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Abstract

We examine designs and binary codes associated with the line graph of the n-cube Qn, i.e. the
Hamming graph H(n, 2). We find the automorphism groups and the parameters of the codes. We
find a regular subgroup of the automorphism group that can be used for permutation decoding,
or partial permutation decoding, for any information set.
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1. Introduction

Linear codes associated with the Hamming graphs H(n,m) and related graphs were
examined, with a view to employing permutation decoding, in (7; 14; 6; 5). They are good
candidates for this decoding method since the combinatorial properties of the graphs and
related designs can be used to determine the main parameters of the codes, including
automorphism groups and information sets. Further, line graphs of various regular graphs
were shown to be particularly suitable for permutation decoding: see (15; 13; 22).

We examine here the binary codes from the line graph of the n-cube, Qn. This is the
Hamming graph H(n, 2), where the Hamming graph H(n,m), for n,m integers, has for
vertices the mn n-tuples of Rn, where R is a set of size m, and adjacency is defined by
two n-tuples being adjacent if they differ in one coordinate position. The n-cube, Qn,
is H(n, 2) with R = F2. The line graph of Qn, denoted by L(Qn), has for vertices the
2n−1n edges of Qn and adjacency defined by two distinct vertices [x, y] and [u,w] being
adjacent, where x, y, u, w ∈ Vn = Fn

2 , if x or y is equal to u or w. The binary code from
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the row span over F2 of an incidence matrix (see Section 2 for the definition of this) for
Qn contains the binary code from the row span of an adjacency matrix of the line graph,
and needs to be studied in conjunction with it.

Our main results regarding the binary code from L(Qn) can be summarized in the
following theorem:

Theorem 1. For n ≥ 2 let C1 be the binary code obtained from the span over F2 of an
adjacency matrix for the line graph L(Qn) of the n-cube, Qn, and C2 the binary code
spanned by an incidence matrix for Qn. Then C1 ⊂ C2, C1 is a [2n−1n, 2n− 2, 2(n− 1)]2
code, and C2 is a [2n−1n, 2n − 1, n]2 code. For n ≥ 4, the minimum words of C1 and
C2 are the rows of an adjacency, respectively incidence, matrix and the automorphism
group of either code is T o Sn, where T is the translation group on Vn = Fn

2 , and Sn the
symmetric group of degree n acting on the n coordinate positions.

Further, C⊥1 and C⊥2 have minimum weight 4, C1 ∩ C⊥1 ⊃ C2 ∩ C⊥2 , and C1 ∩ C⊥1 ,
respectively C2 ∩ C⊥2 , has dimension 2n−1, respectively 2n−1 − 1, and minimum weight
at most n2 for n even, or n(n− 1) for n odd.

If E denotes the subgroup of T of translations by even-weight vectors, and g is an
n-cycle in Sn, then E〈g〉, regular of order 2n−1n, is a bn

2 c-PD-set for C1, a PD-set for
C2, and an (n− 1)-PD-set for Ci ∩ C⊥i , for i = 1, 2, for any information set. 2

The proof of the theorem will follow from propositions and lemmas in the following
sections. Information sets for C1 and C2 of Theorem 1 are obtained in Corollary 4, and
for the hulls in Corollary 17.

2. Background and terminology

The notation for designs and codes follows (1). An incidence structure D = (P,B,J ),
with point set P, block set B and incidence J is a t-(v, k, λ) design, if |P| = v, every
block B ∈ B is incident with precisely k points, and every t distinct points are together
incident with precisely λ blocks. An incidence matrix M = [mi,j ] of D = (P,B,J )
with |B| = b is a b × v matrix with rows labelled by the blocks, columns by the points
and mi,j = 1 if the ith block is incident with the jth point, and mi,j = 0 otherwise.
A design is symmetric if v = b. The code CF (D) of the design D over the finite
field F is the space spanned by the incidence vectors of the blocks over F . Equivalently,
it is the row span of an incidence matrix for the design over F . If Q ⊆ P, then we
denote the incidence vector of Q by vQ, writing vP if Q = {P} where P ∈ P. Thus
CF (D) =

〈
vB |B ∈ B

〉
, and is a subspace of FP . If F = Fp we write CF (D) = Cp(D).

