
Partial permutation decoding for simplex codes

W. Fish, J.D. Key and E. Mwambene∗

Department of Mathematics and Applied Mathematics
University of the Western Cape

7535 Bellville, South Africa

November 10, 2012

Abstract

We show how to find s-PD-sets of size s+1 that satisfy the Gordon-Schönheim bound
for partial permutation decoding for the binary simplex codes Sn(F2) for all n ≥ 4, and
for all values of s up to

⌊
2n−1

n

⌋
− 1. The construction also applies to the q-ary simplex

codes Sn(Fq) for q > 2, and to s-antiblocking information systems of size s+ 1, for s up

to
⌊

(qn−1)/(q−1)
n

⌋
− 1 for all q.
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1 Introduction

The binary simplex code Sn(F2) is the dual of the binary Hamming code Hn(F2), and is a
[2n−1, n, 2n−1]2 linear code with all non-zero vectors having weight 2n−1: see, for example, [1,
Section 2.5]. Any generator matrix for Sn(F2) has for columns the 2n− 1 non-zero vectors in
the vector space Vn(F2) = Fn

2 , and each coordinate position is labelled by the row vector of the
corresponding column. The standard basis for Vn(F2), i.e. e1, . . . , en, forms an information
set In for Sn(F2), as indeed will any basis for Vn(F2). The code can correct 2n−2 − 1 errors
and has for automorphism group the general linear group GLn(F2).

In this paper we establish the existence of nested s-PD-sets of size s + 1, for 1 ≤ s ≤⌊
2n−1

n

⌋
− 1, for permutation decoding up to s errors for the binary simplex codes for n ≥ 4,

using the information set In. This means finding sets of s + 1 matrices that will act as
these s-PD-sets. (The full definitions of PD-sets and s-PD-sets are given in Section 2.) In
particular, Result 1 in Section 2, gives a combinatorial lower bound for the size of a PD-set;
this formula (due to Gordon and Schönheim) generalises to a formula for the lower bound
for the size of an s-PD-set. Since small PD-sets are the most efficient, there has been some
interest in finding codes with PD-sets that satisfy these bounds. For example, such PD-sets
were found by Gordon [4] and Wolfman [16] for the binary Golay codes, and by Kroll and
Vincenti [9, 10] for the dual binary Hamming code H⊥4 (F2) = S4(F2).

When applied to the simplex code Sn(F2), the Gordon-Schönheim bound for s-PD-sets is
s+1 for s up to some number depending on n and less than 2n−2−1, the full error-correction
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capability of the code. We have denoted this limit by fn here, and we show in Lemma 2
that fn =

⌊
2n−1

n

⌋
− 1. What we have done here is to show how to find s-PD-sets of size

s+ 1 for s up to fn for all n. This gives an infinite number of examples of s-PD-sets of size
s + 1 meeting the Gordon-Schönheim bound. Furthermore these sets are nested in a sense
explained in Section 2, making the decoding algorithm more efficient. A similar construction
applies to the q-ary simplex codes Sn(Fq) for any q ≥ 2, and leads also to s-antiblocking
information systems (definition given in Section 2) of size s+ 1 for any q.

We state our main result for the binary simplex codes as a theorem:

Theorem 1. Let C denote the binary simplex code Sn(F2) with the set In of standard basis
elements as row vectors for information set. C is a [2n − 1, n, 2n−1]2 code.

If n ≥ 4 and Qk = {Ni | 0 ≤ i ≤ k}, where k ≥ 1, is a set of k + 1 matrices in
GLn(F2) such that Ni and Nj for i 6= j have no row in common, then k ≤

⌊
2n−1

n

⌋
− 1 and

Pk = {N−1
i | 0 ≤ i ≤ k} is a k-PD-set of k + 1 elements for C that meets the Gordon-

Schönheim bound for k-PD-sets. Such sets exist for all k such that 1 ≤ k ≤
⌊

2n−1
n

⌋
− 1.

Conversely, if Rk is a k-PD-set for C of size k + 1, then for M,N ∈ Rk, M 6= N , the
rows of M−1 and N−1 are distinct.

Furthermore, a set of k+ 1 matrices in GLm(F2) for any m ≥ n can be constructed from
Qk such that the set of inverses will give a k-PD-set of size k+ 1 for Sm(F2) for information
set Im that also meets this bound.

