{i} (excluding a_{i}). Thus counting the number of points of the form $<a_{j}, b_{k}>$ in s_{X} we get it to be even. The same argument works for a point X of the form $X=<a, b_{j}>$ where $a \notin S_{1}$.

If $X=<a, b>$ where $a \notin S_{1}, b \notin S_{2}$ then if either $a \nsim a_{i}$ for any i or $b \nsim b_{j}$ for any j, then s_{X} does not meet v^{S} at all. Thus suppose $a \sim a_{i}$ and $b \sim b_{j}$. Since s_{a} meets S_{1} evenly and s_{b} meets S_{2} evenly we certainly have the number of $\left\langle a_{i}, b_{j}\right\rangle$ in s_{x} even.

This completes the proof.

Note 7 Lemma 7 extends to any number of graphs Γ_{i} for which $C_{2}\left(\Gamma_{i}\right)$ are all $R L C D$.

We can summarise these results concerning the parameters of the binary code of the direct product of graphs whose binary codes are $R L C D$:

Theorem 2 Let $\Gamma=\times_{i=1}^{n} \Gamma_{i}$, where $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ for $i=1, \ldots, n$ and $C_{2}\left(\Gamma_{i}\right)$ is $R L C D$ for $i=1, \ldots, n$. Suppose that $C_{2}\left(\Gamma_{i}\right)$ is a $\left[v_{i}, k_{i}, d_{i}\right]_{2}$ code and $C_{2}\left(\Gamma_{i}\right)^{\perp} a\left[v_{i}, v_{i}-k_{i}, \delta_{i}\right]_{2}$ code, for $i=1, \ldots, n$. Then

1. $C_{2}(\Gamma)$ is $R L C D$;
2. $C_{2}(\Gamma)$ is a $\left[\prod_{i=1}^{n} v_{i}, \prod_{i=1}^{n} k_{i}, d\right]_{2}$ code, where $d \leq \prod_{i=1}^{n} d_{i}$;
3. $C_{2}(\Gamma)^{\perp}$ is a $\left[\prod_{i=1}^{n} v_{i}, \prod_{i=1}^{n} v_{i}-\prod_{i=1}^{n} k_{i}, \delta\right]_{2}$ code, where $\delta=\min \left\{\delta_{i} \mid i=\right.$ $1, \ldots, n\}$.

Proof: Follows from Proposition 2, Lemma 6, Corollary 3, Lemma 7.
For graphs Γ_{i} for $i=1, \ldots, n$, and $\Gamma=\times_{i=1}^{n} \Gamma_{i}$, it is clear that if $\sigma_{i} \in$ $\operatorname{Aut}\left(\Gamma_{i}\right)$ for $i=1, \ldots, n$, then $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ is in $\operatorname{Aut}(\Gamma)$, the action being defined in the obvious way.

Lemma 8 If $C=C_{2}(\Gamma \times \Gamma)$ where $\Gamma=(V, E)$ with $|V|=n$, and I is an information set for $C_{2}(\Gamma)$, then an information set for C is $\mathcal{I}=I \times I=\{<$ $i, j>\mid i, j \in I\}$.

Furthermore, if S is an s-PD-set for $C_{2}(\Gamma)$ with information set I, then $S \times\left\{i d_{V}\right\}$, or $\left\{i d_{V}\right\} \times S$ is an s-PD-set for $\Gamma \times \Gamma$ with information set \mathcal{I}.

Proof: The proof is clear.
Note 8 Such information sets and s-PD-sets extend to a direct product of any number of graphs $\Gamma_{i}=\left(V_{i}, E_{i}\right)$, i.e. if $\Gamma=\times_{i=1}^{n} \Gamma_{i}$ and I_{i} is an information set for $C_{2}\left(\Gamma_{i}\right)$ then $I_{1} \times \ldots \times I_{n}$ is an information set for $C_{2}(\Gamma)$. If S_{i} is an s_{i}-PD-set for $C_{2}\left(\Gamma_{i}\right)$, then for each $i=1, \ldots, n$, the set

$$
\left\{i d_{V_{1}}\right\} \times\left\{i d_{V_{2}}\right\} \times \ldots \times S_{i} \times\left\{i d_{V_{i+1}}\right\} \times \ldots \times\left\{i d_{V_{n}}\right\}
$$

is an s_{i}-PD-set for $C_{2}(\Gamma)$.

5 Strong products of graphs $\Gamma_{1} \boxtimes \Gamma_{2}$

If $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right)$, the strong product of the two graphs is the graph $\Gamma=\Gamma_{1} \boxtimes \Gamma_{2}$ where $\Gamma=(V, E), V=V_{1} \times V_{2},\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$, and for $\langle x, y\rangle,\langle u, v\rangle \in V$,

- adjacency is defined by $<x, y>\sim<u, v>$ in Γ if $x=u$ and $y \sim v$ in Γ_{2}, or $x \sim u$ in Γ_{1} and $y=v$, or $x \sim u$ in Γ_{1} and $y \sim v$ in Γ_{2};
- if Γ_{i} is regular of valency ν_{i} then Γ is regular of valency $\nu_{1}+\nu_{2}+\nu_{1} \nu_{2}$;
- if A_{1} is an adjacency matrix for Γ_{1}, and A_{2} is an adjacency matrix for Γ_{2}, then an adjacency matrix for $\Gamma_{1} \boxtimes \Gamma_{2}$ is

$$
A=A_{1 \boxtimes 2}=A_{1} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2}+A_{1} \otimes A_{2}=A_{1 \square 2}+A_{1 \times 2}
$$

Proposition 3 Let $\Gamma=\boxtimes_{i=1}^{n} \Gamma_{i}$. Then $C_{2}(\Gamma)$ is RLCD if all the $C_{2}\left(\Gamma_{i}\right)$ are $R L C D$ for $i=1, \ldots, n$.

Proof: Consider $\Gamma_{1} \boxtimes \Gamma_{2}$. Then with notation as before

$$
A=A_{1 \boxtimes 2}=A_{1} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2}+A_{1} \otimes A_{2}
$$

So $A^{2}=A_{1}^{2} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2}^{2}+A_{1}^{2} \otimes A_{2}^{2}=A$, and thus $C_{2}(\Gamma)$ is also $R L C D$. Again this extends to the product of n graphs.

Corollary 4 Let $\Gamma=\Gamma_{1} \boxtimes \Gamma_{2}$. If $C_{2}(\Gamma)$ and $C_{2}\left(\Gamma_{1}\right)$ are $R L C D$, then $C_{2}\left(\Gamma_{2}\right)$ is $R L C D$.

Proof: With notation as above, $A^{2}=A_{1}^{2} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2}^{2}+A_{1}^{2} \otimes A_{2}^{2}=$ $A_{1} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2}^{2}+A_{1} \otimes A_{2}^{2}=A=A_{1} \otimes I_{n_{2}}+I_{n_{1}} \otimes A_{2}+A_{1} \otimes A_{2}$, and so $\left(I_{n_{1}}+A_{1}\right) \otimes\left(A_{2}+A_{2}^{2}\right)=0$. Since $\left(I_{n_{1}}+A_{1}\right) \neq 0$, we must have $A_{2}+A_{2}^{2}=0$ and thus $C_{2}\left(\Gamma_{2}\right)$ is $R L C D$.

Note 9 If all the Γ_{i} are equal to a graph Γ then $\boxtimes_{i=1}^{n} \Gamma$ is written $\Gamma^{\boxtimes, n}$.