The p-rank of D, written rankp(D), is the dimension of Cp(D), i.e. the rank over Fp of
an incidence matrix for D. The hull of a design with code C over Fp is C ∩C⊥, written
Hullp(D) or simply Hull(D). A set of points of a design is an arc if blocks of the design
meet it in at most two points.

We consider only linear codes, and the notation [n, k, d]q will be used for a q-ary
code C of length n, dimension k, and minimum weight d, where the weight wt(v) of a
vector v (n-tuple) is the number of non-zero coordinate entries. The distance d(u, v)
(Hamming distance) between two vectors or n-tuples u, v is the number of coordinate
positions in which they differ, i.e. wt(u − v). If c is a codeword then the support of c,
Supp(c), is the set of non-zero coordinate positions of c. A generator matrix for C is
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a k× n matrix made up of a basis for C, and the dual code C⊥ is the orthogonal under
the standard inner product (, ), i.e. C⊥ = {v ∈ Fn|(v, c) = 0 for all c ∈ C}. A check
matrix for C is a generator matrix for C⊥. A code C is self-orthogonal if C ⊆ C⊥

and self-dual if C = C⊥. The all-one vector will be denoted by , and is the vector
with all entries equal to 1. We say that two linear codes of the same length and over the
same field are isomorphic if they can be obtained from one another by permuting the
coordinate positions. An automorphism of a code C is an isomorphism from C to C.
Any code is isomorphic to a code with generator matrix in so-called standard form, i.e.
the form [Ik |A]; a check matrix then is given by [−AT | In−k]. The first k coordinates
are the information symbols and the last n− k coordinates are the check symbols.

The graphs, Γ = (V,E) with vertex set V and edge set E, discussed here are undi-
rected with no loops. A graph is regular if all the vertices have the same valency. An
adjacency matrix A of a graph Γ = (V,E) where |V | = n is an n × n matrix with
entries ai,j such that ai,j = 1 if vertices vi and vj are adjacent, and aij = 0 otherwise.
An incidence matrix of Γ is an n × |E| matrix B with bi,j = 1 if the vertex labelled
by i is on the edge labelled by j, and bi,j = 0 otherwise. The neighbourhood design,
D(Γ), of a regular graph Γ is the 1-design formed by taking the points to be the vertices
of the graph and the blocks to be the sets of neighbours of a vertex, for each vertex. The
code of a graph Γ over a finite field F is the row span of an adjacency matrix A over the
field F , denoted by CF (Γ) or CF (A). The dimension of the code is the rank of the matrix
over F , also written rankp(A) if F = Fp, in which case we will speak of the p-rank of A
or Γ, and write Cp(Γ) or Cp(A) for the code.

Permutation decoding was introduced by MacWilliams (17) and Prange (19). It
involves finding a set of automorphisms of a code, called a PD-set and the method
is described fully in standard coding-theory texts: see, for example, MacWilliams and
Sloane (18, Chapter 16, p. 513) and Huffman (10, Section 8). In (11) and (16) the
definition of PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 2. If C is a t-error-correcting code with information set I and check set C,
then a PD-set for C is a set S of automorphisms of C which is such that every t-set of
coordinate positions is moved by at least one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every
s-set of coordinate positions is moved by at least one member of S into C. 2

The algorithm for permutation decoding is given in (10) and requires that the gener-
ator matrix is in standard form. There is a combinatorial bound on the minimum size of
S (see (8),(21), or (10)).

3. The line graph of the n-cube

We write L(Qn) = L(H(n, 2)) for the line graph of H(n, 2) = Qn. For x, y ∈ Vn = Fn
2 ,

if x and y are adjacent in H(n, 2) (i.e. wt(x + y) = 1), then [x, y] will denote the edge
between them, i.e. the 2-set {x, y}. In L(Qn), two distinct vertices [x, y] and [u,w] are
adjacent if x or y is u or w. As usual, ei is the ith vector of the canonical basis for Vn.
The neighbourhood design D(L(Qn)) of L(Qn) has for points the vertices of L(Qn), i.e.
the set Pn of edges of Qn, and a block [x, y] defined for each point [x, y] ∈ Pn by