Note that the action of the matrices on the coordinate positions of the code is via matrix
multiplication vA where v is a row vector in Fn

2 and A ∈ GLn(F2). As mentioned above, an
analogous result holds for the q-ary simplex codes Sn(Fq) for any q ≥ 2, and the action of
the matrices will be described in Section 4.

The theorem is proved via a series of lemmas and propositions in Section 3. The rela-
tionship between these k-PD-sets of size k + 1 and the k-antiblocking information systems
introduced by Kroll and Vincenti [11] is shown in Corollary 3 to Proposition 1 for the binary
case, and in Proposition 4 for the q-ary simplex codes for q > 2.

The paper is arranged in the following way. All the necessary definitions and terminology
for codes, PD-sets and antiblocking information systems are given in Section 2. Section 3
contains the main results and constructions for permutation decoding for the binary simplex
codes, in particular Proposition 1 describing the k-PD-sets of size k + 1. Also in Section 3
it is shown in Lemma 6 that these k-PD-sets of size k + 1 can be chosen in many different
ways for k < 2n−1

n , which is approximately half the upper bound
⌊

2n−1
n

⌋
− 1. In fact there

is always at least one such set of the maximal size
⌊

(qn−1)/(q−1)
n

⌋
− 1, for the binary and the

q-ary case (the latter covered in Section 4).1 We describe this construction in Lemma 5.
In Section 4 we state the analogues for the q-ary simplex code Sn(Fq) for q > 2, and

show in Proposition 4 that for Sn(Fq), k-antiblocking information systems of size k + 1 can
be constructed in a way that is similar to that for q = 2 in Corollary 3. In Corollary 5 we
show the analogue of Proposition 1 for the q-ary case for the k-PD-sets.

Finally, a program that will construct sets Pk of size k+ 1 for Sn(F2) for a given value of
n, and that will run immediately in Magma [2, 3], is given as a web link in Section 5, along
with a sample run, for n = 6, as another link. A program that will run the construction of a
particular set of maximal size is also given in another link.

1We thank T. McDonough [14] for pointing out a special construction of such a set.
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2 Background and terminology

The notation for codes is standard and can be found in [1]. The codes here are all linear
codes, and the notation [n, k, d]q will be used for a q-ary code C of length n, dimension k,
and minimum weight d, where the weight wt(v) of a vector v is the number of non-zero
coordinate entries. The support, Supp(v), of a vector v is the set of coordinate positions
where the entry in v is non-zero. So |Supp(v)| = wt(v). A generator matrix for C =
[n, k, d]q is a k × n matrix whose rows form a basis for C, and the dual code C⊥ is the
orthogonal under the standard inner product (, ), i.e. C⊥ = {v ∈ Fn | (v, c) = 0 for all c ∈ C}.
A check matrix for C is a generator matrix for C⊥.

Following [1, Definition 2.2.3], two linear codes over the same field are called equivalent
if each can be obtained from the other by permuting the coordinate positions and multiplying
each coordinate by a non-zero field element. The codes will be said to be isomorphic if a
permutation of the coordinate positions suffices to take one to the other. Generally, an auto-
morphism of a code C is a code equivalence from C to C, and the set of all these gives the
automorphism group of the code, written Aut(C) or MAut(C) (following [6, Chapter 7,Sec-
tion 1.3]), since they are given by monomial matrices, and we do not consider here the more
general case that includes field automorphisms, or the Galois groups. If only permutations of
the coordinate positions are allowed then the group of permutation automorphisms is, again
following [6, Chapter 7,Section 1.3], called the permutation automorphism group, written
PAut(C). Any code is isomorphic to a code with generator matrix in so-called standard
form, i.e. the form [Ik |A]; a check matrix then is given by [−AT | In−k]. The set of the first
k coordinates in the standard form is called an information set for the code, and the set of
the last n− k coordinates is the corresponding check set.

