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Special LCD codes from products of graphs
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Abstract We examine the binary codes from the adjacency matrices of var-
ious products of graphs, and show that if the binary codes of a set of graphs
have the property that their dual codes are the codes of the associated reflexive
graphs, and are thus LCD, i.e. have zero hull, then, with some restrictions,
the binary code of the product will have the same property. The codes are
candidates for decoding using this property, or also, in the case of the direct
product, by permutation decoding.
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1 Introduction

Various products of graphs are defined and discussed in [9]. We will examine
some of these products of graphs for the property of their binary codes being
RLCD (see [16]) if the binary codes of their component graphs are RLCD.
Here a code C from the row span of an adjacency matrix for a graph is said
to be RLCD if the code from the row span of the corresponding reflexive
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graph (i.e. including all loops) is the dual code, C⊥, so this implies that C is
LCD. A code from an adjacency matrix of a graph that is RLCD is useful for
decoding purposes, not only from the method for LCD codes as described by
Massey [24], but also from a method described specifically for RLCD codes
in [17].

All the graphs will be undirected. In addition, in considering any of these
products of n undirected graphs Γi = (Vi, Ei), the vertex set of the product
will be the cartesian product of the sets of vertices Vi, i.e. V1 × V2 × . . .× Vn.
Adjacency, and hence edge sets, are defined differently for the various products.

A summary of our results addressing this problem for the most common of
these products is the following theorem which is proved as Propositions 1, 2
and 3 in the following sections:

Theorem 1 Let Γ be the graph product of the n graphs Γi, for i = 1, . . . , n,
where the product is the Cartesian product, �, the Direct (Categorical) product,
×, or the Strong product, �, of the graphs.

If all the the binary codes C2(Γi) are RLCD, then so is C2(Γ ).

Some recent papers involving codes associated with graphs, and in particular,
LCD codes, although not necessarily RLCD, can be found, for example, in
the following: [6,18,19,27].

The full definition of RLCD is given in Definition 2 in Section 2, where
some other related concepts are defined, as well as some background results.
Theorem 1 holds with some modifications for the other graph products ex-
amined. In addition, in the case of the direct product of graphs in Section 4,
it is possible to obtain s-PD-sets for the code of the product if such sets are
known for the codes of the individual graphs: see Lemma 8 and Proposition 8
for the triangular graphs. In the case of the direct product more can be said
about the parameters of the binary code of the product, and these results are
summarized in Theorem 2.

The definitions of the various graph products are given in Sections 3, 4, 5, 6
and 7, and in each of these cases, other properties of the binary code of the
product are examined, including minimum weight, information sets, and the
possibility of using permutation decoding. Section 8 has some examples using
graphs whose binary codes are known to be RLCD, in particular the triangular
graphs and the Paley graphs.

2 Background

2.1 Definitions and previous results

Basic definitions not covered here can be found in [1], or see also [28,29] for
other concepts related to designs, codes and graphs.

The graphs, Γ = (V,E) with vertex set V and edge set E, discussed in
this work are undirected with no loops, apart from the case where all loops
are included, in which case the graph is called the reflexive associate of Γ ,
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denoted by RΓ . If x, y ∈ V and x and y are adjacent, we write x ∼ y, and xy
for the edge in E that they define. The complementary graph is denoted
by Γ = (V,E) where for x, y ∈ V , x 6= y, x ∼ y in Γ if and only if x 6∼ y in Γ .
The set of neighbours of x ∈ V is denoted by N(x), and the valency of x
is |N(x)|. Γ is regular if all the vertices have the same valency.

An adjacency matrix A = [ax,y] for Γ is a symmetric |V | × |V | matrix
with rows and columns labelled in the same order by the vertices x, y ∈ V ,
and with ax,y = 1 if x ∼ y in Γ , and ax,y = 0 otherwise. Then RA = A + I
is an adjacency matrix for RΓ , and A = J − I −A one for Γ , where I = I|V |
and J is the |V | × |V | all-ones matrix. The row corresponding to x ∈ V in A
will be denoted by rx, that in RA by sx, and that in A by cx.

The codes here are linear codes, and the notation [n, k, d]q will be used
for a q-ary code C of length n, dimension k, and minimum weight d, where
the weight wt(v) of a vector v is the number of non-zero coordinate entries.
The code over a field F of a graph Γ = (V,E) is the row span over F of an
adjacency matrix A for Γ , and written as CF (A), CF (Γ ), or Cp(A), Cp(Γ ),
respectively, if F = Fp. If S ⊆ V , the incidence vector of S is denoted by
vS .

Notation 1 By abuse of language, we will also use rx (respectively sx) to
denote the set of neighbours of x, N(x) = {y ∈ V | x ∼ y} (respectively
N(x) ∪ {x}). Furthermore, we shall be dealing with different graphs in this
paper and use the same notation rx (respectively sx) for any of the graphs, with
the understanding that x ∈ V for the particular graph under consideration, so
that the notation will be unambiguous. We will also use rx (respectively sx)
to denote the word in the code, i.e. as a row of the matrix. This should also
be clear.

The uniform subset graph Γ (n, k, r) has for vertices V = Ω{k}, the set
of all subsets of size k of a set of size n, with two k-subsets x and y defined to
be adjacent if |x ∩ y| = r. The valency of Γ (n, k, r) is

(
k
r

)(
n−k
k−r
)
.

A graph Γ = (V,E), neither complete nor null, is strongly regular of
type (n, k, λ, µ) if it is regular on n = |V | vertices, has valency k, and is such
that any two adjacent vertices are together adjacent to λ vertices and any two
non-adjacent vertices are together adjacent to µ vertices.

2.2 LCD codes

Definition 1 A linear code C over any field is an LCD code (linear code
with complementary dual) if Hull(C) = C ∩ C⊥ = {0}.

If C is an LCD code of length n over a field F , then Fn = C ⊕C⊥. Thus the
orthogonal projector map ΠC from Fn to C can be defined as follows: for
v ∈ Fn,

vΠC =

{
v if v ∈ C,
0 if v ∈ C⊥ , (1)



4 W. Fish et al.

and ΠC is defined to be linear. 1 This map is only defined if C (and hence also
C⊥) is an LCD code. Similarly then ΠC⊥ is defined.

Note that for all v ∈ Fn,

v = vΠC + vΠC⊥ . (2)

We will use [24, Proposition 4]:

Result 1 (Massey) Let C be an LCD code of length n over the field F and
let ϕ be a map ϕ : C⊥ 7→ C such that u ∈ C⊥ maps to one of the closest
codewords v to it in C. Then the map ϕ̃ : Fn 7→ C such that

ϕ̃(r) = rΠC + ϕ(rΠC⊥)

maps each r ∈ Fn to one of it closest neighbours in C. 2

We make the following observation which will be of use in the next section:

Lemma 1 If C is a q-ary code of length n such that C +C⊥ = Fnq then C is
LCD.

Proof: Since (C + C⊥)⊥ = C⊥ ∩ C = (Fnq )⊥ = {0} = Hull(C), C (and C⊥)
are LCD. �

Note then that if C = Cp(Γ ) and RC = Cp(RΓ ) for a graph Γ on n
vertices, p a prime, then C +RC = Fnp , so if RC = C⊥, then C is LCD.

From [16]:

Definition 2 Let Γ = (V,E) be a graph with adjacency matrix A. Let p be
any prime, C = Cp(A), RC = Cp(RA) (for the reflexive graph), and C =
Cp(A). Then

– if C = RC⊥, then we call C a reflexive LCD code, and write RLCD for
such a code;

– if Γ is regular and C = C
⊥

, then we call C a complementary LCD code,
and write CLCD for such a code.

We note the following result from [8], which is given there for p = 2 but it
holds for all primes p, so we state it for all p:

Result 2 (Proposition 2.2 [8]) If A is a symmetric integral matrix, and
CA, CA+I denote the row span over Fp, where p is a prime, of A, A+I respec-
tively, then C⊥A ⊆ CA+I with equality if and only if A(A+ I) ≡ 0 (mod p).

The following two results are lemmas in [16]:

Result 3 If Γ = (V,E) is regular of valency ν, |V | = n, p is a prime, then
both Cp(Γ ) and Cp(Γ ) can be RLCD if and only if (n− 2ν − 1) ≡ 0 (mod p).

1 Note typographical error on p.338, l.-11, in [24]
2 Note typographical error on p.341, l.-7, in [24]
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Note 1 If we know the eigenvalues of A, and if they are integral, we can use
them to get information regarding the possible dimension of the codes C and
RC. Since if λ is an eigenvalue for a matrix M then λ+ 1 is an eigenvalue for
M+I, this will also give information about RC. If M is a v×v integral matrix
with integral eigenvalues, then modulo p these will still be eigenvalues, but not
necessarily all distinct. If none or at most one reduce to 0 modulo p then the
p-rank of M will be v or v −mj , respectively, where mj is the multiplicity of
the eigenvalue that is zero. In any case, the dimension of the zero eigenspace
over Fp of the matrix A or A+ I is at most the sum m of the multiplicities of
the eigenvalues that reduce to 0 modulo p, and thus the p-rank of A or A+ I
is at least v −m.