[x, y] = {[x, u] | wt(x+ u) = 1, u 6= y} ∪ {[y, w] | wt(y + w) = 1, w 6= x}. (1)
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This gives a 1-(2n−1n, 2(n− 1), 2(n− 1)) symmetric design D(L(Qn)) with point set Pn

and block set {[x, y] | [x, y] ∈ Pn}, which we will denote by Dn.
Let Gn denote the 2n × 2n−1n vertex by edge incidence matrix of the graph Qn with

the vertices (rows) ordered in the usual standard way by the binary representation of
the numbers 0 to 2n − 1, writing m =

∑n−1
i=0 ai2i = (a0, a1, . . . , an−1), where ai ∈ F2

for 0 ≤ i ≤ n − 1. The columns of Gn, representing the edges of Qn, are ordered in the

following manner: first take G1 =

 1

1

. Now suppose that Gn−1 has been defined. For Gn

we order the rows in the standard way as described. For the columns, the first 2n−2(n−1)
columns will represent the edges of the graph Qn−1; the next 2n−1 columns will represent
the edges [x, x+ en] of Qn between the first 2n−1 vertices and the second 2n−1, starting
with the edge [0, en], [e1, e1 + en], [e2, e2 + en], and so on, i.e. ordered according to the
vertices in the first 2n−1 set; the final 2n−2(n − 1) columns will represent the edges
between vertices in the second set of vertices, i.e. those with nth coordinate 1.

Example 1. For n = 3, the ordering of the rows is

0, e1, e2, e1 + e2, e3, e1 + e3, e2 + e3, e1 + e2 + e3,

and the ordering of the edges is

[0, e1], [0, e2], [e1, e1 +e2], [e2, e1 +e2], [0, e3], [e1, e1 +e3], [e2, e2 +e3], [e1 +e2, e1 +e2 +e3],

[e3, e1 + e3], [e3, e2 + e3], [e1 + e3, e1 + e2 + e3], [e2 + e3, e1 + e2 + e3].

Thus

G3 =



1 1 0 0 1 0 0 0 0 0 0 0

1 0 1 0 0 1 0 0 0 0 0 0

0 1 0 1 0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 1 1 0 0

0 0 0 0 0 1 0 0 1 0 1 0

0 0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 0 1 0 0 1 1



.

With this ordering, we see that

Gn =

Gn−1 I2n−1 0

0 I2n−1 Gn−1

 . (2)

If Mn denotes the adjacency matrix of L(Qn) for n ≥ 2 with this ordering of edges, and
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writing I = I2n−1n,

Mn = GT
nGn − 2I =


GT

n−1Gn−1 GT
n−1 0

Gn−1 2I2n−1 Gn−1

0 GT
n−1 GT

n−1Gn−1

− 2I =


Mn−1 G

T
n−1 0

Gn−1 0 Gn−1

0 GT
n−1 Mn−1


(3)

where

GT
n =


GT

n−1 0

I2n−1 I2n−1

0 GT
n−1

 . (4)

Taking Gn as an incidence matrix of a design we get a 1-(2n−1n, n, 2) design which we
will denote by Gn. The point set is that of Dn, i.e. Pn, and the block defined by x ∈ Vn

is given by
¯̄x = {[x, x+ ei] | 1 ≤ i ≤ n}. (5)

It is well-known that Aut(Qn) = T o Sn (see (3; 9; 20)), where T is the translation
group on Vn = Fn

2 and Sn is the symmetric group acting by permuting the coordinates of
vectors in Vn. Thus by Whitney (23), Aut(L(Qn)) = T o Sn. The translation by u ∈ Vn

will be denoted by Tu and will act on L(Qn) by

[x, y]Tu = [x+ u, y + u]. (6)

Clearly ToSn acts on all these graphs, designs and codes. Furthermore, it acts transitively
on the points, since the point [0, e1] can be mapped to [x, x + ej ], for arbitrary x ∈ Vn

and 1 ≤ j ≤ n, by the transposition (1, j) ∈ Sn followed by the translation Tx ∈ T .