6 Lexicographic products of graphs $\Gamma_{1} \circ \Gamma_{2}$

If $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right),\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$, and A_{1}, A_{2} are adjacency matrices for Γ_{1}, Γ_{2} respectively, the lexicographic product of the two graphs is the graph $\Gamma=\Gamma_{1} \circ \Gamma_{2}$ where $\Gamma=(V, E), V=V_{1} \times V_{2}$, and, for $<x, y>,<u, v>\in V$

- adjacency is defined by $<x, y>\sim<u, v>$ in Γ if $x \sim u$ in Γ_{1} or if $x=u$ and $y \sim v$ in Γ_{2};
- if Γ_{i} is regular of valency ν_{i} then Γ is regular of valency $\nu_{1} n_{2}+\nu_{2}$;
- an adjacency matrix for Γ is

$$
A=A_{1 \circ 2}=A_{1} \otimes J_{n_{2}}+I_{n_{1}} \otimes A_{2}
$$

It is easy to prove that the lexicographic product is associative.
Proposition 4 Let $\Gamma=\Gamma_{1} \circ \Gamma_{2}$. Then $C_{2}(\Gamma)$ is $R L C D$ if both $C_{2}\left(\Gamma_{i}\right)$ are $R L C D$ and n_{2} is odd.

Proof: For $A=A_{1} \otimes J_{n_{2}}+I_{n_{1}} \otimes A_{2}$, over \mathbb{F}_{2},

$$
A^{2}=\left(A_{1} \otimes J_{n_{2}}\right)^{2}+I_{n_{1}} \otimes A_{2}^{2}=n_{2} A_{1}^{2} \otimes J_{n_{2}}+I_{n_{1}} \otimes A_{2}^{2}=A
$$

if n_{2} is odd.
Corollary 5 Let $\Gamma=\Gamma_{1} \circ \Gamma_{2}$ and suppose $C_{2}(\Gamma)$ is $R L C D$. Then

1. if $C_{2}\left(\Gamma_{1}\right)$ is RLCD, then $C_{2}\left(\Gamma_{2}\right)$ is RLCD if n_{2} is odd;
2. if $C_{2}\left(\Gamma_{2}\right)$ is RLCD, then $C_{2}\left(\Gamma_{1}\right)$ is RLCD if n_{2} is odd.

Proof: With notation as above, we assume

$$
A^{2}=n_{2} A_{1}^{2} \otimes J_{n_{2}}+I_{n_{1}} \otimes A_{2}^{2}=A=A_{1} \otimes J_{n_{2}}+I_{n_{1}} \otimes A_{2}
$$

1. If $C_{2}\left(\Gamma_{1}\right)$ is $R L C D$ then $A_{1}^{2}=A_{1}$, so we have $n_{2} A_{1} \otimes J_{n_{2}}+I_{n_{1}} \otimes A_{2}^{2}=$ $A_{1} \otimes J_{n_{2}}+I_{n_{1}} \otimes A_{2}$, so $\left(n_{2}+1\right) A_{1} \otimes J_{n_{2}}=I_{n_{1}} \otimes\left(A_{2}+A_{2}^{2}\right)$. If n_{2} is odd then we have $I_{n_{1}} \otimes\left(A_{2}+A_{2}^{2}\right)=0$, and hence $A_{2}=A_{2}^{2}$ and $C_{2}\left(\Gamma_{2}\right)$ is $R L C D$.
2. If $C_{2}\left(\Gamma_{2}\right)$ is $R L C D$ then $A_{2}^{2}=A_{2}$, so we have $n_{2} A_{1}^{2} \otimes J_{n_{2}}+I_{n_{1}} \otimes A_{2}=$ $A_{1} \otimes J_{n_{2}}+I_{n_{1}} \otimes A_{2}$, so $\left(n_{2} A_{1}^{2}+A_{1}\right) \otimes J_{n_{2}}=0$. If n_{2} is even this would imply that $A_{1} \otimes J_{n_{2}}=0$, which is impossible, and so we must have n_{2} odd, and $A_{1}=A_{1}^{2}$, so $C_{2}\left(\Gamma_{1}\right)$ is $R L C D$.

Note 10 If all the Γ_{i} are equal to a graph Γ then $\circ_{i=1}^{n} \Gamma$ is written $\Gamma^{\circ, n}$.

7 Other products of graphs

7.1 Blackbox product of graphs $\Gamma_{1} \Gamma_{2}$

If $\Gamma_{1}=\left(V_{1}, E_{1}\right)$ and $\Gamma_{2}=\left(V_{2}, E_{2}\right),\left|V_{1}\right|=n_{1},\left|V_{2}\right|=n_{2}$, and A_{1}, A_{2} are adjacency matrices for Γ_{1}, Γ_{2} respectively, the blackbox product of the two graphs is the graph $\Gamma=\Gamma_{1} \Gamma_{2}$ where $\Gamma=(V, E), V=V_{1} \times V_{2}$, and for $<x, y>,<u, v>\in V$,

- adjacency is defined by $<x, y>\sim<u, v>$ in Γ if $x \sim u$ in Γ_{1} or $y \sim v$ in Γ_{2};
- if Γ_{i} is regular of valency ν_{i} then Γ is regular of valency $\nu_{1} n_{2}+\nu_{2} n_{1}-\nu_{1} \nu_{2}$;
- an adjacency matrix for $\Gamma_{1} \Gamma_{2}$ is

$$
A=A_{1} ■_{2}=A_{1} \otimes J_{n_{2}}+J_{n_{1}} \otimes A_{2}-A_{1} \otimes A_{2}
$$

Proposition 5 Let $\Gamma=\square_{i=1}^{n} \Gamma_{i}$. Then $C_{2}(\Gamma)$ is RLCD if all the $C_{2}\left(\Gamma_{i}\right)$ are $R L C D$ and all the n_{i} are odd, where $\Gamma_{i}=\left(V_{i}, E_{i}\right)$ and $\left|V_{i}\right|=n_{i}$.

Proof: Let $\Gamma=\Gamma_{1} \square \Gamma_{2}$. With notation as above, taking $n=2$,
$A^{2}=n_{2} A_{1}^{2} \otimes J_{n_{2}}+n_{1} J_{n_{1}} \otimes A_{2}^{2}+A_{1}^{2} \otimes A_{2}^{2}=n_{2} A_{1} \otimes J_{n_{2}}+n_{1} J_{n_{1}} \otimes A_{2}+A_{1} \otimes A_{2}=A$ since n_{1}, n_{2} are odd. This extends to the blackbox product of n graphs.

Corollary 6 Let $\Gamma=\Gamma_{1} ■ \Gamma_{2}$. If $C_{2}(\Gamma)$ and $C_{2}\left(\Gamma_{1}\right)$ are $R L C D$ then if n_{1} and n_{2} are odd, $C_{2}\left(\Gamma_{2}\right)$ is $R L C D$.
Proof: With notation as before,
$A^{2}=n_{2} A_{1}^{2} \otimes J_{n_{2}}+n_{1} J_{n_{1}} \otimes A_{2}^{2}+A_{1}^{2} \otimes A_{2}^{2}=A=A_{1} \otimes J_{n_{2}}+J_{n_{1}} \otimes A_{2}+A_{1} \otimes A_{2}$, so $n_{2} A_{1} \otimes J_{n_{2}}+n_{1} J_{n_{1}} \otimes A_{2}^{2}+A_{1} \otimes A_{2}^{2}=A_{1} \otimes J_{n_{2}}+J_{n_{1}} \otimes A_{2}+A_{1} \otimes A_{2}$, so since n_{1}, n_{2} are odd, and thus $\equiv 1(\bmod 2)$, we have $J_{n_{1}} \otimes A_{2}^{2}+A_{1} \otimes A_{2}^{2}=$ $J_{n_{1}} \otimes A_{2}+A_{1} \otimes A_{2}$, and hence $\left(J_{n_{1}}+A_{1}\right) \otimes\left(A_{2}^{2}+A_{2}\right)=0$. Since $A_{1} \neq J_{n_{1}}$, we must have $A_{2}^{2}+A_{2}=0$, so $C_{2}\left(\Gamma_{2}\right)$ is $R L C D$.

Note 11 If all the Γ_{i} are equal to a graph Γ then $\rrbracket_{i=1}^{n} \Gamma$ is written $\Gamma^{■, n}$.