From [16, Lemma 3]:

Result 4 Let Γ = (V,E) be a graph with adjacency matrix A that has inte-
gral eigenvalues and suppose p is a prime for which Cp(Γ ) is RLCD. Then
dim(Cp(Γ )) is the sum of the multiplicities of the eigenvalues that are non-zero
modulo p.

A special decoding method for RLCD binary codes is given in [17, Lemmas
1,2], and the discussion in that paper following those lemmas.

A summary of the algorithm for such decoding is as follows, and it assumes
that the system allows at most s errors where s ≤ t, the maximum num-
ber of errors nearest-neighbour decoding allows: suppose C = C2(Γ ), where
Γ = (V,E), is RLCD and has minimum distance d and t = bd−12 c, and the
transmitted word from C has no more than t errors. Let |V | = n. Then

– Compute separately all the sums
∑
x∈K sx for every subset K ⊂ V of size

k where 1 ≤ k ≤ t. Let Sk = {
∑
x∈K sx | K ⊂ V, |K| = k}, for 1 ≤ k ≤ t.

– Suppose w = vS is the received word and that s ≤ t errors have occurred.
Form the sum v =

∑
x∈S sx.

– If v = 0 then no errors have occurred. If v 6= 0 then check the sets Sk to
see if v ∈ Sk, starting with k = 1 and then increasing k to s or at most t.

– When a set J is found such that v =
∑
x∈J sx, decode as

∑
x∈S rx +∑

x∈J rx = vS + vJ .

The worst case complexity for t errors is O(nt+1). For a small number of errors
s this could be feasible.

2.3 Permutation decoding

Permutation decoding was first developed by MacWilliams [22] and in-
volves finding a set of automorphisms of a code called a PD-set. The method
is described fully in MacWilliams and Sloane [23, Chapter 16, p. 513] and Huff-
man [10, Section 8]. In [12] and [21] the definition of PD-sets was extended to
that of s-PD-sets for s-error-correction:

Definition 3 If C is a t-error-correcting code with information set I and
check set C, then a PD-set for C is a set S of automorphisms of C which is
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such that every t-set of coordinate positions is moved by at least one member
of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such
that every s-set of coordinate positions is moved by at least one member of S
into C.
The algorithm for permutation decoding is as follows: we have a t-error-
correcting [n, k, d]q code C with check matrix H in standard form. Thus the
generator matrix G = [Ik|A] and H = [−AT |In−k], for some A, and the first
k coordinate positions correspond to the information symbols. Any vector v
of length k is encoded as vG. Suppose x is sent and y is received and at most
t errors occur. Let S = {g1, . . . , gs} be the PD-set. Compute the syndromes
H(ygi)

T for i = 1, . . . , s until an i is found such that the weight of this vector
is t or less. Compute the codeword c that has the same information symbols
as ygi and decode y as cg−1i .

Notice that this algorithm actually uses the PD-set as a sequence. Thus
it is expedient to index the elements of the set S by the set {1, 2, . . . , |S|} so
that elements that will correct a small number of errors occur first. Thus if
nested s-PD-sets are found for all 1 < s ≤ t then we can order S as follows:
find an s-PD-set Ss for each 0 ≤ s ≤ t such that S0 ⊂ S1 . . . ⊂ St and arrange
the PD-set S as a sequence in this order:

S = [S0, (S1 − S0), (S2 − S1), . . . , (St − St−1)].

(Usually one takes S0 = {id}.)
There is a bound on the minimum size that a PD-set S may have, due

to Gordon [7], from a formula due to Schönheim [26], and quoted and proved
in [10]:

Result 5 If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r =
n− k, then

|S| ≥
⌈
n

r

⌈
n− 1

r − 1

⌈
. . .

⌈
n− t+ 1

r − t+ 1

⌉
. . .

⌉⌉⌉
= G(t). (3)

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the
formula and G(s) for G(t).

We note the following result from [14, Lemma 1]:

Result 6 If C is a t-error-correcting [n, k, d]q code, 1 ≤ s ≤ t, and S is an
s-PD-set of size G(s) then G(s) ≥ s+ 1. If G(s) = s+ 1 then s ≤ bnk c − 1.

In [13, Lemma 7] the following was proved:

Result 7 Let C be a linear code with minimum weight d, I an information
set, C the corresponding check set and P = I ∪ C. Let G be an automorphism
group of C, and n the maximum value of |O ∩ I|/|O|, over the G-orbits O. If
s = min(d 1ne − 1, bd−12 c), then G is an s-PD-set for C.

This result holds for any information set. If the group G is transitive then
|O| is the degree of the group and |O ∩ I| is the dimension of the code.

The worst-case time complexity for the decoding algorithm using an s-PD-
set of size z on a code of length n and dimension k is O(nkz).
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2.4 Kronecker product of matrices

The adjacency matrices of products of graphs are conveniently described in
terms of Kronecker products of matrices, so we give a brief background of this
product.

The Kronecker product is a special case of the tensor product.
The Kronecker product of two matrices A and B is denoted by A⊗B and

if A is m× n and B is p× q then A⊗B is mp× nq. If A = [aij ] then

A⊗B =

 a11B · · · a1nB...
...

...
am1B · · · amnB

 .
Properties of Kronecker products
Assuming products where written are defined and that k is a scalar:

A⊗ (B + C) = A⊗B +A⊗ C; (A+B)⊗ C = A⊗ C +B ⊗ C;
kA⊗B = A⊗ (kB) = k(A⊗B); (A⊗B)⊗ C = A⊗ (B ⊗ C);
(A⊗B)(C ⊗D) = AC ⊗BD; (A⊗B)−1 = A−1 ⊗B−1;
rank(A⊗B) = rank(A)rank(B); In ⊗ Im = Inm.

Furthermore, if A is n × n and B is m × m, and λi for i = 1, . . . , n the
eigenvalues of A, and µi for i = 1, . . . ,m those of B, then the eigenvalues of
A⊗B are λiµj for i = 1, . . . , n, j = 1, . . . ,m.

Note 2 : In the following, graphs are defined from graphs Γi = (Vi, Ei), i =
1, . . . , n, to have vertex set V1 × . . . × Vn. If αi ∈ Aut(Γi), i = 1, . . . , n, then
(α1, . . . , αn) defined by

(α1, . . . , αn) :< x1, . . . , xn > 7→< xα1
1 , . . . , xαn

n > (4)

is an automorphism of the graph defined on the vertex set V1 × . . .× Vn.
Since we will be using adjacency matrices, we will need an ordering on the

vertices of the vertex set Vi of each each of the graphs Γi = (Vi, Ei). For the
vertex set of the graph product, V1× . . .×Vn, we use lexicographical ordering,
i.e. dictionary reading from left to right. Thus, for example for n = 2, |V1| = m,
|V2| = k, V1 = {x1, . . . , xm} and V2 = {y1, . . . , yk}, as ordered sets, then the
ordering for V1 × V2 is

{< x1, y1 >,< x1, y2 >, . . . < x1, yk >,< x2, y1 >, . . . , < x2, yk >, . . . ,

< xm, y1 >, . . . , < xm, yk >}.

3 Cartesian products of graphs Γ1�Γ2

If Γi = (Vi, Ei) for i = 1, 2 are graphs with |Vi| = ni and adjacency matrix Ai
then Γ1�Γ2 will denote the cartesian product of the graphs, with vertex set
V = V1 × V2. Here if < x, y >,< u, v >∈ V , then
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– adjacency is defined by < x, y >∼< u, v > in Γ if and only if x = u and
y ∼ v in Γ2, or y = v and x ∼ u in Γ1;

– if Γ1 and Γ2 are regular of valency ν1, ν2 respectively, then Γ1�Γ2 is regular
of valency ν1 + ν2;

– an adjacency matrix for Γ1�Γ2 is given by

A1�2 = A1 ⊗ In2 + In1 ⊗A2.

Note 3 From [16,6] and Result 2 we know that a code Cp(Γ ) is RLCD if and
only if an adjacency matrix A for Γ satisfies A2 = −A over Fp. Clearly this
implies that the null graph, i.e. the complement of the complete graph Kn,
which has the zero code over any field, is thus RLCD. We will exclude this
graph from our discussions, i.e. we assume that the Γi are not null.

Proposition 1 Let Γi = (Vi, Ei) for i = 1, . . . , n be graphs with |Vi| = ni and
adjacency matrix Ai. Let Γ be the cartesian product �ni=1Γi. Then C2(Γ ) is
RLCD if C2(Γi) is RLCD for each i = 1, . . . , n. If precisely one of the C2(Γi)
is not RLCD and all the others are, then C2(Γ ) is not RLCD.

Proof: We need only prove this for the cartesian product of two graphs. With
the same notation as above, we have, for an adjacency matrix A1�2 for Γ1�Γ2,

A1�2 = A1 ⊗ In2
+ In1

⊗A2.

Suppose C2(Γi) for i = 1, 2 is RLCD. Then A2
i = −Ai = Ai, i = 1, 2, over F2.