4. The binary codes

We now consider the binary codes that arise from the graphs and designs described in
Section 3. Thus Equation (3) becomes Mn = GT

nGn. Using the notation from Sections 2
and 3, note that C2(L(Qn)) = C2(Dn) = C2(Mn) and C2(Gn) = C2(Gn). In the state-
ment of the theorem in Section 1, we have used C1 = C2(Dn) and C2 = C2(Gn). Notice
that, for any x ∈ Vn, 1 ≤ i ≤ n,

v[x,x+ei] = vx + vx+ ei , (7)

using the notation of Equations (1) and (5) for blocks of Dn and Gn, since

[x, x+ ei] = (x ∪ x+ ei) \ (x ∩ x+ ei),

i.e. the symmetric difference of the two blocks of Gn.
For any n, let W = C2(GT

n ) and define the linear transformation τn : W 7→ C2(Mn)
defined by vτ = vGn for v ∈W . With this notation we have the following:

Lemma 3. For n ≥ 1, rank2(Gn) = 2n − 1 and for n ≥ 2, rank2(Mn) = 2n − 2 and the
kernel of τn is 〈〉. 2
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Proof. We prove the first part of this by induction, and using Equation (2), noting that
rank2(G1) = 1 = 2− 1. Suppose it is true for n− 1; then from Equation (2) we see that
rank2(Gn) = 2n−1 − 1 + 2n−1 = 2n − 1. Notice that if  denotes the all-one vector of
length 2n, then Gn = 0.

Notice that C2(Mn) ⊆ C2(Gn), so rank2(Mn) ≤ 2n − 1. Then since we see from
Equation (4) that the sum of the middle block of rows of GT

n is the vector , we have
that  ∈W and the kernel of τn is 〈〉, and so dim(C2(Mn)) = 2n − 2. �

Note 1. In fact it also follows that C2(Mn) is the code spanned by the differences of
the rows of Gn.

Corollary 4. For n ≥ 3, using the ordering described above for the columns of the matrix
Gn, if the columns in the set of positions

T n =
n−1⋃
i=2

{2i−2(i+ 1) + t | 1 ≤ t ≤ 2i−2(i− 1)},

are placed at the end of the matrix Gn, then the first 2n−1 columns will be an information
set for C2(Gn). Furthermore, if the columns in the set of positions T n are placed at the
end of the matrix Mn, then the first 2n−2 columns will be an information set for C2(Mn).

The check set Cn for C2(Gn) for n ≥ 2 is thus

Cn =
n⋃

i=2

{[x+ ei, x+ ei + e] | [x, x+ e] ∈ Pi−1} =
n⋃

i=2

Pi−1Tei
, (8)

where Pi is the set of vertices of the design Gi. 2

Proof. Notice that T n = T n−1 ∪ {2n−3n + t | 1 ≤ t ≤ 2n−3(n − 2)}, and T 3 = {4},
T 4 = {4, 9, 10, 11, 12}, and so on.

The proof for C2(Gn) follows easily from the inductive description of the matrices Gn.
Then this is used for C2(Mn), using Equation (3), by observing that the first 2n−1 − 1
positions will follow from the result for C2(Gn−1). The next 2n−1 − 1 are taken from
GT

n−1, since this has rank 2n−1 − 1, and any 2n−1 − 1 columns can be chosen. �

Proposition 5. For n ≥ 1, the minimum weight of C2(Gn) is n and C2(Gn) is a
[2n−1n, 2n − 1, n]2 code. For n ≥ 3 the minimum words are the rows of Gn. 2

Proof. The dimension we already have from Lemma 3. We prove the assertion about
the minimum weight by induction. The rows of Gn have weight n, so the minimum weight
is at most this value. For n = 1, 2 the minimum weight is n. For n = 3, the minimum
weight is 3 and the minimum words are the rows of G3. So we start our induction at
n = 3. Suppose both assertions are true for n−1. The matrix Gn is partitioned according
to Equation (2).

Let w be a non-zero sum of k rows from the first set of 2n−1 rows (blocks). Then
w is a concatenation of three vectors, w1, w2, w3 from the three block matrices, where
w1 =

∑
i∈I si for I a set of size k, and si is the ith row of Gn−1, and w2 = vI is a vector

of weight k ≥ 1, and w3 = 0. If w1 6= 0 then by induction it has weight at least n − 1,
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and so wt(w) ≥ n− 1 + k > n unless k = 1 and w is a row of Gn . If w1 = 0 then vI = ,
of weight 2n−1 > n for n ≥ 3. If we take a sum of vectors from the second set of 2n−1

rows, we can use the same argument.
Now take k from the first set and ` from the second. Then w1 =