Permutation decoding was first developed by MacWilliams [12] and involves finding a
set of automorphisms of a code called a PD-set. The method is described fully in MacWilliams
and Sloane [13, Chapter 16, p. 513] and Huffman [6, Section 8]. In [7] and [9] the definition
of PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 1. If C is a t-error-correcting code with information set I and check set C, then
a PD-set for C is a set S of automorphisms of C which is such that every t-set of coordinate
positions is moved by at least one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set
of coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding is as follows: we have a t-error-correcting [n, k, d]q
code C with check matrix H in standard form. Thus the generator matrix G = [Ik|A]
and H = [−AT |In−k], for some A, and the first k coordinate positions correspond to the
information symbols. Any vector v of length k is encoded as vG. Suppose x is sent and y
is received and at most t errors occur. Let S = {g1, . . . , gs} be the PD-set. Compute the
syndromes H(ygi)T for i = 1, . . . , s until an i is found such that the weight of this vector is t
or less. Compute the codeword c that has the same information symbols as ygi and decode
y as cg−1

i .
Notice that this algorithm actually uses the PD-set as a sequence. Thus it is expedient to

index the elements of the set S by the set {1, 2, . . . , |S|} so that elements that will correct a
small number of errors occur first. Thus if nested s-PD-sets are found for all 1 < s ≤ t then
we can order S as follows: find an s-PD-set Ss for each 0 ≤ s ≤ t such that S0 ⊂ S1 . . . ⊂ St
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and arrange the PD-set S as a sequence in this order:

S = [S0, (S1 − S0), (S2 − S1), . . . , (St − St−1)].

(Usually one takes S0 = {id}.)
There is a bound on the minimum size that a PD-set S may have, due to Gordon [4],

from a formula due to Schönheim [15], and quoted and proved in [6]:

Result 1. If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r = n− k, then

|S| ≥
⌈
n

r

⌈
n− 1
r − 1

⌈
. . .

⌈
n− t+ 1
r − t+ 1

⌉
. . .

⌉⌉⌉
. (1)

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the formula.
In [11], Kroll and Vincenti introduced the concept of antiblocking decoding, which is

closely related to permutation decoding: for a given code C with coordinate set P, a set A

of information sets for C is called a t-antiblocking information system (t-AI-system)
if for each t-set T ⊂ P, there is a B ∈ A such that B ∩ T = ∅. The decoding algorithm using
these sets is fully described in [11].

3 s-PD-sets of size s + 1 for Sn(F2)

In the following we will write Sn for Sn(F2); if q is not specifically 2 we will write Sn(Fq).
We now show how to find s-PD-sets for Sn that satisfy the Gordon-Schönheim bound for

s-PD-sets. Recall that Sn = [2n − 1, n, 2n−1]2, and that we take the set of standard basis
elements of Vn(F2) = Fn

2 to be the information set In, and denote the corresponding check
set by Cn. So

In = {e1, . . . , en} = {(1, 0, . . . , 0), . . . , (0, . . . , 0, 1)}. (2)

Thus the generator matrix for Sn will have for columns the 2n − 1 non-zero vectors from
Vn(F2), with the basis elements eTi in the first n positions. The labelling of the coordinate
positions is simply by the columns they represent; the matrix is thus given in standard form.
That Aut(Sn) = GLn(F2) follows most easily from the fact that Aut(Hn(F2)) = GLn(F2),
since Hn(F2) is the code of the projective geometry design of points and lines in PGn−1(F2).
We will write our vectors as row vectors, and thus vA will give the image of the vector
v ∈ Vn(F2) under the matrix A ∈ GLn(F2), and for any A the resulting permutation of the
coordinate positions gives an automorphism of the code Sn.

We first look at this bound for Sn, taking n ≥ 4 since S3 only corrects a single error
and permutation decoding is not necessary. For the simplex code Sn(F2), we will write gn(t)
for the right-hand side of Equation (1), and gn(s) for the bound for the s-PD-set, i.e. just
replacing t by s in the formula.

Lemma 1. For the binary simplex code Sn, and n ≥ 4, for 1 ≤ s ≤ 2n−2 − 1,

gn(s) =
⌈

2n − 1
2n − 1− n

⌈
2n − 2

2n − 2− n

⌈
. . .

⌈
2n − s

2n − s− n

⌉
. . .

⌉⌉⌉
≥ s+ 1. (3)

In particular, gn(1) = 2, gn(2) = 3 for all n ≥ 4.
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Proof: The innermost term in the formula for the bound is
⌈

2n−s
2n−s−n

⌉
. It is clear that this

has value 2 for all n ≥ 4 for all 1 ≤ s ≤ 2n−2 − 1. At each stage of the computation of the
ceiling, starting at the innermost, the fraction is greater than 1, so the term will increase in
value by at least 1. Thus gn(s) ≥ s + 1 as asserted. The two examples given show that for
small s this is indeed the value of gn(s). �

Note: It is shown in [8, Proposition 1] that this result is true for all codes.