$7.2 n$-Multiples of a graph $n \otimes \Gamma$

If $\Gamma=(V, E), \Omega=\{1, \ldots, n\}$, the n-multiple of Γ is the graph $n \otimes \Gamma=$ $\left(V \times \Omega, E_{n}\right)$ with adjacency defined by $<x, i>\sim<y, j>$ if $x \sim y$ in Γ. If A is an adjacency matrix for Γ then an adjacency matrix for $n \otimes \Gamma$ is $A \otimes J_{n}$.

Proposition 6 For $n \in Z$, if $C_{p}(\Gamma)$ is $R L C D$ for some prime p, then $C_{p}(n \otimes$ $\Gamma)$ is $R L C D$ if $n \equiv-1(\bmod p)$.

Proof: Let A be an adjacency matrix for Γ. Then $\left(A \otimes J_{n}\right)^{2}=A^{2} \otimes J_{n}^{2}=$ $A^{2} \otimes n J_{n}=(-A) \otimes n J_{n}=-A \otimes J_{n}$ if $n \equiv-1(\bmod p)$.
$7.3 n$-Copies of a graph $n \Gamma$
If $\Gamma=(V, E), \Omega=\{1, \ldots, n\}$, then n-copies of Γ is the graph $n \Gamma=(V \times$ Ω, E_{n}) with adjacency defined by $<x, i>\sim<y, j>$ if $x \sim y$ and $i=j$, or $x=y$ and $i \neq j$. If $|V|=v$, and Γ is regular of valency ν, then $n \Gamma$ is regular of valency $\nu+n-1$. If A is an adjacency matrix for Γ then an adjacency matrix for $n \Gamma$ is $B=A \otimes I_{n}+I_{v} \otimes\left(J_{n}-I_{n}\right)$.

Proposition 7 For $n \in Z$, if $C_{2}(\Gamma)$ is $R L C D$, then $C_{2}(n \Gamma)$ is $R L C D$ if n is odd.

Proof: Let A be an adjacency matrix for Γ, B one for $n \Gamma$. Then over \mathbb{F}_{2}, $B^{2}=\left(A \otimes I_{n}+I_{v} \otimes\left(J_{n}-I_{n}\right)\right)^{2}=A^{2} \otimes I_{n}+I_{v} \otimes\left(J_{n}-I_{n}\right)^{2}=A^{2} \otimes I_{n}+I_{v} \otimes$ $\left(n J_{n}+I_{n}\right)=B$ if n is odd and $A^{2}=A$, i.e. Γ is $R L C D$.

8 Examples

We will consider here the products of some graphs whose binary codes have been shown to be $R L C D$, in particular the triangular graphs $T(m)$, whose binary codes are shown in [16, Corollary 2] to be $R L C D$ for $m \geq 5$ odd, and the Paley graphs $P(q)$, for prime power $q \equiv 1(\bmod 8)$, whose binary codes are also shown to be $R L C D$ in [16, Corollary 2].

First some background facts about these graphs and their binary codes.

1. Triangular graph $T(m)=\Gamma(m, 2,1)$

The triangular graph $T(m)$ has for vertices the set $V=\Omega^{\{2\}}$ where Ω is a set of size m, and $\{a, b\} \sim\{c, d\}$ if $|\{a, b\} \cap\{c, d\}|=1$. It is a strongly regular graph with parameters $\left(\binom{m}{2}, 2(m-2), m-2,4\right)$, and a uniform subset graph $\Gamma(m, 2,1)$. The binary code from an adjacency matrix for $T(m)$ has been studied in various places (e.e. see $[8,15]$). If $m \geq 5$ is odd then $C=C_{2}(T(m))$ is a $\left.\left[\begin{array}{c}m \\ 2\end{array}\right), m-1, m-1\right]_{2}$ code and is $R L C D$, with $C^{\perp}=C_{2}(R T(m))$ a $\left[\binom{m}{2},\binom{m-1}{2}, 3\right]_{2}$ code, with the words of weight 3 having the form $v^{\{a, b\}}+v^{\{a, c\}}+v^{\{b, c\}}$ for any set of three distinct elements of $\Omega=\{1, \ldots, m\}, m \geq 5$ (see [15, Lemma 3.2]). For m even it is not $R L C D$.
The symmetric group S_{m} is a subgroup of $\operatorname{Aut}(T(m))$.
The eigenvalues of $\Gamma=T(m)$ are known since it is strongly regular. We will write λ_{i}^{*} for $\lambda_{i}+1$, the eigenvalue of $R \Gamma$ (since the binary code is $R L C D$ for m odd) corresponding to the eigenvalue λ_{i} of Γ.
$-\lambda_{0}=2 m-4, \lambda_{0}^{*}=2 m-3, m_{0}=1$;
$-\lambda_{1}=m-4, \lambda_{1}^{*}=m-3, m_{1}=m-1$;
$-\lambda_{2}=-2, \lambda_{2}^{*}=-1, m_{2}=\frac{1}{2} m(m-3) ;$
2. Paley graph $P(q)$

For q any prime power such that $q \equiv 1(\bmod 4), \Gamma=P(q)$ is the Paley graph on \mathbb{F}_{q} with $x \sim y$ if and only if $x-y$ is a non-zero square. It is strongly regular with parameters $\left(q, \frac{1}{2}(q-1), \frac{1}{4}(q-5), \frac{1}{4}(q-1)\right)$. Its binary
code C is $R L C D$ if $q \equiv 1(\bmod 8)$ and is a $\left[q, \frac{1}{2}(q-1), d\right]_{2}$ code, while $R C$ is a $\left[q, \frac{1}{2}(q-1), d^{\perp}\right]_{2}$ code, where d, d^{\perp} are not known in the general case. For any non-zero square $a \in F_{q}$ and any $b \in \mathbb{F}_{q}$, the map $\tau_{a, b}: x \mapsto a x+b$ is an automorphism of $P(q)$.
Again, the eigenvalues of $\Gamma=P(q)$ are known since it is strongly regular, and we write λ_{i}^{*} for $\lambda_{i}+1$, the eigenvalue of $R \Gamma$ (since the binary code is $R L C D$ for $q \equiv 1(\bmod 8))$, corresponding to the eigenvalue λ_{i} of Γ.
$-\lambda_{0}=\frac{1}{2}(q-1), \lambda_{0}^{*}=\frac{1}{2}(q+1), m_{0}=1 ;$
$-\lambda_{1}=\frac{1}{2}(-1+\sqrt{q}), \lambda_{1}^{*}=\frac{1}{2}(1+\sqrt{q}), m_{1}=\frac{1}{2}(q-1)$;
$-\lambda_{2}=\frac{1}{2}(-1-\sqrt{q}), \lambda_{2}^{*}=\frac{1}{2}(1-\sqrt{q}), m_{2}=\frac{1}{2}(q-1)$.

8.1 Cartesian product

Recall from the definition at the beginning of Section 3 that for Γ_{1} of valency ν_{1} and Γ_{2} of valency ν_{2}, the valency of $\Gamma_{1} \square \Gamma_{2}$ is $\nu_{1}+\nu_{2}$. However we have no information in general for the rank of an adjacency matrix. If the eigenvalues of the graphs are known then the eigenvalues of $\Gamma_{1} \square \Gamma_{2}$ can be computed from Result 8.

(1) Cartesian product of n copies of $T(m)$

Recall that for $m \geq 5$ odd, $C_{2}(T(m))$ is a $\left[\binom{m}{2}, m-1, m-1\right]_{2}$ code and $C_{2}(T(m))^{\perp}$ is a $\left.\left[\begin{array}{c}m \\ 2\end{array}\right),\binom{m-1}{2}, 3\right]_{2}$ code. The valency of $T(m)$ is $2(m-2)$, so the valency of $\square_{i=1}^{n} T(m)=T(m)^{\square, n}$ is $2 n(m-2) . C_{2}\left(T(m)^{\square, n}\right)^{\perp}$ has words of weight 3^{n} by Lemma 4 , using words of weight 3 in $C_{2}(T(m))^{\perp}$.