∑
i∈I si, w2 = vI +vJ ,

w3 =
∑

j∈J si, where |I| = k, |J | = `. If w1, w3 6= 0 then wt(w) ≥ 2(n − 1) > n for
n ≥ 3. Suppose w1 = 0; then vI = . If w3 = 0 then vJ =  and w = 0. If w3 6= 0
then wt(w3) ≥ n − 1. If w2 = 0 then vJ = vI = , J = {1, . . . , 2n−1}, and w3 is the
sum of all the rows of Gn−1, and hence w3 = 0. So w2 6= 0, so that wt(w2) ≥ 1 and
wt(w) ≥ n − 1 + 1 = n. If wt(w) = n then wt(w3) = n − 1 and so w3 = sm =

∑
j∈J si

for some m, by the induction hypothesis. Thus vJ + vm =  or 0. Since w2 =  + vJ has
weight 1, we must have vJ =  + vm, and w2 = vm, so that w is a row of Gn. The case
w3 = 0, w1 6= 0 is handled similarly. �

Proposition 6. For n ≥ 2, the minimum weight of C2(Mn) is 2(n − 1), so C2(Mn) =
C2(L(Qn)) = C2(Dn) is a [2n−1n, 2n − 2, 2(n− 1)]2 code for n ≥ 2.

For n ≥ 4 the minimum words of C2(Mn) are the incidence vectors of the blocks of
the design, i.e. the rows of Mn. 2

Proof. Again we prove this by induction, using Equation (3), and starting at n = 4,
since we verified the assertions with Magma (2; 4) for n ≤ 4. The rows of Mn have weight
2(n− 1), so the minimum weight is at most this value. Suppose it is true for n− 1 and
that the minimum words are the rows of Mn−1. A word w in the row-span over F2 of the
matrix Mn will be a concatenation of three parts, corresponding to the block matrices,
and we will write these parts as w1, w2, w3. Label the rows corresponding to the matrix
blocks as Ri, i = 1, 2, 3. Again we consider cases.
(i) k ≥ 1 rows from R1.
Here w1 =

∑
i∈I ri, where ri is the ith row of Mn−1 and |I| = k. Then if gi is the ith

row of GT
n−1, w2 =

∑
i∈I gi and ri = giGn−1. Also w3 = 0. So w1 = w2Gn−1. So w2 6= 0

and hence has weight at least 2, since C2(GT
n−1) is an even weight code. If w1 6= 0 then

wt(w1) ≥ 2(n− 2) by the induction hypothesis, and so wt(w) ≥ 2(n− 2) + 2 = 2(n− 1).
If wt(w) = 2(n−1) then wt(w1) = 2(n−2), so that w1 = rm =

∑
i∈I ri, by the induction

hypothesis, and wt(w2) = 2. So rm = gmGn−1 = w2Gn−1, and thus gm + w2 =  or 0.
Both gm and w2 have weight 2, so we must have gm = w2, which means that w is a row of
Gn. If w1 = 0 then w2Gn−1 = 0 so w2 =  (by Lemma 3), and wt(w) = 2n−1 > 2(n− 1)
for n ≥ 4.
(ii) k ≥ 1 rows from R2.
Then w1 = w3 =

∑
i∈I si 6= 0, where si is the ith row of Gn−1, i.e. si = gT

i . So
wt(w) ≥ 2(n−1) by Proposition 5, with equality only if w1 = w3 = sm, i.e. a row of Mn.
(iii) k ≥ 1 rows from R3.
This is the same as Case (i).
(iv) k ≥ 1 rows from R1 and j ≥ 1 rows from R2.
Here w1 =

∑
i∈I giGn−1 +

∑
j∈J sj = u+ v, w2 =

∑
i∈I gi, w3 =

∑
j∈J sj = v 6= 0 (since

if v = 0 we have Case (i)). If w2 = 0 then u = 0 and we have Case (ii). So wt(w2) ≥ 2.
If w1 6= 0 then wt(w) ≥ n− 1 + 2 + n− 1 > 2(n− 1) (since u ∈ C2(Mn−1) ⊂ C2(Gn−1)).
If w1 = 0 then u = v ∈ C2(Mn−1). Thus u 6= 0 and wt(w) ≥ 2 + 2(n− 2) = 2(n− 1). If
wt(w) = 2(n − 1) then u = v = rm, for some m, by induction, so w2 = gmGn−1 and w
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is a row of Mn. The case of k rows from R2 and ` rows from R3 is handled similarly.
(v) k ≥ 1 rows from R1 and j ≥ 1 rows from R3.
Here w1 =