Definition 2. For Sn, n ≥ 4, define

fn = max{s | 2 ≤ s, gn(s) = s+ 1}.

Lemma 2. For n ≥ 4,

fn =
⌊

2n − 1
n

⌋
− 1.

Proof: There are s steps in the computation of the formula in Equation (3), and by Lemma 1,
the innermost term is 2. Thus we must ensure that at each stage, working from the inside,
the increase is exactly 1.

For the term after the innermost, this would require that⌈
2
(

2n − s+ 1
2n − s+ 1− n

)⌉
=
⌈

2 +
2n

2n − s+ 1− n

⌉
= 3,

so 2n
2n−s+1−n ≤ 1, i.e. s ≤ 2n − 3n + 1. For the next term (the third term) we get similarly

s ≤ 2n − 4n + 2, and for the `th, s ≤ 2n − (` + 1)n + ` − 1. Thus for ` = s we have
s ≤ 2n − (s+ 1)n+ s− 1, and so

s ≤
⌊

2n − 1
n

⌋
− 1.

This final bound implies all the intermediate bounds since if at the `th stage we have s ≤
2n− (`+1)n+ `−1 = 2n− ((`+1)n− (`+1)+2), then since (`+1)n− (`+1)+2 ≥ `n− `+2
for n ≥ 1, the previous (`− 1)th bound will also be satisfied. Thus fn =

⌊
2n−1

n

⌋
− 1. �

Note: These two lemmas hold also for the q-ary simplex codes, Sn(Fq), with the formula for

fn, writing this as fn(Fq), being
⌊

(qn−1)/(q−1)
n

⌋
− 1.

For any s ≤ fn an s-PD-set of size s + 1 will meet the Gordon-Schönheim bound for
correction of s errors. We now find conditions on sets of matrices from GLn(F2) for this to
happen.

Proposition 1. Let C = Sn, where n ≥ 4, with information set In, check set Cn.
If Pk = {Mi | 0 ≤ i ≤ k} is a set of k+ 1 matrices in GLn(F2) such that no two matrices

M−1
i and M−1

j for i 6= j have a row in common, then Pk is a k-PD-set of k+ 1 elements for
C. Furthermore, any subset of Pk of size s+ 1 where 1 ≤ s ≤ k is an s-PD-set for C.

Conversely, if Rk = {Ni | 0 ≤ i ≤ k} is a k-PD-set for C then no two matrices N−1
i and

N−1
j for i 6= j have a row in common.

Proof: Suppose Pk = {Mi | 0 ≤ i ≤ k} and no two matrices M−1
i and M−1

j for i 6= j have a
row in common. Let T = {v1, . . . , vk} be a set of k distinct vectors in Vn(F2). Suppose that
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we cannot map T into Cn by any element of Pk. Then for each i such that 0 ≤ i ≤ k, there
is a vj , for 1 ≤ j ≤ k, such that vjMi ∈ In. Since there are k + 1 values of i but only k of j
we must have vjMi and vjMl, for some j, and i 6= l, both of weight 1. Suppose vjMi = er
and vjMl = et; then vj = erM

−1
i = etM

−1
l , so the rth row of M−1

i is the tth row of M−1
l ,

contradicting our assumption.
For the converse, suppose that Rk = {Ni | 0 ≤ i ≤ k} is a k-PD-set for C and that some

v ∈ Vn(F2) is the rth row of N−1
i and the tth row of N−1

j . So v = erN
−1
i = etN

−1
j , and

vNi = er, vNj = et. Let J = {m | 0 ≤ m ≤ k,m 6= i, j}. For each m ∈ J , choose a row vm of
N−1

m . We have a set of at least k − 1 vectors vm for each of which vmNm = et, some t, and
so vmNm has weight 1. The set T = {vm | m ∈ J} ∪ {v} has size at most k (since some of
the vm may repeat), but no matrix in Rk will map every member of T into Cn, contradicting
the assumption that Rk is a k-PD-set.

Finally, the statement about subsets of Pk of size s+ 1 is clear for the same reason that
it is true for k. �

Corollary 1. For n ≥ 4, if Pk of size k + 1 is a k-PD-set for Sn with information set In

then any ordering of the elements of Pk gives nested s-PD-sets for 1 ≤ s ≤ k.