We consider $\Gamma=\square_{i=1}^{n} T(5)=T(5)^{\square, n}$ with adjacency matrix A_{n} on 10^{n} vertices and valency $6 n$. For A_{1} and A_{n} we have, from Section 3,

$$
A_{1}=\left[\begin{array}{lllllllllll}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \tag{6}\\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right],
$$

$$
A_{n}=\left[\begin{array}{cccccccccc}
A_{n-1} & I & I & I & I & I & I & 0 & 0 & 0 \\
I & A_{n-1} & I & I & I & 0 & 0 & I & I & 0 \\
I & I & A_{n-1} & I & 0 & I & 0 & I & 0 & I \\
I & I & I & A_{n-1} & 0 & 0 & I & 0 & I & I \\
I & I & 0 & 0 & A_{n-1} & I & I & I & I & 0 \\
I & 0 & I & 0 & I & A_{n-1} & I & I & 0 & I \\
I & 0 & 0 & I & I & I & A_{n-1} & 0 & I & I \\
0 & I & I & 0 & I & I & 0 & A_{n-1} & I & I \\
0 & I & 0 & I & I & 0 & I & I & A_{n-1} & I \\
0 & 0 & I & I & 0 & I & I & I & I & A_{n-1}
\end{array}\right],
$$

where $I=I_{10^{n-1}}$, and A_{n} is $10^{n} \times 10^{n}$. By row reduction of A_{n} one can deduce that $\operatorname{rank}_{2}\left(A_{n}\right)=4 \times 10^{n-1}+2 \times \operatorname{rank}_{2}\left(A_{n-1}\right)$; solving this recurrence and simplifying and using the fact that $\operatorname{rank}_{2}\left(A_{1}\right)=4$, gives

$$
\operatorname{rank}_{2}\left(A_{n}\right)=2^{n-1}\left(5^{n}-1\right)
$$

The minimum weight of $C_{2}(T(5))$ is 4 and computation with Magma [4, 3] tells us that the minimum weight of $C=C_{2}(T(5) \square T(5))$ is 12 , and that of its dual is 9 . Words of weight 12 in C can be constructed as is shown in Lemma 5 (and also the block $r_{\langle x, y>}$ has this weight), and of weight 9 in $R C$ in Lemma 4, using words of weight 3 in $C_{2}(T(5))^{\perp}$. Thus $C=C_{2}(T(5) \square T(5))$ is a $[100,48,12]_{2}$ code and C^{\perp} is a $[100,52,9]_{2}$ code.

Using Results 4 and 8 and the known eigenvalues for $T(m)$ as quoted above one can deduce the following for $C=C_{2}\left(T(m)^{\square, n}\right)$:

- for $n=1, \operatorname{dim}(C)=(m-1)$;
- for $n=2, \operatorname{dim}(C)=(m-1)^{2}(m-2)$;
- for $n=3, \operatorname{dim}(C)=\frac{1}{4}(m-1)^{3}\left(3 m^{2}-12 m+16\right)$.

(2) Cartesian product of n copies of $P(q)$

The binary code of $P(q)$ is $R L C D$ if $q \equiv 1(\bmod 8)$ and is a $\left[q, \frac{1}{2}(q-1), d\right]_{2}$ code, while $R C$ is a $\left[q, \frac{1}{2}(q-1), d^{\perp}\right]_{2}$ code, where d, d^{\perp} are not known in the general case. The valency is $\frac{q-1}{2}$. Thus the valency of $\square_{i=1}^{n} P(q)=P(q)^{\square, n}$ is $n \frac{q-1}{2}$.

For $q=9, \Gamma=P(9)$ is strongly regular with parameters $(9,4,1,2)$. Its binary code C is $R L C D$ and is a $[9,4,4]_{2}$ code, while $R C$ is a $[9,5,3]_{2}$ code. If \mathbb{F}_{9} has primitive element ω with minimal polynomial $X^{2}+2 X+2$, and the vertices are labelled by the sequence $\left[\omega^{i} \mid 0 \leq i \leq 8\right]$, let A_{1} be an adjacency matrix for $P(9)$. Then $\square_{i=1}^{n} P(9)=P(9)^{\square, n}$ has adjacency matrix A_{n} on 9^{n}
vertices and valency $4 n$, with A_{1} and A_{n} given as follows, from Section 3:

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{lllllllll}
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0
\end{array}\right], \\
& A_{n}=\left[\begin{array}{ccccccccc}
A_{n-1} & I & I & 0 & 0 & I & I & 0 & 0 \\
I & A_{n-1} & 0 & I & I & I & 0 & 0 & 0 \\
I & 0 & A_{n-1} & I & 0 & 0 & I & 0 & I \\
0 & I & I & A_{n-1} & I & 0 & 0 & 0 & I \\
0 & I & 0 & I & A_{n-1} & 0 & I & I & 0 \\
I & I & 0 & 0 & 0 & A_{n-1} & 0 & I & I \\
I & 0 & I & 0 & I & 0 & A_{n-1} & I & 0 \\
0 & 0 & 0 & 0 & I & I & I & A_{n-1} & I \\
0 & 0 & I & I & 0 & I & 0 & I & A_{n-1}
\end{array}\right],
\end{aligned}
$$

and where $I=I_{9^{n-1}}$, and A_{n-1} is $9^{n-1} \times 9^{n-1}$.
Computations with Magma show that $C_{2}\left(P(9)^{\square, 2}\right)$ has minimum weight 8 and its dual has minimum weight 9 , the weight of rows in A_{2} and $A_{2}+I$ respectively.

By row reduction of A_{n} one can deduce that $\operatorname{rank}_{2}\left(A_{n}\right)=4 \times 9^{n-1}+$ $\operatorname{rank}_{2}\left(A_{n-1}\right)$; solving this recurrence and simplifying and using the fact that $\operatorname{rank}_{2}\left(A_{1}\right)=4$, gives $\operatorname{rank}_{2}\left(A_{n}\right)=\frac{1}{2}\left(9^{n}-1\right)$, for $n \geq 1$.

Thus $C=C_{2}\left(P(9)^{\square, 2}\right)$ is a $[81,40,8]_{2}$ code and C^{\perp} a $[81,41,9]_{2}$ code.
Using Results 4 and 8 and the known eigenvalues for $P\left(q^{2}\right)$ as quoted above, which are integral, one can deduce for $C=C_{2}\left(P\left(q^{2}\right)^{\square, m}\right)$ for $1 \leq m \leq 3$, that $\operatorname{dim}(C)=\frac{1}{2}\left(q^{2 m}-1\right)$.

By computation, this formula also holds for $C=C_{2}\left(P(17)^{\square, m}\right)$ for $1 \leq$ $m \leq 3$, i.e. $\operatorname{dim}(C)=\frac{1}{2}\left(17^{m}-1\right)$, where here the eigenvalues of $P(17)$ are not integers so the argument would not apparently apply.
(3) Cartesian product $T(m) \square P\left(q^{2}\right), m \geq 5$ odd, $q^{2} \equiv 1(\bmod 8)$

Using Results 4 and 8 and the eigenvalues for $T(m)$ and $P\left(q^{2}\right)$, we have for $C=C_{2}\left(T(m) \square P\left(q^{2}\right)\right), \operatorname{dim}(C)=(m-1)\left(1+\frac{1}{4}\left(m\left(q^{2}-1\right)\right)\right)$. Computationally with Magma we found that the minimum weight of C for $m=5, q^{2}=9$ is 10, which is also the valency, and the minimum weight of C^{\perp} is 9 . Thus if $C=C_{2}\left(T(5) \square P\left(9^{2}\right)\right), C$ is a $[810,404,10]_{2}$ code, and C^{\perp} is a $[810,396,9]_{2}$ code.