∑
i∈I giGn−1, w2 =

∑
i∈I gi+

∑
j∈J gj , w3 =

∑
j∈J gjGn−1. If w1, w3 6= 0 then

wt(w) ≥ 2(n− 2) + 2(n− 2) > 2(n− 1) for n ≥ 4. If w1 = 0 then
∑

i∈I gi = . If w2 = 0
then

∑
j∈J gj =  and hence w3 = 0. Thus w2 6= 0. Since w3 6= 0 (otherwise w = 0), we

have wt(w) ≥ 2 + 2(n−2) = 2(n−1), with equality if and only if w3 = gmGn−1 for some
m, by induction. Then, as before,

∑
j∈J gj + gm =  or 0. If the former then w2 = gm,

and we get a row of Mn; if 0 then we get wt(w2) > 2, and hence wt(w) > 2(n − 1), a
contradiction. Similarly if w3 = 0.
(vi) k ≥ 1 rows from R1, j ≥ 1 rows from R2, ` ≥ 1 rows from R3.
Then w1 =

∑
i∈I giGn−1 +

∑
j∈J sj = u + v, w2 =

∑
i∈I gi +

∑
t∈K gt, where |K| = `,

and w3 =
∑

t∈K gtGn−1 +
∑

j∈J st = y + v.
If w1, w3 6= 0 then wt(w) ≥ 2(n− 1) with equality only if w1 = sm, w3 = sr, w2 = 0,

for some m, r. Since w2 = 0 we have
∑

i∈I gi =
∑

t∈K gt , and so
∑

i∈I giGn−1 =∑
t∈K gtGn−1, i.e. u = y and so sm = sr and we have a row of Mn.
If w1 = 0 then u = v, so w3 =

∑
t∈K gtGn−1 +

∑
i∈I giGn−1 = w2Gn−1. If w3 = 0

then w2 = 0 or , so for w 6= 0, wt(w) = 2n−1 > 2(n − 1) for n ≥ 4. If w3 6= 0
then w2 6= 0, so wt(w) ≥ 2 + 2(n − 2), with equality if w3 = rm, for some m, and so
w3 = rm = gmGn−1 = wwGn−1, so that w2 + gm = , 0. Since wt(w2) = 2, we must have
w2 = gm, and again we have a row of Mn. A similar argument works for w3 = 0.

This completes all the cases and the induction. �

Lemma 7. If C = C2(Dn) or C2(Gn), then for n ≥ 2, C⊥ contains the weight -4 word

u(x, y, z) = v[x,y] + v[x,z] + v[x+y+z,y] + v[x+y+z,z], (9)

where x ∈ Vn, y = x + ei, z = x + ej, 1 ≤ i, j ≤ n, i 6= j. Further, for n ≥ 3 C⊥ has
minimum weight 4 . 2

Proof. Let S(u(x, y, z)) = Supp(u(x, y, z)) = {[x, y], [x, z], [x + y + z, y], [x + y +
z, z]}. Since C2(Dn) ⊆ C2(Gn), C2(Dn)⊥ ⊇ C2(Gn)⊥, so we need only show that ev-
ery u(x, y, z) ∈ C2(Gn)⊥ and that the minimum weight of C2(Dn)⊥ is at least 4 for
n ≥ 3.

Clearly |a∩S(u(x, y, z))| is 0 or 2 for any block a of Gn, proving the first statement. To
show that 4 is the minimum weight for n ≥ 3, note that from Lemma 11  ∈ C, in both
cases for C, so the minimum weight of C⊥ is either 2 or 4. Suppose C2(Dn)⊥ has a vector
w of weight 2. Since Aut(Dn) is transitive on points (see Section 3), we can suppose the
support of w is {[0, e1], [x, x + e]}. Now we just show that for every choice of [x, x + e]
there is a block [u, v] that meets Supp(w) just once. If [x, x + e] = [0, ei] or [e1, e1 + ei]
where i 6= 1, then [0, e1] will do; if x, x + e 6= 0, e1 then [x, x+ f ] or [x+ e, x+ e+ f ],
where f has weight 1, f 6= e, e1, will do. This covers all possibilities. �

Note 2. The minimum weight of C2(G2)⊥ is also 4, but that of C2(D2)⊥ is 2.