By the rules of multiplication of Kronecker products of matrices,

A2
1�2 =(A1 ⊗ In2

+ In1
⊗A2)2

=(A1 ⊗ In2
)2+(In1

⊗A2)2+(A1 ⊗ In2
)(In1

⊗A2)+(In1
⊗A2)(A1 ⊗ In2

)

=(A2
1 ⊗ In2

) + (In1
⊗A2

2) + 2(A1 ⊗A2)

=A1 ⊗ In2
+ In1

⊗A2 = A1�2,

and so C2(Γ1�Γ2) is RLCD.
Now suppose C2(Γ ) is RLCD where Γ = Γ1�Γ2. Suppose C2(Γ1) is not

RLCD, but C2(Γ2) is RLCD. We have

A2
1�2 −A1�2 = (A2

1 −A1)⊗ In2
+ In1

⊗ (A2
2 −A2) = (A2

1 −A1)⊗ In2
= 0.

But according to the properties of Kronecker products, rank2(A ⊗ B) =
rank2(A)rank2(B), so rank2(A2

1−A1) = 0 and hence A2
1−A1 = 0, and C2(Γ1)

is RLCD.
Clearly this can be extended to any number of components in the prod-

uct. �

Note 4 If all the Γi are equal to a graph Γ then �ni=1Γ is written Γ�,n.

Lemma 2 Let Γ = (V,E) be regular of valency ν, A an adjacency matrix. If
Cp(Γ ) is RLCD and p|ν, then Cp(Γ ) ⊆ Cp(Γ )⊥. If in addition Γ has integral
eigenvalues and p 6 |(|V | − 1), then Cp(Γ ) is CLCD.
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Proof: We have A2 = −A, so AA = A(J − I −A) = AJ − (A+A2) = AJ =
νJ = 0. The second statement follows from [16, Proposition 2]. �

Lemma 3 If Γi, i = 1, 2 are regular of valency νi, i = 1, 2 respectively, and
if both C2(Γi) for i = 1, 2 are CLCD, then if both ν1, ν2 are even, C2(Γ1�Γ2)
is RLCD. If in addition at least one of |V1|,|V2| is even, and Γi for i = 1, 2
have integral eigenvalues, then C2(Γ1�Γ2) is CLCD.

Proof: If Ai, i = 1, 2, is an adjacency matrix for Γi then Ai(J − I − Ai) =
0 = νiJ − Ai − A2

i . So if νi is even, Ai = −A2
i , and C2(Γi) are both RLCD,

and thus so is C2(Γ1�Γ2). By Lemma 2, since the valency of Γ1�Γ2 is ν1 +ν2,
which is even, C2(Γ1�Γ2) is CLCD if 2 6 |(|V1||V2|| − 1).

Corollary 1 If Γ = �ni=1Γi where C2(Γi) is CLCD for i = 1, . . . , n and all
the Γi = (Vi, Ei) are regular of even valency, then C2(Γ ) is RLCD, and if in
addition, all the eigenvalues are integral and at least one of the |Vi| is even,
then C2(Γ ) is CLCD.

Lemma 4 Let Γ = Γ1�Γ2, where Γi = (Vi, Ei) for i = 1, 2. Let wi ∈ C2(Γi)
⊥

be of weight di, with S1 = Supp(w1) = {a1, . . . , ad1}, S2 = Supp(w2) =
{b1, . . . , bd2}, where ai ∈ V1, bj ∈ V2. Then the word with weight d1d2 and
support

S = {< ai, bj >| i = 1, . . . d1, j = 1, . . . d2},

is in C2(Γ )⊥.

Proof: Let X =< x, y >∈ V1 × V2. If rX meets vS in a point < ai, bj >∈
V1 × V2, then either x = ai and y ∼ bj or x ∼ ai and y = bj . Suppose the
former. Then since w2 ∈ C2(Γ2)⊥, it meets ry (from the adjacency matrix for
Γ2) evenly and thus there are an even number of points < ai, b > in rX for
b ∈ S2. The same hold in the other case, and thus vS ∈ C2(Γ )⊥. �

Note 5 This can be extended in the obvious way to words in C2(�ni=1Γi)
⊥

for n graphs Γi, giving a word of weight
∏n
i=1 di from words of weight di in

Γi, and in particular, if Γ = Γi for all i, a word of weight dn in C2(Γ�,n)
from words of weight d in C2(Γ ). In this case just one word suffices. Thus the
minimum weight of C2(Γ�,n) is ≤ dn.

Lemma 5 Let Γ = Γ1�Γ2, where Γi = (Vi, Ei) for i = 1, 2. Suppose both
C2(Γi) for i = 1, 2 are RLCD. Let w1 ∈ C2(Γ1) and w2 ∈ C2(Γ2)⊥, with
S1 = Supp(w1) = {a1, . . . , ad1}, S2 = Supp(w2) = {b1, . . . , bd2}, where ai ∈
V1, bj ∈ V2. Then the word with weight d1d2 and support

S = {< ai, bj >| i = 1, . . . d1, j = 1, . . . d2},

is in C2(Γ ).
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Proof: Since C2(Γ ) is RLCD we need only show that the inner product
(vS , sX) = 0 for all X ∈ V1 × V2. If A is an adjacency matrix for Γ , the row
sX of the matrix A+ I has 1’s at X and at the neighbours of X. By abuse of
language we can write, as explained in Notation 1, for X =< x, y >,

sX = {< x, y >} ∪ {< x, yi >| yi ∼ y} ∪ {< xi, y >| xi ∼ x}. (5)

If X =< ai, bj > then since w1 ∈ C2(Γ1) = C2(RΓ1)⊥, w1 meets the row
sai of A1 + I, where A1 is an adjacency matrix for Γ1, evenly, so sX contains
an even number of points of the the form < ak, bj >, including k = i. Since
w2 ∈ C2(RΓ2), the row rbj of an adjacency matrix A2 for Γ2 meets w2 evenly
so vS meets sX in an even number of points of the form < ai, bk > (where
k 6= j). Thus (vS , sX) = 0.

If X =< ai, b > where b 6∈ S2, then if b 6∼ bj for any bj ∈ S2, then sX does
not meet vS at all. If b ∼ bj for some j, then rb meets w2 evenly so there are
an even number of points of the form < ai, bj > in sX .

If X =< a, bj > where a 6∈ S1, then if a 6∼ ai for any ai ∈ S1, then sX does
not meet vS at all. If a ∼ ai for some i, then sa meets w1 evenly so there are
an even number of points of the form < ai, bj > in sX .

If X =< a, b > where a 6∈ S1 and b 6∈ S2, then sX does not meet vS at all,
and the proof is complete. �

The rank of the adjacency matrix from the Cartesian product is not given
directly from the construction. However, we can use the eigenvalues of the
graphs to get information regarding the possible dimension of the codes of the
product graph. Since if λ is an eigenvalue for a matrix M then λ + 1 is an
eigenvalue for M + I. If M is a v× v integral matrix with integral eigenvalues,
then modulo p these will still be eigenvalues, but not necessarily all distinct.
If none or at most one reduce to 0 modulo p then the p-rank of M will be v
or v −mj , respectively, where mj is the multiplicity of the eigenvalue that is
zero. In any case, the dimension of the zero eigenspace over Fp of the matrix
A or A+ I is at most the sum m of the multiplicities of the eigenvalues that
reduce to 0 modulo p, and thus the p-rank of A or A+ I is at least

(
n
k

)
−m.

This, together with the following result quoted in [2, Theorem 3], but due
to [5], and also quoted in [25] allows one to get the 2-rank of the Cartesian
product if the eigenvalues and multiplicities of all the constituents are known
and integral, and if the constituents are all RLCD, using Result 4:

Result 8 If Γ = Γ1�Γ2, where Γi = (Vi, Ei) with |Vi| = Ni then if {λi |
1 ≤ i ≤ r} are the eigenvalues of Γ1, with multiplicities ni, 1 ≤ i ≤ r and
{µi | 1 ≤ i ≤ s} are the eigenvalues of Γ2, with multiplicities mi, 1 ≤ i ≤ s
then the eigenvalues of Γ are {λi+µj | 1 ≤ i ≤ r, 1 ≤ j ≤ s} with multiplicities
{nimj | 1 ≤ i ≤ r, 1 ≤ j ≤ s}.
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4 Direct (or Categorical) products of graphs Γ1 × Γ2

If Γi = (Vi, Ei), i = 1, 2, are graphs with |Vi| = ni and adjacency matrix Ai,
then Γ = Γ1×Γ2 will denote the direct product of the graphs, with vertex set
V = V1 × V2. Here if < x, y >,< u, v >∈ V then

– adjacency is defined by < x, y >∼< u, v > in Γ if x ∼ u in Γ1 and y ∼ v
in Γ2;

– if Γi are regular of valency νi, i = 1, 2, respectively, then Γ1×Γ2 is regular
of valency ν1ν2;

– an adjacency matrix A1×2 for Γ1 × Γ2 is A1×2 = A1 ⊗A2;
– rank(A1×2) = rank(A1)rank(A2).