Magma observations

- For $q \in\{9,17,25\}$ (i.e. $q \equiv 1(\bmod 8)), \operatorname{dim}\left(C_{2}(P(q) \square P(q))\right)=\frac{1}{2}\left(q^{2}-\right.$ 1), agrees with the formula proved for $q=9$. Also $\operatorname{dim}\left(C_{2}\left(P(17)^{\square, 3}\right)\right)=$ $\frac{1}{2}\left(17^{3}-1\right)$.
- For $q=5,13, \operatorname{dim}\left(C_{2}(P(q) \square P(q)) \neq \frac{1}{2}\left(q^{2}-1\right)\right.$.
$-\operatorname{dim}\left(C_{2}(T(7) \square T(7))\right)=180$, while $\operatorname{dim}\left(C_{2}(T(7))\right)=6$ does not fit the similar formula for $T(5)$.

8.2 Direct product

From the definition at the beginning of Section 4 we have that for Γ_{1} of valency ν_{1} and Γ_{2} of valency ν_{2}, the valency of $\Gamma_{1} \times \Gamma_{2}$ is $\nu_{1} \nu_{2}$. Furthermore, if A_{1} is an adjacency matrix for Γ_{1} and A_{2} is an adjacency matrix for Γ_{2}, then the rank of an adjacency matrix for $\Gamma_{1} \times \Gamma_{2}$ is $\operatorname{rank}\left(A_{1}\right) \operatorname{rank}\left(A_{2}\right)$
(1) Direct product of n copies of $T(m), m \geq 5$ odd

For $\Gamma=T(m)^{\times, n}, \Gamma$ has valency $2^{n}(m-2)^{n}$ and an adjacency matrix has 2-rank $(m-1)^{n}$.

For example, for $m=5, \times_{i=1}^{n} T(5)=T(5)^{\times, n}$ has adjacency matrix A_{n}, and valency 6^{n}, where for A_{n} we have, from Section 4, with A_{1} is as in Equation (6):

$$
A_{n}=\left[\begin{array}{cccccccccc}
0 & A_{n-1} & A_{n-1} & A_{n-1} & A_{n-1} & A_{n-1} & A_{n-1} & 0 & 0 & 0 \tag{7}\\
A_{n-1} & 0 & A_{n-1} & A_{n-1} & A_{n-1} & 0 & 0 & A_{n-1} & A_{n-1} & 0 \\
A_{n-1} & A_{n-1} & 0 & A_{n-1} & 0 & A_{n-1} & 0 & A_{n-1} & 0 & A_{n-1} \\
A_{n-1} & A_{n-1} & A_{n-1} & 0 & 0 & 0 & A_{n-1} & 0 & A_{n-1} & A_{n-1} \\
A_{n-1} & A_{n-1} & 0 & 0 & 0 & A_{n-1} & A_{n-1} & A_{n-1} & A_{n-1} & 0 \\
A_{n-1} & 0 & A_{n-1} & 0 & A_{n-1} & 0 & A_{n-1} & A_{n-1} & 0 & A_{n-1} \\
A_{n-1} & 0 & 0 & A_{n-1} & A_{n-1} & A_{n-1} & 0 & 0 & A_{n-1} & A_{n-1} \\
0 & A_{n-1} & A_{n-1} & 0 & A_{n-1} & A_{n-1} & 0 & 0 & A_{n-1} & A_{n-1} \\
0 & A_{n-1} & 0 & A_{n-1} & A_{n-1} & 0 & A_{n-1} & A_{n-1} & 0 & A_{n-1} \\
0 & 0 & A_{n-1} & A_{n-1} & 0 & A_{n-1} & A_{n-1} & A_{n-1} & A_{n-1} & 0
\end{array}\right]
$$

Since $\operatorname{rank}_{2}\left(A_{n}\right)=\operatorname{rank}_{2}\left(A_{1}\right)^{n}=4^{n}, C=C_{2}\left(T(5)^{\times, n}\right)$ is a $\left[10^{n}, 4^{n}, d\right]_{2}$ code where $d \leq 6^{n}$. Further, C^{\perp} is a $\left[10^{n}, 10^{n}-4^{n}, 3\right]_{2}$ code, by Lemma 9 below.

The minimum weight of $C_{2}(T(5))$ is 4 , and computation with Magma [4, 3] tells us that the minimum weight of $C=C_{2}(T(5) \times T(5))$ is 16 , and that of its dual is 3 .

Note 12 Words of weight 16 in C can be constructed as is shown in Lemma 7.

Lemma 9 If $\Gamma=\times_{i=1}^{n} T(m)=T(m)^{\times, n}$, $m \geq 5$ odd, then the minimum weight of $C_{2}(\Gamma)^{\perp}=C_{2}(R \Gamma)$ is 3 and $n\binom{m}{2}^{n} \frac{m-2}{3}$ words of weight 3 have support of the form

$$
\left\{<x_{1}, \ldots, x_{n-1},\{a, b\}>,<x_{1}, \ldots, x_{n-1},\{a, c\}>,<x_{1}, \ldots, x_{n-1},\{b, c\}>\right\}
$$

where $a, b, c \in\{1, \ldots, m\}$ are distinct, the x_{i} are arbitrary vertices in $T(m)$, and the triple of vertices $\{a, b\},\{a, c\},\{b, c\}$ can be placed in any one of the n positions.

Proof: The minimum weight of $C_{2}(T(m))^{\perp}$ is 3 for all $m \geq 5$ and the words of weight 3 have support $\{\{a, b\},\{a, c\},\{b, c\}\}$ for the 3 -sets in $\Omega=\{1, \ldots, m\}$, except for $n=6$ when there are more: see [15]. A 3 -set of the form shown is a special case of the word described in Lemma 6, and clearly the minimum weight cannot be less than 3 . There are $\binom{m}{2}$ choices for each of the $x_{i},\binom{m}{3}$ choices of the triples $\{a, b, c\}$, and n choices for the position of pairs from the triples, giving $n\binom{m}{2}^{n-1}\binom{m}{3}=n\binom{m}{2}^{n} \frac{m-2}{3}$ words of this form.

If an information set is known for $C_{2}(\Gamma)$ then we have an information set of $C_{2}(\Gamma \times \Gamma)$ from Lemma 8 .

From [15, Theorem 1], taking only the case where $m \geq 5$ is odd, we have
Result 9 Let $m \geq 5$ be odd, and $\mathcal{I}=\{\{1, m\},\{2, m\}, \ldots,\{m-1, m\}\}$ and C denote a binary code of $T(m)$ with \mathcal{I} in the first $m-1$ positions. Then C is a $\left[\binom{m}{2}, m-1, m-1\right]_{2}$ code with \mathcal{I} as the information positions, and

$$
\mathcal{T}=\{i d\} \cup\{(i, m) \mid 1 \leq i \leq m-1\}
$$

is a PD-set for C of m elements in the symmetric group S_{m} acting on 2-sets, i.e. $a\left(\frac{m-3}{2}\right)-P D$ set for C of m elements.

Proposition 8 For $m \geq 5$ odd, $C_{2}(T(m) \times T(m))$ has $\left(\frac{m-1}{2}\right)$-PD-sets of size m, thus:
for $I=\{\{1, i\} \mid 2 \leq i \leq m\}$, and information set $\mathcal{I}=\{<x, y>\mid x, y \in I\}$ for $C_{2}(T(m) \times T(m))$, the set $\mathcal{T}=\{((1, i), i d) \mid 1 \leq i \leq m\}$ is a $\left(\frac{m-1}{2}\right)$-PD-set for $C_{2}(T(m) \times T(m))$ of size m.

Proof: From [15] and Result 9, the set of vertices $I=\{\{1, i\} \mid 2 \leq i \leq m\}$ is an information set for $C_{2}(T(m))$ for m odd. Thus by Lemma 8 the set $\mathcal{I}=\{<x, y>\mid x, y \in I\}$ is an information set for $C_{2}(T(m) \times T(m))$. Let \mathcal{C} denote the corresponding check symbols. Note that \mathcal{I} consists of all the vertices in $T(m) \times T(m)$ that have a 1 in the 2-subset of $\Omega=\{1, \ldots, m\}$ in both positions.