We will need the following lemma concerning intersections of blocks in Dn in the
following section.

Lemma 8. Blocks of the design Dn meet in 0, 1, 2, or (n− 2) points. 2
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Proof. We first solve the dual problem, i.e. we count the number of blocks through
two points. Suppose the two points are on a block. Since we have transitivity on blocks,
consider the block [0, e1]. Then
• [0, ei] and [0, ej ], where 1, i, j are distinct, are on the (n− 2) blocks [0, ek] for k 6= i, j;

similarly, [e1, e1 +ei] and [e1, e1 +ej ], where 1, i, j are distinct, are on the (n−2) blocks
[e1, e1 + ek] for k 6= i, j; there are (n− 1)(n− 2) such pairs of points;

• [0, ei] and [e1, e1 + ei], i 6= 1, are on the two blocks [0, e1] and [e1 + ei, ei]; there are
(n− 1) such pairs of points;

• [0, ei] and [e1, e1 + ej ], where 1, i, j are distinct, are only together on the one block
[0, e1]; there are (n− 1)(n− 2) such pairs of points.
Now count the number of blocks that meet [0, e1]:

• it meets [ei, ei + ej ] and [ei + e1, ei + ej + ei] for 1, i, j all distinct, in exactly one point;
there are 2(n− 1)(n− 2) of these;

• it meets [ei, ei + e1] in two points; there are (n− 1) of these;
• it meets [0, ei] and [e1, ei + e1], for i 6= 1, in n− 2 points; there are 2(n− 1) of these.

Thus, in all, it is disjoint from 2n−1n− 1− (n− 1)(2n− 1) blocks. �

5. The automorphism groups

As noted in Section 3, Aut(L(Qn)) = T o Sn. We now identify the automorphism
groups of the designs and codes.

Proposition 9. For n ≥ 4, Aut(L(Qn)) = Aut(Dn) = Aut(Gn) ∼= Aut(Qn) = T o Sn,
acting imprimitively of degree 2n−1n. 2

Proof. We need only prove that Aut(L(Qn)) = Aut(Dn), by the comment above and
since the statement is clear for Aut(Gn).

Let A = Aut(L(Qn)) and B = Aut(Dn). We need only show that σ ∈ B implies
that σ ∈ A. Thus suppose [x, y] and [z, w] are on an edge of L(Qn). Then we can take
z = x, and thus [x, y] and [x,w] are together on n−2 blocks, from the proof of Lemma 8.
Thus [x, y]σ and [x,w]σ are on n − 2 blocks. For n − 2 > 2, i.e. n ≥ 5, this means that
[x, y]σ = [X,Y ] and [x,w]σ = [X,W ] and hence that they are on an edge of the line
graph. Thus σ ∈ A. If n = 4 we verified the result using Magma.

Now let G = Aut(Dn). We noted that G is transitive in Section 3. To show that the
action is imprimitive, let H = G[0,e1]

∼= 〈Te1〉Sn−1. Then if S = 〈Te1 , T〉, we have G >
SSn−1 > H, so H is not maximal. Blocks of imprimitivity are {[x, x+e], [x+, x+e+]}
for x ∈ Vn. �

Corollary 10. For n ≥ 4, Aut(C2(Dn)) = ToSn; for n ≥ 3, Aut(C2(Gn)) = ToSn. 2

Proof. By Proposition 6, for n ≥ 4 the words of weight 2(n − 1) of C2(Dn) are the
incidence vectors of the blocks of Dn. Since an automorphism of the code must preserve
the weight classes, it follows that it preserves the blocks, and hence the design.

The same holds for C2(Gn) for n ≥ 3 by Proposition 5. �
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6. The hulls

Recall that for any design D, Hullp(D) = Cp(D) ∩Cp(D)⊥, written simply Hull(D) if
the prime p is clear from the context. Since p = 2 in our context, we will use this latter
notation here. The hull is a self-orthogonal code, and it is advantageous to study the hull
in conjunction with the code itself: see (1) for applications of this.