This last item follows from the properties of Kronecker products.

Proposition 2 Let Γ = ×ni=1Γi. Then C2(Γ ) is RLCD if all the C2(Γi) are
RLCD for i = 1, . . . , n. If p is an odd prime and the Cp(Γi) are RLCD for
i = 1, . . . , n, then Cp(Γ ) is RLCD if n is odd.

Proof: Consider Γ1 × Γ2. If A = A1×2 = A1 ⊗A2, then A2 +A = A2
1 ⊗A2

2 +
A1⊗A2. Thus A2 +A = 0 if A2

i +Ai = 0 for both i. This extends to a product
of n graphs.

For p > 2, (⊗ni=1Ai)
2 = (⊗ni=1A

2
i ) = ⊗ni=1(−Ai) = −⊗ni=1Ai if n is odd. �

Corollary 2 Let Γ = Γ1×Γ2. If C2(Γ ) and C2(Γ1) are RLCD, then C2(Γ2)
is RLCD.

Proof: With notation as above, 0 = A2 + A = A2
1 ⊗ A2

2 + A1 ⊗ A2 = A1 ⊗
A2

2 +A1 ⊗A2 = A1 ⊗ (A2
2 +A2). Since this has rank 0, and A1 does not have

rank 0, we must have A2
2 +A2 = 0, so C2(Γ2) is RLCD. �

Note 6 If all the Γi are equal to a graph Γ then ×ni=1Γ is written Γ×,n.

Lemma 6 Let Γ = ×ni=1Γi, where Γi = (Vi, Ei) for i = 1, . . . , n. Let wi ∈
C2(Γi)

⊥ be of weight di, with Si = Supp(wi) = {ai,1, . . . , ai,di}, for i =
1, . . . , n, where ai,j ∈ Vi for j = 1, . . . , di. Then for any i and any choice
of bj ∈ Vj, j = 1, . . . , n, j 6= i, the word with support

S = {< b1, . . . , bi−1, a, bi+1, . . . , bn >| a ∈ Si}

is in C2(Γ )⊥ and has weight di. If there are mi words of weight di in C2(Γi)
⊥

then there are mi

∏
j 6=i |Vj | words of weight di of this form in C2(Γ )⊥, for each

i = 1, . . . , n.
If the Γi are all equal to a graph Λ = (V,E), di = d, mi = m, then the

number of words of this form of weight d in C2(Λ×,n)⊥ is mn|V |n−1.

Proof: If X =< x1, . . . , xn >∈ V1×. . .×Vn, then if vS meets rX , we must have
bj ∼ xj for j 6= i, and a ∼ xi for some a ∈ Si. But since wi = vSi ∈ C2(Γi)

⊥

there must be an even number of such a, and thus vS meets rX evenly, showing
that vS ∈ C2(Γ )⊥. Counting the number of words is direct. �
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Corollary 3 Let Γ = ×ni=1Γi, where Γi = (Vi, Ei) for i = 1, . . . , n. Suppose
C2(Γi)

⊥ has minimum weight di for i = 1, . . . , n, and let d = min{di | i =
1, . . . , n}. Then the minimum weight of C2(Γ )⊥ is at most d.

Lemma 7 Let Γ = Γ1 × Γ2, where Γi = (Vi, Ei) for i = 1, 2. Suppose both
C2(Γi) for i = 1, 2 are RLCD. Let w1 ∈ C2(Γ1) and w2 ∈ C2(Γ2), with S1 =
Supp(w1) = {a1, . . . , ad1}, S2 = Supp(w2) = {b1, . . . , bd2}, where ai ∈ V1,
bj ∈ V2. Then the word with weight d1d2 and support

S = {< ai, bj >| i = 1, . . . d1, j = 1, . . . d2},

is in C2(Γ ).

Proof: Since C2(Γ ) is RLCD we need only show that (vS , sX) = 0 for all
X ∈ V1 × V2, where, for X =< x, y >,

sX = {< x, y >} ∪ {< xi, yi >| xi ∼ x, yi ∼ y}.

If X =< ai, bj > then sai meets w1 evenly, so in ai and an odd number of
ak, and likewise sbj meets w2 evenly, so in bj and an odd number of bl. Thus
sX meets vS in < ai, bj > and an odd number of points < ak, bl > where
ak ∼ ai and bl ∼ bj . Thus sX meets vS evenly.

If X =< ai, b >, where b 6∈ S2, then if b 6∼ bj for any bj , sX does not meet
vS at all. If b ∼ bj for some j then since sb meets w2 evenly, i.e. it meets S2

evenly. Since w1 meets sai evenly, there are an odd number of points in S2

adjacent to ai (excluding ai). Thus counting the number of points of the form
< aj , bk > in sX we get it to be even. The same argument works for a point
X of the form X =< a, bj > where a 6∈ S1.

If X =< a, b > where a 6∈ S1, b 6∈ S2 then if either a 6∼ ai for any i or
b 6∼ bj for any j, then sX does not meet vS at all. Thus suppose a ∼ ai and
b ∼ bj . Since sa meets S1 evenly and sb meets S2 evenly we certainly have the
number of < ai, bj > in sx even.

This completes the proof. �

Note 7 Lemma 7 extends to any number of graphs Γi for which C2(Γi) are all
RLCD.

We can summarise these results concerning the parameters of the binary
code of the direct product of graphs whose binary codes are RLCD:

Theorem 2 Let Γ = ×ni=1Γi, where Γi = (Vi, Ei) for i = 1, . . . , n and C2(Γi)
is RLCD for i = 1, . . . , n. Suppose that C2(Γi) is a [vi, ki, di]2 code and
C2(Γi)

⊥ a [vi, vi − ki, δi]2 code, for i = 1, . . . , n. Then

1. C2(Γ ) is RLCD;
2. C2(Γ ) is a [

∏n
i=1 vi,

∏n
i=1 ki, d]2 code, where d ≤

∏n
i=1 di;

3. C2(Γ )⊥ is a [
∏n
i=1 vi,

∏n
i=1 vi −

∏n
i=1 ki, δ]2 code, where δ = min{δi | i =

1, . . . , n}.
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Proof: Follows from Proposition 2, Lemma 6, Corollary 3, Lemma 7.�

For graphs Γi for i = 1, . . . , n, and Γ = ×ni=1Γi, it is clear that if σi ∈
Aut(Γi) for i = 1, . . . , n, then σ = (σ1, . . . , σn) is in Aut(Γ ), the action being
defined in the obvious way.

Lemma 8 If C = C2(Γ × Γ ) where Γ = (V,E) with |V | = n, and I is an
information set for C2(Γ ), then an information set for C is I = I × I = {<
i, j >| i, j ∈ I}.

Furthermore, if S is an s-PD-set for C2(Γ ) with information set I, then
S × {idV }, or {idV } × S is an s-PD-set for Γ × Γ with information set I.

Proof: The proof is clear. �

Note 8 Such information sets and s-PD-sets extend to a direct product of any
number of graphs Γi = (Vi, Ei), i.e. if Γ = ×ni=1Γi and Ii is an information
set for C2(Γi) then I1 × . . . × In is an information set for C2(Γ ). If Si is an
si-PD-set for C2(Γi), then for each i = 1, . . . , n, the set

{idV1
} × {idV2

} × . . .× Si × {idVi+1
} × . . .× {idVn

}

is an si-PD-set for C2(Γ ).

5 Strong products of graphs Γ1 � Γ2

If Γ1 = (V1, E1) and Γ2 = (V2, E2), the strong product of the two graphs is
the graph Γ = Γ1 � Γ2 where Γ = (V,E), V = V1 × V2, |V1| = n1, |V2| = n2,
and for < x, y >,< u, v >∈ V ,

– adjacency is defined by < x, y >∼< u, v > in Γ if x = u and y ∼ v in Γ2,
or x ∼ u in Γ1 and y = v, or x ∼ u in Γ1 and y ∼ v in Γ2;

– if Γi is regular of valency νi then Γ is regular of valency ν1 + ν2 + ν1ν2;
– if A1 is an adjacency matrix for Γ1, and A2 is an adjacency matrix for Γ2,

then an adjacency matrix for Γ1 � Γ2 is

A = A1�2 = A1 ⊗ In2 + In1 ⊗A2 +A1 ⊗A2 = A1�2 +A1×2.

Proposition 3 Let Γ = �ni=1Γi. Then C2(Γ ) is RLCD if all the C2(Γi) are
RLCD for i = 1, . . . , n.

Proof: Consider Γ1 � Γ2. Then with notation as before

A = A1�2 = A1 ⊗ In2
+ In1

⊗A2 +A1 ⊗A2

So A2 = A2
1 ⊗ In2

+ In1
⊗A2

2 +A2
1 ⊗A2

2 = A, and thus C2(Γ ) is also RLCD.
Again this extends to the product of n graphs. �

Corollary 4 Let Γ = Γ1 �Γ2. If C2(Γ ) and C2(Γ1) are RLCD, then C2(Γ2)
is RLCD.
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Proof: With notation as above, A2 = A2
1 ⊗ In2 + In1 ⊗ A2

2 + A2
1 ⊗ A2

2 =
A1 ⊗ In2 + In1 ⊗A2

2 +A1 ⊗A2
2 = A = A1 ⊗ In2 + In1 ⊗A2 +A1 ⊗A2, and so

(In1
+A1)⊗ (A2 +A2

2) = 0. Since (In1
+A1) 6= 0, we must have A2 +A2

2 = 0
and thus C2(Γ2) is RLCD. �

Note 9 If all the Γi are equal to a graph Γ then �ni=1Γ is written Γ�,n.