The symmetric group S_{m} acts on $T(m)$ and thus $S_{m} \times S_{m}$ acts on $T(m) \times$ $T(m)$. Let $\mathcal{T}=\{((1, i), i d) \mid 1 \leq i \leq m\}$ acting on $T(m) \times T(m)$ where $(1,1)$ denotes the identity map on $T(m)$. Suppose a message arrives and $\frac{m-1}{2}$ errors occur. If they are all in \mathcal{C} then $(i d, i d)$ can be used, Otherwise, if at least one is in \mathcal{I} then, since in these $\frac{m-1}{2}$ errors at most $m-1$ of the elements of $\Omega=\{1, \ldots, m\}$ appear in the 2 -sets in the first coordinate, and one of them is 1 , if j is the element that does not occur, then $j \neq 1$ and $((1, j), i d)$ will move all the vertices into check.

Note 13 In [20] $P D$-sets for $C_{2}(T(m))$ of minimal size $\frac{m-1}{2}$ are shown to exist for $m \geq 5$ odd, i.e. for full error correction, with $t=\frac{m-3}{2}$.

Proposition 9 For $m \geq 5$ odd, the minimum weight of $C_{2}(T(m) \times T(m))$ is $(m-1)^{2}$.

Proof: For $m \geq 5$ odd, $C_{2}(T(m))$ is a $\left[\binom{m}{2}, m-1, m-1\right]_{2}$ code. $C_{2}(T(m))^{\perp}$ has minimum weight 3 and words of this weight have support $\{\{a, b\},\{a, c\},\{b, c\}\}$ for any choice of three distinct elements a, b, c from $\Omega=\{1, \ldots, m\}$, and these are the only words of weight 3 . The number of such words containing a particular point $\{a, b\}$ in V, where $T(m)=(V, E)$, is clearly $m-2$.

Now consider $C=C_{2}(T(m) \times T(m))$. From Lemma 6 , the minimum weight of C^{\perp} is 3 . We can label the $N=\binom{m}{2}$ vertices in V by $\left\{a_{1}, \ldots, a_{N}\right\}$, each a_{i} representing a 2 -set from Ω. Let A_{1} be the adjacency matrix for $T(m)$ with this labelling. The corresponding adjacency matrix for $T(m) \times T(m)$, since it is the Kronecker product $A_{1} \otimes A_{1}$, will have A_{1} in the positions in A_{1} that have a 1 , and the zero matrix 0 where there is a zero: see Equation (7). The vertices in $V \times V$ are labelled $<a_{1}, a_{j}>$ for $j=1, \ldots N$ for the first set of N columns, then $<a_{2}, a_{j}>$ for $j=1, \ldots N$ for the next, and so on. Writing $A_{2}=\left[B_{i, j}\right]$ where the $N^{2} N \times N$ matrices $B_{i, j}$ are either A_{1} or 0 , and $B_{i, j}$ has columns labelled by $\left\{<a_{j}, a_{k}>\mid k=1, \ldots, N\right\}$ and rows by $\left\{<a_{i}, a_{k}>\mid k=1, \ldots, N\right\}$. Clearly $B_{i, i}=0$ for $1 \leq i \leq N$. Regarding A_{2} as a block matrix, we can label the N rows by \mathcal{R}_{i} for $i \in\{1, \ldots N\}$, and the N columns by \mathcal{C}_{j} for $j \in\{1, \ldots N\}$. Thus \mathcal{R}_{i} denotes the row of blocks $\left[B_{i, j} \mid 1 \leq j \leq N\right]$, and likewise \mathcal{C}_{j} the column of blocks $\left[B_{i, j} \mid 1 \leq i \leq N\right]$.

From Lemma $7, C$ has words of weight $(m-1)^{2}$, so the minimum weight is at most $(m-1)^{2}$.

Let $w \in C$ and write $w=\left[w_{1}, w_{2}, \ldots, w_{N}\right]$ where w_{j} is the component from the blocks $B_{i, j}$ from \mathcal{C}_{j}, with support from the set of points $\left\{<a_{j}, a_{1}>, \ldots,<\right.$ $\left.a_{j}, a_{N}>\right\}$. We can suppose $w_{1} \neq 0$. We know that $\operatorname{wt}\left(w_{1}\right) \geq m-1$. Suppose $\operatorname{Supp}\left(w_{1}\right)=\left\{<a_{1}, a_{j_{1}}>, \ldots,<a_{1}, a_{j_{s}}>\right\}$ where $s \geq m-1$. Every word of C^{\perp} meets w evenly, and this is true for the weight- 3 vectors with support $\left\{<a_{1}, a_{j_{1}}>,<b, a_{j_{1}}>,<c, a_{j_{1}}>\right\}$ where, if $a_{1}=\{x, y\}$ then $b=\{x, z\}$, $c=\{y, z\}$, and x, y, z are distinct elements of Ω. Since there are $m-2$ distinct choices of z like this, there are at least another $m-2$ distinct points $<b, a_{j_{1}}>$ in $\operatorname{Supp}(w)$, so that the corresponding $m-2$ components w_{i} cannot be zero, and each of these w_{i} will have weight at least $m-1$. Thus $\mathrm{wt}(w) \geq(m-1) s \geq$ $(m-1)^{2}$.

Note 14 A similar result appears to hold for $T(m) \times T(m)$ for m even but the same argument does not hold since it would only show the weight is at least $2(m-2)(m-1)$ instead of $4(m-2)^{2}$. Here the minimum weight for $C_{2}(T(m))$ is $2(m-2)$ and this was incorrectly stated, due to a typographical error, in [15, Theorem 1.1], although correctly stated in that paper in Result 3.

Corollary 7 For $m \geq 5$ odd, $n \geq 1, C_{2}\left(T(m)^{\times, n}\right)$ is a $\left[\binom{m}{2}^{n},(m-1)^{n},(m-\right.$ $\left.1)^{n}\right]_{2}$ code and $C_{2}\left(T(m)^{\times, n}\right)^{\perp}$ is a $\left.\left[\begin{array}{c}m \\ 2\end{array}\right)^{n},\binom{m}{2}^{n}-(m-1)^{n}, 3\right]_{2}$ code.

Proof: Follows in the same way as in the proposition, and by induction.

(2) Direct product of n copies of $P(q), q \equiv 1(\bmod 8)$

For $\Gamma=\times_{i=1}^{n} P(q)=P(q)^{\times, n}$, the valency of Γ is $\left(\frac{q-1}{2}\right)^{n}$, and the 2-rank of an adjacency matrix is also $\left(\frac{q-1}{2}\right)^{n}$.

For $q=9, \Gamma=\times_{i=1}^{n} P(9)=P(9)^{\times, n}$ has adjacency matrix A_{n} of 2-rank 4^{n} and valency 4^{n}. For A_{n} we have, from Section 4,

$$
A_{n}=\left[\begin{array}{ccccccccc}
0 & A_{n-1} & A_{n-1} & 0 & 0 & A_{n-1} & A_{n-1} & 0 & 0 \\
A_{n-1} & 0 & 0 & A_{n-1} & A_{n-1} & A_{n-1} & 0 & 0 & 0 \\
A_{n-1} & 0 & 0 & A_{n-1} & 0 & 0 & A_{n-1} & 0 & A_{n-1} \\
0 & A_{n-1} & A_{n-1} & 0 & A_{n-1} & 0 & 0 & 0 & A_{n-1} \\
0 & A_{n-1} & 0 & A_{n-1} & 0 & 0 & A_{n-1} & A_{n-1} & 0 \\
A_{n-1} & A_{n-1} & 0 & 0 & 0 & 0 & 0 & A_{n-1} & A_{n-1} \\
A_{n-1} & 0 & A_{n-1} & 0 & A_{n-1} & 0 & 0 & A_{n-1} & 0 \\
0 & 0 & 0 & 0 & A_{n-1} & A_{n-1} & A_{n-1} & 0 & A_{n-1} \\
0 & 0 & A_{n-1} & A_{n-1} & 0 & A_{n-1} & 0 & A_{n-1} & 0
\end{array}\right],
$$

and where $I=I_{9^{n-1}}$, and A_{n-1} is $9^{n-1} \times 9^{n-1}$.
Since $C_{2}(P(9))^{\perp}$ has minimum weight 3, Lemma 6 gives words of this weight in $C_{2}\left(P(9)^{\times, n}\right)^{\perp}$, and the minimum weight cannot be smaller than this. $C_{2}(P(9))$ has minimum weight 4 , and Lemma 7 shows how words of weight 4^{n} can be constructed in $C_{2}\left(P(9)^{\times, n}\right)$. This is also the valency of the graph. Thus $C_{2}\left(\left(P(9)^{\times, n}\right)\right.$ is a $\left[9^{n}, 4^{n}, d\right]_{2}$ code where $d \leq 4^{n}$, and $C_{2}\left(\left(P(9)^{\times, n}\right)^{\perp}\right.$ is a is a $\left[9^{n}, 9^{n}-4^{n}, 3\right]_{2}$ code. For $n=2$, computation with Magma shows that $d=16$ is the minimum weight of $C_{2}(P(9) \times P(9))$.