To illustrate the corollary using the algorithm for permutation decoding, we can order
the elements of Pk arbitrarily as [Mi0 , . . . ,Mik ]. Then, if no errors occur, Mi0 will decode; if
one error occurs, either Mi0 or Mi1 will decode; if three errors occur one of the first three will
decode; and so on, so that for s errors one of the first s+ 1 will perform the decoding. Thus
the fewer errors that occur (which is assumed for a good channel), the sooner the vector will
be decoded.

From the proposition we also get another proof of the formula for fn as found in Lemma 2:

Corollary 2. For n ≥ 4, a k-PD-set of k + 1 elements of GLn(F2) for Sn with information
set In must satisfy k ≤

⌊
2n−1

n

⌋
− 1.

Proof: From Proposition 1, the k-PD-set of k + 1 matrices will have for its set of inverses,
k+1 matrices with no row occurring twice. Thus counting the rows we have (k+1)n ≤ 2n−1
and hence k ≤

⌊
2n−1

n

⌋
− 1. �

Related to the concept of antiblocking decoding, we have another corollary to our propo-
sition, noticing first that the rows of any matrix in GLn(F2) form an information set for
Sn:

Corollary 3. Suppose n ≥ 4 and Qk = {Ni | 0 ≤ i ≤ k}, where k ≥ 1, is a set of k + 1
matrices in GLn(F2) such that Ni and Nj for i 6= j have no row in common. If Ri is the set
of rows of Ni for 0 ≤ i ≤ k, the set Q = {Ri | 0 ≤ i ≤ k} is a k-antiblocking information
system of size k + 1 for Sn.

Conversely, any k-antiblocking information system A = {Ai | 0 ≤ i ≤ k} for Sn of k + 1
elements must have the property that Ai ∩Aj = ∅ for i 6= j.

Proof: By Proposition 1, Pk = {N−1
i | 0 ≤ i ≤ k} is a k-PD-set for information set In, so

for any k-set of vectors T = {vi | 1 ≤ i ≤ k} there is an N−1
i such that vjN

−1
i ∈ Cn for

1 ≤ j ≤ k. Then T ∩Ri = ∅. So Q is a k-antiblocking information system for Sn.
Conversely, if given a k-AI-system A = {Ai | 0 ≤ i ≤ k} for Sn of k + 1 elements, the

proof that there can be no vector in common to two members of A is precisely as in the proof
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of the converse in Proposition 1, since each Ai consists of n vectors that form a basis for
Vn(F2) and thus define an invertible matrix. �

Note: Corollary 3 also follows from [8, Proposition 1].

In practice we usually take M0 = In to deal with the case of no errors. For this case we
first define

An = {M |M ∈ GLn(F2), all rows of M have weight at least 2}. (4)

Then we have the following:

Proposition 2. Let C = Sn where n ≥ 4, with information set In, check set Cn.
If Pk = {M0 = In,M1, . . .Mk} is a set of k + 1 matrices in GLn(F2) which is such that

for every pair (i, j), i 6= j, M−1
i Mj ∈ An, then Pk is a k-PD-set of k + 1 elements for C.

Proof: First note that M ∈ An if and only if M−1 ∈ An. For suppose M ∈ An. If M−1 has
a row of weight 1, say ej in the ith row, then the ith row of In = M−1M is the jth row of M ,
and thus has weight more than 1, which is impossible. Thus M−1 ∈ An.

The condition implies that Mi = M−1
0 Mi ∈ An for i ≥ 1. We next prove that rows of

M−1
i and M−1

j for i 6= j are distinct. Clearly the rows of any M−1
i for i ≥ 1 are distinct from

those of In, so suppose that the vector v is a row of both M−1
i and M−1

j where 0 6= i 6= j 6= 0.
Then v = erM

−1
i = esM

−1
j for some r, s. So vMj = erM

−1
i Mj = es which is a contradiction

since M−1
i Mj ∈ An. Now we can use Proposition 1 to complete the proof. �

We now show how we can build these s-PD-sets for any n by defining them recursively.

Definition 3. For M ∈ GLn(F2), M = [mi,j ], and u = (u1, . . . , un) ∈ Vn(F2), u 6= 0, let
M(u) = [ai,j ] be the (n+ 1)× (n+ 1) matrix such that:
a1,1 = 1; a1,1+i = ui for 1 ≤ i ≤ n; ai,1 = 0 for 2 ≤ i ≤ n+ 1; ai+1,j+1 = mi,j for 1 ≤ i, j ≤
n.