6 Lexicographic products of graphs Γ1 ◦ Γ2

If Γ1 = (V1, E1) and Γ2 = (V2, E2), |V1| = n1, |V2| = n2, and A1, A2 are
adjacency matrices for Γ1, Γ2 respectively, the lexicographic product of the
two graphs is the graph Γ = Γ1 ◦ Γ2 where Γ = (V,E), V = V1 × V2, and, for
< x, y >,< u, v >∈ V
– adjacency is defined by < x, y >∼< u, v > in Γ if x ∼ u in Γ1 or if x = u

and y ∼ v in Γ2;
– if Γi is regular of valency νi then Γ is regular of valency ν1n2 + ν2;
– an adjacency matrix for Γ is

A = A1◦2 = A1 ⊗ Jn2 + In1 ⊗A2.

It is easy to prove that the lexicographic product is associative.

Proposition 4 Let Γ = Γ1 ◦ Γ2. Then C2(Γ ) is RLCD if both C2(Γi) are
RLCD and n2 is odd.

Proof: For A = A1 ⊗ Jn2
+ In1

⊗A2, over F2,

A2 = (A1 ⊗ Jn2
)2 + In1

⊗A2
2 = n2A

2
1 ⊗ Jn2

+ In1
⊗A2

2 = A

if n2 is odd. �

Corollary 5 Let Γ = Γ1 ◦ Γ2 and suppose C2(Γ ) is RLCD. Then

1. if C2(Γ1) is RLCD, then C2(Γ2) is RLCD if n2 is odd;
2. if C2(Γ2) is RLCD, then C2(Γ1) is RLCD if n2 is odd.

Proof: With notation as above, we assume

A2 = n2A
2
1 ⊗ Jn2

+ In1
⊗A2

2 = A = A1 ⊗ Jn2
+ In1

⊗A2.

1. If C2(Γ1) is RLCD then A2
1 = A1, so we have n2A1 ⊗ Jn2

+ In1
⊗ A2

2 =
A1⊗Jn2

+In1
⊗A2, so (n2+1)A1⊗Jn2

= In1
⊗(A2+A2

2). If n2 is odd then
we have In1

⊗ (A2 +A2
2) = 0, and hence A2 = A2

2 and C2(Γ2) is RLCD.
2. If C2(Γ2) is RLCD then A2

2 = A2, so we have n2A
2
1 ⊗ Jn2 + In1 ⊗ A2 =

A1 ⊗ Jn2 + In1 ⊗ A2, so (n2A
2
1 + A1) ⊗ Jn2 = 0. If n2 is even this would

imply that A1⊗Jn2
= 0, which is impossible, and so we must have n2 odd,

and A1 = A2
1, so C2(Γ1) is RLCD. �

Note 10 If all the Γi are equal to a graph Γ then ◦ni=1Γ is written Γ ◦,n.
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7 Other products of graphs

7.1 Blackbox product of graphs Γ1�Γ2

If Γ1 = (V1, E1) and Γ2 = (V2, E2), |V1| = n1, |V2| = n2, and A1, A2 are
adjacency matrices for Γ1, Γ2 respectively, the blackbox product of the two
graphs is the graph Γ = Γ1�Γ2 where Γ = (V,E), V = V1 × V2, and for
< x, y >,< u, v >∈ V ,

– adjacency is defined by < x, y >∼< u, v > in Γ if x ∼ u in Γ1 or y ∼ v in
Γ2;

– if Γi is regular of valency νi then Γ is regular of valency ν1n2 +ν2n1−ν1ν2;
– an adjacency matrix for Γ1�Γ2 is

A = A1�2 = A1 ⊗ Jn2 + Jn1 ⊗A2 −A1 ⊗A2.

Proposition 5 Let Γ = �ni=1Γi. Then C2(Γ ) is RLCD if all the C2(Γi) are
RLCD and all the ni are odd, where Γi = (Vi, Ei) and |Vi| = ni.

Proof: Let Γ = Γ1�Γ2. With notation as above, taking n = 2,

A2 = n2A
2
1⊗Jn2

+n1Jn1
⊗A2

2+A2
1⊗A2

2 = n2A1⊗Jn2
+n1Jn1

⊗A2+A1⊗A2 = A

since n1, n2 are odd. This extends to the blackbox product of n graphs. �

Corollary 6 Let Γ = Γ1�Γ2. If C2(Γ ) and C2(Γ1) are RLCD then if n1 and
n2 are odd, C2(Γ2) is RLCD.

Proof: With notation as before,

A2 = n2A
2
1⊗Jn2 +n1Jn1⊗A2

2 +A2
1⊗A2

2 = A = A1⊗Jn2 +Jn1⊗A2 +A1⊗A2,

so n2A1 ⊗ Jn2
+ n1Jn1

⊗A2
2 +A1 ⊗A2

2 = A1 ⊗ Jn2
+ Jn1

⊗A2 +A1 ⊗A2, so
since n1, n2 are odd, and thus ≡ 1 (mod 2), we have Jn1

⊗ A2
2 + A1 ⊗ A2

2 =
Jn1
⊗A2 +A1 ⊗A2, and hence (Jn1

+A1)⊗ (A2
2 +A2) = 0. Since A1 6= Jn1

,
we must have A2

2 +A2 = 0, so C2(Γ2) is RLCD. �

Note 11 If all the Γi are equal to a graph Γ then �ni=1Γ is written Γ�,n.

7.2 n-Multiples of a graph n⊗ Γ

If Γ = (V,E), Ω = {1, . . . , n}, the n-multiple of Γ is the graph n ⊗ Γ =
(V ×Ω,En) with adjacency defined by < x, i >∼< y, j > if x ∼ y in Γ . If A
is an adjacency matrix for Γ then an adjacency matrix for n⊗ Γ is A⊗ Jn.

Proposition 6 For n ∈ Z, if Cp(Γ ) is RLCD for some prime p, then Cp(n⊗
Γ ) is RLCD if n ≡ −1 (mod p).

Proof: Let A be an adjacency matrix for Γ . Then (A ⊗ Jn)2 = A2 ⊗ J2
n =

A2 ⊗ nJn = (−A)⊗ nJn = −A⊗ Jn if n ≡ −1 (mod p). �
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7.3 n-Copies of a graph nΓ

If Γ = (V,E), Ω = {1, . . . , n}, then n-copies of Γ is the graph nΓ = (V ×
Ω,En) with adjacency defined by < x, i >∼< y, j > if x ∼ y and i = j, or
x = y and i 6= j. If |V | = v, and Γ is regular of valency ν, then nΓ is regular of
valency ν+n− 1. If A is an adjacency matrix for Γ then an adjacency matrix
for nΓ is B = A⊗ In + Iv ⊗ (Jn − In).

Proposition 7 For n ∈ Z, if C2(Γ ) is RLCD, then C2(nΓ ) is RLCD if n is
odd.

Proof: Let A be an adjacency matrix for Γ , B one for nΓ . Then over F2,
B2 = (A⊗ In + Iv ⊗ (Jn− In))2 = A2⊗ In + Iv ⊗ (Jn− In)2 = A2⊗ In + Iv ⊗
(nJn + In) = B if n is odd and A2 = A, i.e. Γ is RLCD. �

8 Examples

We will consider here the products of some graphs whose binary codes have
been shown to be RLCD, in particular the triangular graphs T (m), whose
binary codes are shown in [16, Corollary 2] to be RLCD for m ≥ 5 odd, and
the Paley graphs P (q), for prime power q ≡ 1 (mod 8), whose binary codes
are also shown to be RLCD in [16, Corollary 2].

First some background facts about these graphs and their binary codes.