Proposition 10 For $q \equiv 1(\bmod 8)$, and any information set I for $C_{2}(P(q)$, $C_{2}(P(q) \times P(q))$ has a 2-PD-set of size q for the information set $\mathcal{I}=I \times I$ given by

$$
S=\left\{\left(\tau_{1, a}, \tau_{1,0}\right) \mid a \in \mathbb{F}_{q}\right\}
$$

Proof: We have $\mathcal{I}=\{<x, y>\mid x, y \in I\}$. Let $C=\mathbb{F}_{q} \backslash I$, and $\mathcal{C}=\mathbb{F}_{q} \times \mathbb{F}_{q} \backslash \mathcal{I}$. If no errors occur then $\left(\tau_{1,0}, \tau_{1,0}\right)=i d$ will work; if one error occurs in \mathcal{C} then $i d$ will work. If one error occurs at $<x, y>\in \mathcal{I}$ then since $\{x+a \mid$ $\left.a \in \mathbb{F}_{q}\right\}=\mathbb{F}_{q}=I \cup C$, there exists $a \in F_{q}$ such that $x+a \in C$ and thus $<x, y\rangle^{\left(\tau_{1, a}, \tau_{1,0}\right)}=<x+a, y>\in \mathcal{C}$.

Now suppose two errors occur. If they are both in \mathcal{C} then $i d$ can be used. If they are both in \mathcal{I}, suppose they are $<x_{1}, y_{1}>,<x_{2}, y_{2}>\in \mathcal{I}$. We wish to find $a \in \mathbb{F}_{q}$ such that $x_{1}+a, x_{2}+a \in C$. Let $S_{1}=\left\{x_{1}+a \mid a \in \mathbb{F}_{q}\right\}$, $S_{2}=\left\{x_{2}+a \mid a \in \mathbb{F}_{q}\right\}$, so $S_{1}=S_{2}=\mathbb{F}_{q}$. Let $S_{1} \cap C=\left\{x_{1}+e \mid e \in E\right\}$, of size $\frac{q+1}{2}$. Then $\left\{x_{2}+e \mid e \in E\right\}$ has size $\frac{q+1}{2}$ and thus cannot be totally inside I. Thus there is an $e \in E$ such that $x_{1}+e, x_{2}+e \in C$, so ($\left.\tau_{1, e}, \tau_{1,0}\right)$ will move both points into check.

If one of the errors is in \mathcal{I} and the other in \mathcal{C}, then suppose $<x_{1}, y_{1}>\in \mathcal{I}$ and $<x_{2}, y_{2}>\in \mathcal{C}$. Then we can look at the sets $S_{1}=\left\{x_{1}+a \mid a \in \mathbb{F}_{q}\right\}$, $S_{2}=\left\{x_{2}+a \mid a \in \mathbb{F}_{q}\right\}$, as before and by the same argument see that there is an $e \in E$ such that $x_{1}+e, x_{2}+e \in C$, so $\left(\tau_{1, e}, \tau_{1,0}\right)$ will move $<x_{1}, y_{1}>$ into check and keep $<x_{2}, y_{2}>$ in check.

Note 15 This argument works for $q \equiv 1(\bmod 4)$ also, when the code is not $R L C D$.

In [11] when $q \equiv 1(\bmod 8)$ is a prime, 2-PD-sets of size 6 for $C_{2}(P(q))$ were given for an explicit information set using the fact that the code is cyclic:

Result 10 [11, Corollary 2] Let $P(n)$ be the Paley graph of prime order n, where $n \equiv 1(\bmod 8)$, and $C=\left[n, \frac{n-1}{2}\right]_{p}$ its code over \mathbb{F}_{p} where p is a prime dividing $\frac{n-1}{4}$. For the information set for C given in $I=\{0,1, \ldots, k-1\}$, where $k=\frac{n-1}{2}$, C has a 2-PD-set of size 6 as given by

$$
\left\{\tau_{1, b} \mid b \in\{0, k\}\right\} \cup\left\{\tau_{k, b} \left\lvert\, b \in\left\{k, 2 k, \frac{3 k}{2}, \frac{k}{2}-1\right\}\right.\right\}
$$

Note 16 The smallest size a 2-PD-set for $C_{2}(P(q))$ can be is 4 .
Corollary 8 For $q \equiv 1(\bmod 8)$ prime, information set $I=\left\{0,1, \ldots, \frac{q-3}{2}\right\}$ for $C_{2}(P(q)), C_{2}(P(q) \times P(q))$ has a 2-PD-set of size 6 for the information set $\mathcal{I}=I \times I$, given by

$$
S=\left\{\tau_{1, b} \left\lvert\, b \in\left\{0, \frac{q-1}{2}\right\}\right.\right\} \cup\left\{\tau_{\frac{q-1}{2}, b} \left\lvert\, b \in\left\{\frac{q-1}{2}, q-1, \frac{3(q-1)}{2}, \frac{q-3}{2}\right\}\right.\right\} .
$$

8.3 Strong product of n copies of $T(5)$

Here we consider $\Gamma_{n}=\boxtimes_{i=1}^{n} T(5)=T(5)^{\boxtimes, n}$ with adjacency matrix A_{n} and valency $(1+\nu)^{n}-1=7^{n}-1$. For A_{n} we have, from Section 5,

$$
\left[\begin{array}{cccccccccc}
A_{n-1} & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & 0 & 0 & 0 \\
A_{n-1}+I & A_{n-1} & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & 0 & 0 & A_{n-1}+I & A_{n-1}+I & 0 \\
A_{n-1}+I & A_{n-1}+I & A_{n-1} & A_{n-1}+I & 0 & A_{n-1}+I & 0 & A_{n-1}+I & 0 & A_{n-1}+I \\
A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & A_{n-1} & 0 & 0 & A_{n-1}+I & 0 & A_{n-1}+I & A_{n-1}+I \\
A_{n-1}+I & 0 & 0 & 0 & A_{n-1} & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & 0 \\
A_{n-1}+I & 0 & A_{n-1}+I & 0 & A_{n-1}+I & A_{n-1} & A_{n-1}+I & A_{n-1}+I & 0 & A_{n-1}+I \\
A_{n-1}+I & 0 & 0 & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & A_{n-1} & 0 & A_{n-1}+I & A_{n-1}+I \\
0 & A_{n-1}+I & A_{n-1+I} & 0 & A_{n-1}+I & A_{n-1}+I & 0 & A_{n-1} & A_{n-1}+I & A_{n-1}+I \\
0 & A_{n-1}+I & 0 & A_{n-1}+I & A_{n-1}+I & 0 & A_{n-1}+I & A_{n-1}+I & A_{n-1} & A_{n-1}+I \\
0 & 0 & A_{n-1}+I & A_{n-1}+I & 0 & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & A_{n-1}+I & A_{n-1}
\end{array}\right] .
$$