Thus

M(u) =


1 u1 . . . un

0
... M
0

 .

Example 1. If M =


1 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

, u = (1, 0, 0, 0) = e1 then M(u) =


1 1 0 0 0
0 1 1 1 1
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0

.

Lemma 3. If Qk = {Ai | 0 ≤ i ≤ k} is a set of matrices in GLn(F2) such that the rows of Ai

are distinct from those of Aj for i 6= j, then if u0, u1, . . . , uk are distinct vectors in Vn(F2),
the set Q∗k = {Ai(ui) | 0 ≤ i ≤ k} is a set of matrices in GLn+1(F2) with the same property.

Proof: This is immediate. �

Thus to find these k-PD-sets of size k+ 1 one needs to find k+ 1 invertible n×n matrices
with no rows in common, i.e. k + 1 mutually disjoint bases sets for Vn(F2). This needs
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computational help in general, but then using Lemma 3 (and Corollary 4 below) will give a
set of k+ 1 such bases for any m ≥ n. For n = 4 we can do this without computational help
for k = 2, as the next proposition shows:

Proposition 3. If N1 =


1 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

, N2 =


0 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

, then P3 = {I4, N−1
1 , N−1

2 }

is a 2-PD set for S4 using the information set I4. If (N1)1 = N1(e1), (N2)1 = N2(e2),
and recursively (N1)r = (N1)r−1(e1), (N2)r = (N2)r−1(e2), for r ≥ 2, where e1, e2 are the
standard basis elements of the relevant length, then for n ≥ 5,

P3(n) = {In, (N1)−1
n−4, (N2)−1

n−4}

is a 2-PD set for Sn with the information set In.

Proof: It is easy to check that N1, N2 are non-singular and clearly they have distinct rows
of weight at least 2. So the set of inverses is a 2-PD-set by Proposition 1, and by the same
proposition, this holds for P3(n) for n ≥ 5. �

Note: A third matrix N2 does not exist if the first two are I4 and N1 = I4 + J , where J
is the all-ones matrix, since all the remaining vectors are of even weight and so there are at
most three in a linearly independent set.

Example 2. In Proposition 3, for n = 6,

N1(e1) =



1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

 , and N2(e2) =



1 0 1 0 0 0
0 1 0 1 0 0
0 0 0 1 1 1
0 0 1 1 0 0
0 0 1 0 1 0
0 0 1 0 0 1

 .

Corollary 4. For n ≥ 4, if a k-PD-set of k+ 1 matrices for Sn with information set In can
be found then a k-PD-set of k+ 1 matrices for Sm with information set Im can be found for
all m ≥ n.

Proof: Let Pk = {Mi | 0 ≤ i ≤ k} be a k-PD-set for Sn and let Ni = M−1
i for i = 0, . . . , k.

Let {ui | 0 ≤ i ≤ k} be a set of k+ 1 distinct vectors of Vn(F2). Such a set clearly exists: for
example, ui could be taken to be the binary representation of the number i for 0 ≤ i ≤ k.
Since k is at most t = 2n−2 − 1, all the numbers i ≤ k will have binary representations with
non-zero entries only in the first (left-most) n − 1 positions at most. As in Proposition 3,
define recursively, for any r ≥ 1, and adding 0 at the end of ui at each stage, (Ni)1 = Ni(ui),
(Ni)r = (Ni)r−1(ui) for each 0 ≤ i ≤ k, and for 1 ≤ r ≤ m. Then for any m > n,

Qk = {(N0)−1
m−n, (N1)−1

m−n, . . . , (Nk)−1
m−n}

is a nested k-PD-set of k + 1 elements for Sm, with information set Im. �

The following lemma gives the size of the set An of matrices from which the PD-sets are
chosen if In is taken to be a member of the set.
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Lemma 4. For n ≥ 3, writing An for the set of matrices in GLn(F2) having every row of
weight at least 2, we have

|An| = |GLn(F2)| −
n∑

i=1

(−1)i−1

(
n

i

)
2i(n−i)|GLn−i(F2)|

i∏
j=1

(n− j + 1),

where |GLn(F2)| =
∏n−1

j=0 (2n − 2j) and |GL0(F2)| = 1.