1. Triangular graph T (m) = Γ (m, 2, 1)
The triangular graph T (m) has for vertices the set V = Ω{2} where Ω is
a set of size m, and {a, b} ∼ {c, d} if |{a, b} ∩ {c, d}| = 1. It is a strongly
regular graph with parameters (

(
m
2

)
, 2(m − 2),m − 2, 4), and a uniform

subset graph Γ (m, 2, 1). The binary code from an adjacency matrix for
T (m) has been studied in various places (e.e. see [8,15]). If m ≥ 5 is
odd then C = C2(T (m)) is a [

(
m
2

)
,m − 1,m − 1]2 code and is RLCD,

with C⊥ = C2(RT (m)) a [
(
m
2

)
,
(
m−1
2

)
, 3]2 code, with the words of weight 3

having the form v{a,b}+v{a,c}+v{b,c} for any set of three distinct elements
of Ω = {1, . . . ,m}, m ≥ 5 (see [15, Lemma 3.2]). For m even it is not
RLCD.
The symmetric group Sm is a subgroup of Aut(T (m)).
The eigenvalues of Γ = T (m) are known since it is strongly regular. We
will write λ∗i for λi + 1, the eigenvalue of RΓ (since the binary code is
RLCD for m odd) corresponding to the eigenvalue λi of Γ .
– λ0 = 2m− 4, λ∗0 = 2m− 3, m0 = 1;
– λ1 = m− 4, λ∗1 = m− 3, m1 = m− 1;
– λ2 = −2, λ∗2 = −1, m2 = 1

2m(m− 3);
2. Paley graph P (q)

For q any prime power such that q ≡ 1 (mod 4), Γ = P (q) is the Paley
graph on Fq with x ∼ y if and only if x − y is a non-zero square. It is
strongly regular with parameters (q, 12 (q−1), 14 (q−5), 14 (q−1)). Its binary
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code C is RLCD if q ≡ 1 (mod 8) and is a [q, 12 (q− 1), d]2 code, while RC
is a [q, 12 (q − 1), d⊥]2 code, where d, d⊥ are not known in the general case.
For any non-zero square a ∈ Fq and any b ∈ Fq, the map τa,b : x 7→ ax+ b
is an automorphism of P (q).
Again, the eigenvalues of Γ = P (q) are known since it is strongly regular,
and we write λ∗i for λi + 1, the eigenvalue of RΓ (since the binary code is
RLCD for q ≡ 1 (mod 8)), corresponding to the eigenvalue λi of Γ .

– λ0 = 1
2 (q − 1), λ∗0 = 1

2 (q + 1), m0 = 1;
– λ1 = 1

2 (−1 +
√
q), λ∗1 = 1

2 (1 +
√
q), m1 = 1

2 (q − 1);
– λ2 = 1

2 (−1−√q), λ∗2 = 1
2 (1−√q), m2 = 1

2 (q − 1).

8.1 Cartesian product

Recall from the definition at the beginning of Section 3 that for Γ1 of valency
ν1 and Γ2 of valency ν2, the valency of Γ1�Γ2 is ν1 + ν2. However we have no
information in general for the rank of an adjacency matrix. If the eigenvalues
of the graphs are known then the eigenvalues of Γ1�Γ2 can be computed from
Result 8.

(1) Cartesian product of n copies of T (m)

Recall that for m ≥ 5 odd, C2(T (m)) is a [
(
m
2

)
,m − 1,m − 1]2 code and

C2(T (m))⊥ is a [
(
m
2

)
,
(
m−1
2

)
, 3]2 code. The valency of T (m) is 2(m− 2), so the

valency of �ni=1T (m) = T (m)�,n is 2n(m − 2). C2(T (m)�,n)⊥ has words of
weight 3n by Lemma 4, using words of weight 3 in C2(T (m))⊥.

We consider Γ = �ni=1T (5) = T (5)�,n with adjacency matrix An on 10n

vertices and valency 6n. For A1 and An we have, from Section 3,

A1 =



0 1 1 1 1 1 1 0 0 0
1 0 1 1 1 0 0 1 1 0
1 1 0 1 0 1 0 1 0 1
1 1 1 0 0 0 1 0 1 1
1 1 0 0 0 1 1 1 1 0
1 0 1 0 1 0 1 1 0 1
1 0 0 1 1 1 0 0 1 1
0 1 1 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0 1
0 0 1 1 0 1 1 1 1 0


, (6)
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An =



An−1 I I I I I I 0 0 0
I An−1 I I I 0 0 I I 0
I I An−1 I 0 I 0 I 0 I
I I I An−1 0 0 I 0 I I
I I 0 0 An−1 I I I I 0
I 0 I 0 I An−1 I I 0 I
I 0 0 I I I An−1 0 I I
0 I I 0 I I 0 An−1 I I
0 I 0 I I 0 I I An−1 I
0 0 I I 0 I I I I An−1


,

where I = I10n−1 , and An is 10n×10n. By row reduction of An one can deduce
that rank2(An) = 4 × 10n−1 + 2 × rank2(An−1); solving this recurrence and
simplifying and using the fact that rank2(A1) = 4, gives

rank2(An) = 2n−1(5n − 1).

The minimum weight of C2(T (5)) is 4 and computation with Magma [4,
3] tells us that the minimum weight of C = C2(T (5)�T (5)) is 12, and that
of its dual is 9. Words of weight 12 in C can be constructed as is shown in
Lemma 5 (and also the block r<x,y> has this weight), and of weight 9 in RC
in Lemma 4, using words of weight 3 in C2(T (5))⊥. Thus C = C2(T (5)�T (5))
is a [100, 48, 12]2 code and C⊥ is a [100, 52, 9]2 code.

Using Results 4 and 8 and the known eigenvalues for T (m) as quoted above
one can deduce the following for C = C2(T (m)�,n):

– for n = 1, dim(C) = (m− 1);
– for n = 2, dim(C) = (m− 1)2(m− 2);
– for n = 3, dim(C) = 1

4 (m− 1)3(3m2 − 12m+ 16).

(2) Cartesian product of n copies of P (q)

The binary code of P (q) is RLCD if q ≡ 1 (mod 8) and is a [q, 12 (q−1), d]2
code, while RC is a [q, 12 (q − 1), d⊥]2 code, where d, d⊥ are not known in the

general case. The valency is q−1
2 . Thus the valency of �ni=1P (q) = P (q)�,n is

n q−12 .

For q = 9, Γ = P (9) is strongly regular with parameters (9, 4, 1, 2). Its
binary code C is RLCD and is a [9, 4, 4]2 code, while RC is a [9, 5, 3]2 code.
If F9 has primitive element ω with minimal polynomial X2 + 2X + 2, and the
vertices are labelled by the sequence [ωi | 0 ≤ i ≤ 8], let A1 be an adjacency
matrix for P (9). Then �ni=1P (9) = P (9)�,n has adjacency matrix An on 9n
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vertices and valency 4n, with A1 and An given as follows, from Section 3:

A1 =



0 1 1 0 0 1 1 0 0
1 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 1
0 1 1 0 1 0 0 0 1
0 1 0 1 0 0 1 1 0
1 1 0 0 0 0 0 1 1
1 0 1 0 1 0 0 1 0
0 0 0 0 1 1 1 0 1
0 0 1 1 0 1 0 1 0


,

An =



An−1 I I 0 0 I I 0 0
I An−1 0 I I I 0 0 0
I 0 An−1 I 0 0 I 0 I
0 I I An−1 I 0 0 0 I
0 I 0 I An−1 0 I I 0
I I 0 0 0 An−1 0 I I
I 0 I 0 I 0 An−1 I 0
0 0 0 0 I I I An−1 I
0 0 I I 0 I 0 I An−1


,

and where I = I9n−1 , and An−1 is 9n−1 × 9n−1.
Computations with Magma show that C2(P (9)�,2) has minimum weight

8 and its dual has minimum weight 9, the weight of rows in A2 and A2 + I
respectively.

By row reduction of An one can deduce that rank2(An) = 4 × 9n−1 +
rank2(An−1); solving this recurrence and simplifying and using the fact that
rank2(A1) = 4, gives rank2(An) = 1

2 (9n − 1), for n ≥ 1.

Thus C = C2(P (9)�,2) is a [81, 40, 8]2 code and C⊥ a [81, 41, 9]2 code.
Using Results 4 and 8 and the known eigenvalues for P (q2) as quoted above,

which are integral, one can deduce for C = C2(P (q2)�,m) for 1 ≤ m ≤ 3, that
dim(C) = 1

2 (q2m − 1).

By computation, this formula also holds for C = C2(P (17)�,m) for 1 ≤
m ≤ 3, i.e. dim(C) = 1

2 (17m− 1), where here the eigenvalues of P (17) are not
integers so the argument would not apparently apply.

(3) Cartesian product T (m)�P (q2), m ≥ 5 odd, q2 ≡ 1 (mod 8)
Using Results 4 and 8 and the eigenvalues for T (m) and P (q2), we have for

C = C2(T (m)�P (q2)), dim(C) = (m−1)(1+ 1
4 (m(q2−1))). Computationally

with Magma we found that the minimum weight of C for m = 5, q2 = 9 is
10, which is also the valency, and the minimum weight of C⊥ is 9. Thus if
C = C2(T (5)�P (92)), C is a [810, 404, 10]2 code, and C⊥ is a [810, 396, 9]2
code.

Magma observations
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– For q ∈ {9, 17, 25} (i.e. q ≡ 1 (mod 8)), dim(C2(P (q)�P (q))) = 1
2 (q2 −

1), agrees with the formula proved for q = 9. Also dim(C2(P (17)�,3)) =
1
2 (173 − 1).

– For q = 5, 13, dim(C2(P (q)�P (q)) 6= 1
2 (q2 − 1).

– dim(C2(T (7)�T (7))) = 180, while dim(C2(T (7))) = 6 does not fit the
similar formula for T (5).