The minimum weight of $C_{2}(T(5))$ is 4 , and computation with Magma [4,3] tells us that the minimum weight of $C=C_{2}(T(5) \boxtimes T(5))$ is 4 , the minimum weight of its dual is 9 , and $\operatorname{rank}_{2}\left(A_{2}\right)=64$. Thus C is a $[100,64,4]_{2}$ code, and C^{\perp} is a $[100,36,9]_{2}$ code.
8.4 Lexicographic product of $T(5)$ and $K_{3}, T(5) \circ K_{3}$

From Section 6, for $\Gamma_{1} \circ \Gamma_{2}$ to be $R L C D$ we need $\Gamma_{2}=\left(V_{2}, E_{2}\right)$ where $\left|V_{2}\right|=n_{2}$ is odd. Let A be an adjacency matrix for $\Gamma=T(5) \circ K_{3}$, on 30 vertices, and
valency 20, where K_{n} is the complete graph on n vertices. With $K=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ an adjacency matrix for K_{3}, and $J=J_{3}$, we have

$$
A=\left[\begin{array}{cccccccccc}
K & J & J & J & J & J & J & 0 & 0 & 0 \\
J & K & J & J & J & 0 & 0 & J & J & 0 \\
J & J & K & J & 0 & J & 0 & J & 0 & J \\
J & J & J & K & 0 & 0 & J & 0 & J & J \\
J & J & 0 & 0 & K & J & J & J & J & 0 \\
J & 0 & J & 0 & J & K & J & J & 0 & J \\
J & 0 & 0 & J & J & J & K & 0 & J & J \\
0 & J & J & 0 & J & J & 0 & K & J & J \\
0 & J & 0 & J & J & 0 & J & J & K & J \\
0 & 0 & J & J & 0 & J & J & J & J & K
\end{array}\right] .
$$

Computation with Magma $[4,3]$ tells us that $C_{2}\left(T(5) \circ K_{3}\right)$ is a $[30,24,2]_{2}$ code, with dual a $[30,6,9]_{2}$ code.

9 Conclusion

The main aim of the considerations in this research was to establish which of the types of products of graphs that have binary codes that are $R L C D$, have binary codes that are also $R L C D$. For those that satisfy this, the decoding method described in Section 2.2 from that developed in [17, Lemmas 1,2], can be used. Most of the products we studied did have this property, including the cartesian and direct products.

However, it also transpired that some of the graphs that have binary codes that can be decoded using permutation decoding, also allow permutation decoding of the product, specifically cartesian and direct products. Thus, from Lemma 8 we see that information sets for $C_{2}(\Gamma)$ immediately give information sets for the direct product and, furthermore, s-PD-sets for $C_{2}(\Gamma)$ can be used to define s-PD-sets for the direct product. Some examples of this are in Section 8.2. Note that this applies for codes that are not $R L C D$ as well.

For the cartesian product, in $[18,19]$ binary codes from the cartesian product of graphs \mathcal{Q}_{n}^{m} (the m-ary n-cube), which are $L C D$ but not $R L C D$, were shown for $n=2$ and $m \geq 4$ to have s-PD-sets of minimal size (see Result 6), and up to the full error-correcting capability of the code in the case $n=2$ and $m \geq 4$ even.

There is much scope here for further study.

References

1. E. F. Assmus, Jr and J. D. Key, Designs and their codes, Cambridge: Cambridge University Press, 1992, Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections, 1993).
2. S. Barik, R. B. Bapat, and S. Pati, On the Laplacian spectra of product graphs, Appl. Anal. Discrete Math. 9 (2015), 39-58.
3. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24, 3/4 (1997), 235-265.
4. J. Cannon, A. Steel, and G. White, Linear codes over finite fields, Handbook of Magma Functions (J. Cannon and W. Bosma, eds.), Computational Algebra Group, Department of Mathematics, University of Sydney, 2006, V2.13, http://magma.maths.usyd.edu.au/magma, pp. 3951-4023.
5. M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973), 298-305.
6. W. Fish, J. D. Key, E. Mwambene, and B.G. Rodrigues, Hamming graphs and LCD codes, J. Appl. Math. Comput. 61 (2019), 461-479, https://doi.org/10.1007/s12190-019-01259-w.
7. Daniel M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory 28 (1982), 541-543.
8. Willem H. Haemers, René Peeters, and Jeroen M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr. 17 (1999), 187-209.
9. Richard Hammack, Wilfried Imrich, and Sandi Klavžar, Handbook of product graphs, Second Edition, Boca Raton: CRC Press, 2011.
10. W. Cary Huffman, Codes and groups, Handbook of Coding Theory (V. S. Pless and W. C. Huffman, eds.), Amsterdam: Elsevier, 1998, Volume 2, Part 2, Chapter 17, pp. 1345-1440.
11. J. D. Key and J. Limbupasiriporn, Permutation decoding of codes from Paley graphs, Congr. Numer. 170 (2004), 143-155.
12. J. D. Key, T. P. McDonough, and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin. 26 (2005), 665-682.
13. \qquad , Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl. 12 (2006), 232-247.
14. \qquad , Improved partial permutation decoding for Reed-Muller codes, Discrete Math. 340 (2017), 722-728.
15. J. D. Key, J. Moori, and B. G. Rodrigues, Permutation decoding for binary codes from triangular graphs, European J. Combin. 25 (2004), 113-123.
16. J. D. Key and B. G. Rodrigues, LCD codes from adjacency matrices of graphs, Appl. Algebra Engrg. Comm. Comput. 29 (3) (2018), 227-244.
17. \qquad , Special LCD codes from Peisert and generalized Peisert graphs, Graphs Combin. 35 (2019), 633-652, https://doi.org/10.1007/s00373-019-02019-0.
18. \qquad , Binary codes from m-ary n-cubes Q_{n}^{m}, Adv. Math. Commun. 15 (3) (2021), 507-524, https://doi:10.3934/amc.2020079.
19. , Minimal PD-sets associated with the graphs Q_{2}^{m}, m even, Appl. Algebra Engrg. Comm. Comput. (2021), To appear: https://doi.org/10.1007/s00200-020-00481-5.
20. Hans-Joachim Kroll, Sayed-Ghahreman Taherian, and Rita Vincenti, Optimal antiblocking information systems for the binary codes related to triangular graphs, To appear Adv. Math. Commun. 2020, doi: 10.3934/amc.2020107.
21. Hans-Joachim Kroll and Rita Vincenti, PD-sets related to the codes of some classical varieties, Discrete Math. 301 (2005), 89-105.
22. F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J. 43 (1964), 485-505.
23. F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, Amsterdam: North-Holland, 1983.
24. James L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992), 337-342.
25. R. Merris, Laplacian matrices of graphs : A survey, Linear Algebra Appl. 197/198 (1994), 143-176.
26. J. Schönheim, On coverings, Pacific J. Math. 14 (1964), 1405-1411.
27. Minjia Shi, Daitao Huang, Lin Sok, and Patrick Solé, Double circulant LCD codes over \mathbb{Z}_{4}, Finite Fields Appl. 58 (2019), 133-144.
28. Vladimir D. Tonchev, Combinatorial configurations, designs, codes, graphs, Pitman Monographs and Surveys in Pure and Applied Mathematics, No. 40, New York: Longman, 1988, Translated from the Bulgarian by Robert A. Melter.
29. Douglas B. West, Introduction to graph theory, Prentice Hall, 1996.

[^0]: W. Fish

 Department of Mathematics and Applied Mathematics
 University of the Western Cape
 7535 Bellville, South Africa E-mail: wfish@uwc.ac.za
 J.D Key

 Department of Mathematics and Applied Mathematics
 University of the Western Cape
 7535 Bellville, South Africa E-mail: keyj@clemson.edu
 E. Mwambene

 Department of Mathematics and Applied Mathematics
 University of the Western Cape
 7535 Bellville, South Africa E-mail: emwambene@uwc.ac.za

[^1]: 1 Note typographical error on p.338, 1.-11, in [24]
 2 Note typographical error on p.341, l.-7, in [24]