Proof: We count the number of matrices in GLn(F2) that have a row of weight 1, and
subtract this number from |GLn(F2)| to get the size of An.

Let Si, for 1 ≤ i ≤ n, denote the number of matrices in GLn(F2) that have one row equal
to the basis element ei. Then

|Si| = n2n−1|GLn−1(F2)|.

For any subset {i1, . . . , im} of {1, . . . , n} of size m where 1 ≤ m ≤ n,

|
m⋂

i=1

Si| =
m∏

j=1

(n− j + 1)2m(n−m)|GLn−m(F2)|.

Thus counting using inclusion-exclusion gives the stated result. �

Note: SinceGLn(F2) is transitive on bases of Vn(F2), this also counts the matrices inGLn(F2)
that do not contain as a row any member of a set of n linearly independent vectors of Vn(F2).

A set of fn + 1 matrices that form an fn-PD-set can be found if and only if all but
2n − 1 mod n of the non-zero vectors of Vn(F2) can be partitioned into fn + 1 mutually
disjoint sets of n linearly independent vectors of Vn(F2). Such a partition also gives an
fn-antiblocking information system of size fn + 1, as pointed out in Corollary 3.

A construction described to us by McDonough [14], regarding Fqn as Vn(Fq), shows that
there always exists at least one such partition of the projective points in PGn−1(Fq), for any
n and q, into a set of fn(Fq) + 1 mutually disjoint bases sets for Vn(Fq), where fn(Fq) =⌊

(qn−1)/(q−1)
n

⌋
− 1:

Lemma 5. For n ≥ 2, q ≥ 2 a prime power, let K = Fqn and let ζ be a primitive element of
K∗. For 0 ≤ i ≤ fn(Fq), if Bi = {ζj+in | 0 ≤ j ≤ n− 1}, then {Bi | 0 ≤ i ≤ fn(Fq)} is a set
of fn(Fq) + 1 mutually disjoint bases for Vn(Fq).

Proof: Notice that for v ∈ K∗, if vζr = λv where λ ∈ F∗q , then r is a multiple of (qn−1)/(q−1).
Thus {vζr | 0 ≤ r < (qn − 1)/(q − 1)} define distinct points in PGn−1(Fq). Since B0 =
{1, ζ, . . . , ζn−1}, it defines the standard basis for Vn(Fq), and thus each Bi is a basis. They
are mutually disjoint by the earlier comment. �

A rather rough count shows that it is always possible to get approximately 1
2fn such

mutually disjoint bases by many other choices:

Lemma 6. For n ≥ 4, if k < 2n−1

n and if Bk is a set of k mutually disjoint bases for Vn(F2),
then a further basis that is mutually disjoint from all the members of Bk exists. Thus a set
of k + 1 mutually disjoint bases for Vn(F2) exist.
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Proof: We can start with k = 1 by taking any basis for V = Vn(F2). Suppose we have a set
Bk of k mutually disjoint bases. To form a further basis disjoint from any of those in Bk, we
can choose the first vector in 2n − 1− nk ways, the next in 2n − 2− nk ways and so on until
the nth in at least 2n − 2n−1 − nk ways. So as long as this last number is greater than zero,
another basis, disjoint from all the members of Bk, will exist. Thus k < 2n−1

n will suffice. �

Note: The upper bound bn < 2n−1

n in Lemma 6 is 1
2fn if n is a power of 2 or if 2n−1 mod n ≥

n+1
2 , and is 1

2(fn + 1) if 2n−1 mod n < n+1
2 . Equivalently, bn = 1

2fn if fn is even, and
bn = 1

2(fn + 1) if fn is odd.

4 The codes Sn(Fq), q > 2

The q-ary simplex code Sn(Fq) is a q-ary code with generator matrix having for columns
any set of qn−1

q−1 representatives of the distinct 1-dimensional subspaces of Vn(Fq). Thus for
q > 2 the actual code depends on the representatives chosen, but the codes are of course
all equivalent. Here Sn(Fq) is a [ qn−1

q−1 , n, q
n−1]q code and all the non-zero words have weight

qn−1: see, for example, [1, Section 2.5]. The automorphism group is isomorphic to ΓLn(q),
as shown in [6, Section 7].