8.2 Direct product

From the definition at the beginning of Section 4 we have that for Γ1 of valency
ν1 and Γ2 of valency ν2, the valency of Γ1 × Γ2 is ν1ν2. Furthermore, if A1 is
an adjacency matrix for Γ1 and A2 is an adjacency matrix for Γ2, then the
rank of an adjacency matrix for Γ1 × Γ2 is rank(A1)rank(A2).

(1) Direct product of n copies of T (m), m ≥ 5 odd
For Γ = T (m)×,n, Γ has valency 2n(m− 2)n and an adjacency matrix has

2-rank (m− 1)n.
For example, for m = 5,×ni=1T (5) = T (5)×,n has adjacency matrix An, and

valency 6n, where for An we have, from Section 4, with A1 is as in Equation (6):

An =



0 An−1 An−1 An−1 An−1 An−1 An−1 0 0 0
An−1 0 An−1 An−1 An−1 0 0 An−1 An−1 0
An−1 An−1 0 An−1 0 An−1 0 An−1 0 An−1
An−1 An−1 An−1 0 0 0 An−1 0 An−1 An−1
An−1 An−1 0 0 0 An−1 An−1 An−1 An−1 0
An−1 0 An−1 0 An−1 0 An−1 An−1 0 An−1
An−1 0 0 An−1 An−1 An−1 0 0 An−1 An−1

0 An−1 An−1 0 An−1 An−1 0 0 An−1 An−1
0 An−1 0 An−1 An−1 0 An−1 An−1 0 An−1
0 0 An−1 An−1 0 An−1 An−1 An−1 An−1 0


. (7)

Since rank2(An) = rank2(A1)n = 4n, C = C2(T (5)×,n) is a [10n, 4n, d]2 code
where d ≤ 6n. Further, C⊥ is a [10n, 10n − 4n, 3]2 code, by Lemma 9 below.

The minimum weight of C2(T (5)) is 4, and computation with Magma [4,
3] tells us that the minimum weight of C = C2(T (5) × T (5)) is 16, and that
of its dual is 3.

Note 12 Words of weight 16 in C can be constructed as is shown in Lemma 7.

Lemma 9 If Γ = ×ni=1T (m) = T (m)×,n, m ≥ 5 odd, then the minimum
weight of C2(Γ )⊥ = C2(RΓ ) is 3 and n

(
m
2

)nm−2
3 words of weight 3 have

support of the form

{< x1, . . . , xn−1, {a, b} >,< x1, . . . , xn−1, {a, c} >,< x1, . . . , xn−1, {b, c} >},

where a, b, c ∈ {1, . . . ,m} are distinct, the xi are arbitrary vertices in T (m),
and the triple of vertices {a, b}, {a, c}, {b, c} can be placed in any one of the n
positions.
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Proof: The minimum weight of C2(T (m))⊥ is 3 for all m ≥ 5 and the words of
weight 3 have support {{a, b}, {a, c}, {b, c}} for the 3-sets in Ω = {1, . . . ,m},
except for n = 6 when there are more: see [15]. A 3-set of the form shown is
a special case of the word described in Lemma 6, and clearly the minimum
weight cannot be less than 3. There are

(
m
2

)
choices for each of the xi,

(
m
3

)
choices of the triples {a, b, c}, and n choices for the position of pairs from the

triples, giving n
(
m
2

)n−1(m
3

)
= n

(
m
2

)nm−2
3 words of this form. �

If an information set is known for C2(Γ ) then we have an information set
of C2(Γ × Γ ) from Lemma 8.

From [15, Theorem 1], taking only the case where m ≥ 5 is odd, we have

Result 9 Let m ≥ 5 be odd, and I = {{1,m}, {2,m}, . . . , {m− 1,m}} and C
denote a binary code of T (m) with I in the first m− 1 positions. Then C is a
[
(
m
2

)
,m− 1,m− 1]2 code with I as the information positions, and

T = {id} ∪ {(i,m) | 1 ≤ i ≤ m− 1}

is a PD-set for C of m elements in the symmetric group Sm acting on 2-sets,
i.e. a (m−32 )-PD set for C of m elements.

Proposition 8 For m ≥ 5 odd, C2(T (m)×T (m)) has (m−12 )-PD-sets of size
m, thus:
for I = {{1, i} | 2 ≤ i ≤ m}, and information set I = {< x, y >| x, y ∈ I} for
C2(T (m) × T (m)), the set T = {((1, i), id) | 1 ≤ i ≤ m} is a (m−12 )-PD-set
for C2(T (m)× T (m)) of size m.

Proof: From [15] and Result 9, the set of vertices I = {{1, i} | 2 ≤ i ≤ m}
is an information set for C2(T (m)) for m odd. Thus by Lemma 8 the set
I = {< x, y >| x, y ∈ I} is an information set for C2(T (m) × T (m)). Let
C denote the corresponding check symbols. Note that I consists of all the
vertices in T (m) × T (m) that have a 1 in the 2-subset of Ω = {1, . . . ,m} in
both positions.

The symmetric group Sm acts on T (m) and thus Sm×Sm acts on T (m)×
T (m). Let T = {((1, i), id) | 1 ≤ i ≤ m} acting on T (m)× T (m) where (1, 1)
denotes the identity map on T (m). Suppose a message arrives and m−1

2 errors
occur. If they are all in C then (id, id) can be used, Otherwise, if at least
one is in I then, since in these m−1

2 errors at most m − 1 of the elements of
Ω = {1, . . . ,m} appear in the 2-sets in the first coordinate, and one of them is
1, if j is the element that does not occur, then j 6= 1 and ((1, j), id) will move
all the vertices into check. �

Note 13 In [20] PD-sets for C2(T (m)) of minimal size m−1
2 are shown to exist

for m ≥ 5 odd, i.e. for full error correction, with t = m−3
2 .

Proposition 9 For m ≥ 5 odd, the minimum weight of C2(T (m)× T (m)) is
(m− 1)2.
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Proof: For m ≥ 5 odd, C2(T (m)) is a [
(
m
2

)
,m−1,m−1]2 code. C2(T (m))⊥ has

minimum weight 3 and words of this weight have support {{a, b}, {a, c}, {b, c}}
for any choice of three distinct elements a, b, c from Ω = {1, . . . ,m}, and
these are the only words of weight 3. The number of such words containing a
particular point {a, b} in V , where T (m) = (V,E), is clearly m− 2.

Now consider C = C2(T (m)×T (m)). From Lemma 6, the minimum weight
of C⊥ is 3. We can label the N =

(
m
2

)
vertices in V by {a1, . . . , aN}, each ai

representing a 2-set from Ω. Let A1 be the adjacency matrix for T (m) with
this labelling. The corresponding adjacency matrix for T (m) × T (m), since
it is the Kronecker product A1 ⊗ A1, will have A1 in the positions in A1

that have a 1, and the zero matrix 0 where there is a zero: see Equation (7).
The vertices in V × V are labelled < a1, aj > for j = 1, . . . N for the first
set of N columns, then < a2, aj > for j = 1, . . . N for the next, and so on.
Writing A2 = [Bi,j ] where the N2 N × N matrices Bi,j are either A1 or 0,
and Bi,j has columns labelled by {< aj , ak >| k = 1, . . . , N} and rows by
{< ai, ak >| k = 1, . . . , N}. Clearly Bi,i = 0 for 1 ≤ i ≤ N . Regarding A2

as a block matrix, we can label the N rows by Ri for i ∈ {1, . . . N}, and
the N columns by Cj for j ∈ {1, . . . N}. Thus Ri denotes the row of blocks
[Bi,j | 1 ≤ j ≤ N ], and likewise Cj the column of blocks [Bi,j | 1 ≤ i ≤ N ].

From Lemma 7, C has words of weight (m− 1)2, so the minimum weight
is at most (m− 1)2.

Let w ∈ C and write w = [w1, w2, . . . , wN ] where wj is the component from
the blocks Bi,j from Cj , with support from the set of points {< aj , a1 >, . . . , <
aj , aN >}. We can suppose w1 6= 0. We know that wt(w1) ≥ m − 1. Suppose
Supp(w1) = {< a1, aj1 >, . . . , < a1, ajs >} where s ≥ m − 1. Every word
of C⊥ meets w evenly, and this is true for the weight-3 vectors with support
{< a1, aj1 >,< b, aj1 >,< c, aj1 >} where, if a1 = {x, y} then b = {x, z},
c = {y, z}, and x, y, z are distinct elements of Ω. Since there are m−2 distinct
choices of z like this, there are at least another m−2 distinct points < b, aj1 >
in Supp(w), so that the corresponding m − 2 components wi cannot be zero,
and each of these wi will have weight at least m−1. Thus wt(w) ≥ (m−1)s ≥
(m− 1)2. �

Note 14 A similar result appears to hold for T (m)×T (m) for m even but the
same argument does not hold since it would only show the weight is at least
2(m−2)(m−1) instead of 4(m−2)2. Here the minimum weight for C2(T (m))
is 2(m−2) and this was incorrectly stated, due to a typographical error, in [15,
Theorem 1.1], although correctly stated in that paper in Result 3.