The permutation group PAut(Sn(Fq)) of the code has not in general been computed,
except for the case where all the columns are normalized in which case Gorkunov [5] has
shown that the permutation group is isomorphic to the group of lower (or upper) triangular
matrices. However we only need the permutation part of an automorphism for permutation
decoding, so we can still use the matrices as before. We describe how this follows below in
Corollary 5.

The antiblocking decoding of [11] can be applied for q > 2 as in the case q = 2:

Proposition 4. For n ≥ 2, let C = Sn(Fq) where q ≥ 2. Suppose that Qk = {Ni | 0 ≤ i ≤ k},
where k ≥ 1, is a set of k + 1 matrices in GLn(Fq) such that the rows of each matrix are
normalized, and such that Ni and Nj for i 6= j have no row in common. If Ri is the set of
rows of Ni for 0 ≤ i ≤ k, the set Q = {Ri | 0 ≤ i ≤ k} is a k-antiblocking information system
of size k + 1 for C. The converse holds as well.

Proof: We may assume that the set of coordinate positions of C is normalized. Let T = {vi |
1 ≤ i ≤ k} be a set of distinct normalized vectors. Since the sets Ri are disjoint, any v ∈ T
can be in at most one member R of Q. Since there are k members of T and k + 1 members
of Q, there must be at least one that is not met by T , so we have a k-AI-system.

The converse can be proved similarly, as in Corollary 3. �

Note that the construction for q = 2 in Corollary 4 also applies for q > 2 (modifying
Definition 3 suitably by taking M ∈ GLn(Fq) to be normalised) and thus to s-AI-systems,
so if an s-AI-system of s+ 1 elements can be found for Sn(Fq), then an s-AI-system of s+ 1
elements can be found for Sm(Fq) for any m ≥ n.

Corollary 5. For n ≥ 2, let C = Sn(Fq) where q ≥ 2. Suppose that Qk = {Ni | 0 ≤ i ≤ k},
where k ≥ 1, is a set of k + 1 matrices in GLn(Fq) such that the rows of each matrix are
normalized, and such that Ni and Nj for i 6= j have no row in common. Then the set
Pk = {N−1

i | 0 ≤ i ≤ k} define a set of automorphisms of C that form a PD-set of size k+1.
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Proof: The proof that any t ≤ k positions will be moved by some N−1
i is as before in the

binary case. The algorithm for permutation decoding concerns automorphisms that need not
be permutation automorphisms. The automorphism corresponding to a matrix N ∈ GLn(q)
is defined by the monomial matrix M that satisfies GTN = MGT , where G is a generator
matrix, and we take it to be in standard form for permutation decoding. Then M acts on a
codeword x by x 7→ xM . �

By the construction of Lemma 5, sets of bases of maximal size always exist. Also, a count
similar to that used in Lemma 6 shows that for k < qn−1

n many other sets of k + 1 mutually
disjoint bases of projective points for Vn(Fq) exist. For n = 2, where S2(Fq) is the extended
Reed-Solomon code, [q + 1, 2, q]q, other explicit sets of maximal size can be described:

Corollary 6. Let C = S2(Fq), where q > 2. Suppose F∗q = {ai | 1 ≤ i ≤ q − 1}. If

Q =
{[

1 0
0 1

]}
∪
{[

1 a2j+1

1 a2j

]
| 0 ≤ j ≤ m

}
where m = q−1

2 for q odd, q
2−1 for q even, then Q is a set of f2(Fq)+1 matrices that satisfies

Proposition 4.

Proof: Note that f2(Fq) = q−1
2 for q odd, q

2 − 1 for q even. The proof is immediate. �

5 Computational

The web links given below are to some programs that will find sets Pk for Sn using Magma,
and a run of these for n = 6. Essentially the programs look for k + 1 matrices in GLn(F2)
that have no row in common, and then take the set of inverses as the k-PD-set. More efficient
ways of finding such a set result in approaching nearer to the bound fn. This was done for
n = 8, where the program as given only easily gave 30 matrices; the program was stopped
and a remaining matrix was then easily found from the 15 vectors not amongst the rows of
the 30 already found. Similar computations were done for the q-ary codes.

A program to construct the particular set described in Lemma 5 is also included at the
link below.

The program: http://www.ces.clemson.edu/~keyj/bin_simplex1.m
A run for n=6: http://www.ces.clemson.edu/~keyj/6log
Extension field construction: http://www.ces.clemson.edu/~keyj/ext_field.m

The links: binsimplex1.m; 6log; extfield.m.
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