Corollary 7 For m ≥ 5 odd, n ≥ 1, C2(T (m)×,n) is a [
(
m
2

)n
, (m− 1)n, (m−

1)n]2 code and C2(T (m)×,n)⊥ is a [
(
m
2

)n
,
(
m
2

)n − (m− 1)n, 3]2 code.

Proof: Follows in the same way as in the proposition, and by induction. �

(2) Direct product of n copies of P (q), q ≡ 1 (mod 8)
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For Γ = ×ni=1P (q) = P (q)×,n, the valency of Γ is ( q−12 )n, and the 2-rank

of an adjacency matrix is also ( q−12 )n.
For q = 9, Γ = ×ni=1P (9) = P (9)×,n has adjacency matrix An of 2-rank

4n and valency 4n. For An we have, from Section 4,

An =



0 An−1 An−1 0 0 An−1 An−1 0 0
An−1 0 0 An−1 An−1 An−1 0 0 0
An−1 0 0 An−1 0 0 An−1 0 An−1

0 An−1 An−1 0 An−1 0 0 0 An−1
0 An−1 0 An−1 0 0 An−1 An−1 0

An−1 An−1 0 0 0 0 0 An−1 An−1
An−1 0 An−1 0 An−1 0 0 An−1 0

0 0 0 0 An−1 An−1 An−1 0 An−1
0 0 An−1 An−1 0 An−1 0 An−1 0


,

and where I = I9n−1 , and An−1 is 9n−1 × 9n−1.
Since C2(P (9))⊥ has minimum weight 3, Lemma 6 gives words of this

weight in C2(P (9)×,n)⊥, and the minimum weight cannot be smaller than this.
C2(P (9)) has minimum weight 4, and Lemma 7 shows how words of weight
4n can be constructed in C2(P (9)×,n). This is also the valency of the graph.
Thus C2((P (9)×,n) is a [9n, 4n, d]2 code where d ≤ 4n, and C2((P (9)×,n)⊥ is
a is a [9n, 9n − 4n, 3]2 code. For n = 2, computation with Magma shows that
d = 16 is the minimum weight of C2(P (9)× P (9)).

Proposition 10 For q ≡ 1 (mod 8), and any information set I for C2(P (q),
C2(P (q) × P (q)) has a 2-PD-set of size q for the information set I = I × I
given by

S = {(τ1,a, τ1,0) | a ∈ Fq}.

Proof: We have I = {< x, y >| x, y ∈ I}. Let C = Fq \ I, and C = Fq×Fq \I.
If no errors occur then (τ1,0, τ1,0) = id will work; if one error occurs in C
then id will work. If one error occurs at < x, y >∈ I then since {x + a |
a ∈ Fq} = Fq = I ∪ C, there exists a ∈ Fq such that x + a ∈ C and thus
< x, y >(τ1,a,τ1,0)=< x+ a, y >∈ C.

Now suppose two errors occur. If they are both in C then id can be used.
If they are both in I, suppose they are < x1, y1 >,< x2, y2 >∈ I. We wish
to find a ∈ Fq such that x1 + a, x2 + a ∈ C. Let S1 = {x1 + a | a ∈ Fq},
S2 = {x2 + a | a ∈ Fq}, so S1 = S2 = Fq. Let S1 ∩ C = {x1 + e | e ∈ E}, of
size q+1

2 . Then {x2 + e | e ∈ E} has size q+1
2 and thus cannot be totally inside

I. Thus there is an e ∈ E such that x1 + e, x2 + e ∈ C, so (τ1,e, τ1,0) will move
both points into check.

If one of the errors is in I and the other in C, then suppose < x1, y1 >∈ I
and < x2, y2 >∈ C. Then we can look at the sets S1 = {x1 + a | a ∈ Fq},
S2 = {x2 + a | a ∈ Fq}, as before and by the same argument see that there is
an e ∈ E such that x1 + e, x2 + e ∈ C, so (τ1,e, τ1,0) will move < x1, y1 > into
check and keep < x2, y2 > in check. �
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Note 15 This argument works for q ≡ 1 (mod 4) also, when the code is not
RLCD.

In [11] when q ≡ 1 (mod 8) is a prime, 2-PD-sets of size 6 for C2(P (q))
were given for an explicit information set using the fact that the code is cyclic:

Result 10 [11, Corollary 2] Let P (n) be the Paley graph of prime order n,
where n ≡ 1 (mod 8), and C = [n, n−12 ]p its code over Fp where p is a prime
dividing n−1

4 . For the information set for C given in I = {0, 1, . . . , k − 1},
where k = n−1

2 , C has a 2-PD-set of size 6 as given by

{τ1,b | b ∈ {0, k}} ∪ {τk,b | b ∈ {k, 2k,
3k

2
,
k

2
− 1}}.

Note 16 The smallest size a 2-PD-set for C2(P (q)) can be is 4.

Corollary 8 For q ≡ 1 (mod 8) prime, information set I = {0, 1, . . . , q−32 }
for C2(P (q)), C2(P (q) × P (q)) has a 2-PD-set of size 6 for the information
set I = I × I, given by

S = {τ1,b | b ∈ {0,
q − 1

2
}} ∪ {τ q−1

2 ,b | b ∈ {
q − 1

2
, q − 1,

3(q − 1)

2
,
q − 3

2
}}.

8.3 Strong product of n copies of T (5)

Here we consider Γn = �ni=1T (5) = T (5)�,n with adjacency matrix An and
valency (1 + ν)n − 1 = 7n − 1. For An we have, from Section 5,



An−1 An−1+I An−1+I An−1+I An−1+I An−1+I An−1+I 0 0 0
An−1+I An−1 An−1+I An−1+I An−1+I 0 0 An−1+I An−1+I 0
An−1+I An−1+I An−1 An−1+I 0 An−1+I 0 An−1+I 0 An−1+I
An−1+I An−1+I An−1+I An−1 0 0 An−1+I 0 An−1+I An−1+I
An−1+I 0 0 0 An−1 An−1+I An−1+I An−1+I An−1+I 0
An−1+I 0 An−1+I 0 An−1+I An−1 An−1+I An−1+I 0 An−1+I
An−1+I 0 0 An−1+I An−1+I An−1+I An−1 0 An−1+I An−1+I

0 An−1+I An−1+I 0 An−1+I An−1+I 0 An−1 An−1+I An−1+I
0 An−1+I 0 An−1+I An−1+I 0 An−1+I An−1+I An−1 An−1+I
0 0 An−1+I An−1+I 0 An−1+I An−1+I An−1+I An−1+I An−1


.

The minimum weight of C2(T (5)) is 4, and computation with Magma [4,3]
tells us that the minimum weight of C = C2(T (5) � T (5)) is 4, the minimum
weight of its dual is 9, and rank2(A2) = 64. Thus C is a [100, 64, 4]2 code, and
C⊥ is a [100, 36, 9]2 code.

8.4 Lexicographic product of T (5) and K3, T (5) ◦K3

From Section 6, for Γ1◦Γ2 to be RLCD we need Γ2 = (V2, E2) where |V2| = n2
is odd. Let A be an adjacency matrix for Γ = T (5) ◦K3, on 30 vertices, and
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valency 20, where Kn is the complete graph on n vertices. With K =

0 1 1
1 0 1
1 1 0


an adjacency matrix for K3, and J = J3, we have

A =



K J J J J J J 0 0 0
J K J J J 0 0 J J 0
J J K J 0 J 0 J 0 J
J J J K 0 0 J 0 J J
J J 0 0 K J J J J 0
J 0 J 0 J K J J 0 J
J 0 0 J J J K 0 J J
0 J J 0 J J 0 K J J
0 J 0 J J 0 J J K J
0 0 J J 0 J J J J K


.

Computation with Magma [4,3] tells us that C2(T (5) ◦ K3) is a [30, 24, 2]2
code, with dual a [30, 6, 9]2 code.

9 Conclusion

The main aim of the considerations in this research was to establish which of
the types of products of graphs that have binary codes that are RLCD, have
binary codes that are also RLCD. For those that satisfy this, the decoding
method described in Section 2.2 from that developed in [17, Lemmas 1,2], can
be used. Most of the products we studied did have this property, including the
cartesian and direct products.

However, it also transpired that some of the graphs that have binary codes
that can be decoded using permutation decoding, also allow permutation de-
coding of the product, specifically cartesian and direct products. Thus, from
Lemma 8 we see that information sets for C2(Γ ) immediately give informa-
tion sets for the direct product and, furthermore, s-PD-sets for C2(Γ ) can be
used to define s-PD-sets for the direct product. Some examples of this are in
Section 8.2. Note that this applies for codes that are not RLCD as well.

For the cartesian product, in [18,19] binary codes from the cartesian prod-
uct of graphs Qmn (the m-ary n-cube), which are LCD but not RLCD, were
shown for n = 2 and m ≥ 4 to have s-PD-sets of minimal size (see Result 6),
and up to the full error-correcting capability of the code in the case n = 2 and
m ≥ 4 even.

There is much scope here for further study.
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