In this section we locate some words of low weight in the hulls of the two designs Dn

and Gn and use these to determine their dimensions.
In the proof of the following lemma we label the vectors of Vn by the numbers

0, 1, . . . 2n − 1 in the usual way, and as described in Section 3. We also use the nota-
tion:

Ei = 〈ej | j ∈ {1, . . . , n} \ {i}〉 (10)
for 1 ≤ i ≤ n.

Lemma 11. For n ≥ 2, 1 ≤ i ≤ n, let

Si = {[u, u+ ei] | u ∈ Ei} (11)

Ti = {[ei + u, ei + ei+1 + u] | u ∈ 〈ej | j ∈ {1, . . . , n} \ {i, i+ 1}〉 (12)

(where i is taken modulo n in the definition of Ti). Then, for 1 ≤ i ≤ n,

vSi =
∑
x∈Ti

vx̄,

has weight 2n−1, and is in Hull(Dn). Each Si is an arc in Dn. Furthermore,  =∑n
i=1 v

Si ∈ Hull(Dn), and vSi 6∈ C2(Gn)⊥ for any 1 ≤ i ≤ n. 2

Proof. We prove this for i = 1 where S = S1 = {[2k, 2k + 1] | 0 ≤ k ≤ 2n−1 − 1} and
T = T1 = {[4i + 1, 4i + 3] | 0 ≤ i ≤ 2n−2 − 1}, written in terms of the numerals from 0
to 2n − 1. The proof will then follow for all i. Let C = C2(Dn).

Let w =
∑

z∈T v
z̄ and W = Supp(w). First show that S ⊆W . Let P = [2k, 2k+1] ∈ S.

If k = 2l then P = [4l, 4l + 1] ∈ [4l + 1, 4l + 3] and no other block from T ; if k = 2l + 1
then P = [4l + 2, 4l + 3] ∈ [4l + 1, 4l + 3] and no other block from T . Thus P ∈W .

Notice that all points in [4i+ 1, 4i+ 3] are of the form [4i + 1, z], [4i + 3, u] where z
and u are odd numbers in the range [0 . . . 2n − 1], or either [4i, 4i+ 1] or [4i+ 2, 4i+ 3],
i.e. points of S. Thus we need only consider points [x, y] where both x, y are odd, and
y = x+ ej where j ≥ 2. If y = x+ e2 then [x, y] will not be in any of the [4i+ 1, 4i+ 3].

Writing the points in terms of vectors in Vn = Fn
2 , 4i+ 1 = e1 +

∑n
k=3 αkek, 4i+ 3 =

e1 + e2 +
∑n

k=3 αkek, and writing u =
∑n

k=3 αkek, then

[4i+ 1, 4i+ 3] = {[e1 + u, e1 + u+ ek] | 3 ≤ k ≤ n} ∪ {[e1 + u, u]}∪

{[e1 + e2 + u, e1 + +e2 + u+ ek] | 3 ≤ k ≤ n} ∪ {[e1 + e2 + u, e2 + u]}.
If [x, y] ∈ [4i+ 1, 4i+ 3], and [x, y] 6∈ S, then, with this notation, [x, y] = [e1 + u, e1 +
u + ek] or [x, y] = [e1 + e2 + u, e1 + e2 + u + ek], for some k ≥ 3. In either case,
[x, y] ∈ [e1 + (u+ ek), e1 + e2 + (u+ ek)], i.e. [x, y] is in exactly one other block z̄ for
z ∈ T . Thus the points cancel out in the sum, and we have proved that w = vS . Thus
vs ∈ C.
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Now to show that vS = w ∈ C⊥, we show that every block of the design meets it
in zero or two points. If [u, u + e1] ∈ S is in [v, v + ek], then [u, u + e1] = [v, v + ej ] or
[u, u+e1] = [v+ek, v+ek +ej ] for some j 6= k. If u = v, u+e1 = v+ej , so j = 1 and k 6= 1
and then u+ ek = v + ek, u+ ek + e1 = v + ek + e1, so [u+ ek, u+ ek + e1] ∈ [v, v + ek].
If another point [t, t+ e1] ∈ S is in [v, v + ek] then the same reasoning shows it must be
one of these points. Thus vS ∈ C⊥ and S is an arc.

To show that vS 6∈ C2(Gn)⊥, consider the block ¯̄0 of Gn. Since ¯̄0 = {[0, ei] | 1 ≤ i ≤ n},
the inner product of this row of Gn with vS is 1, so vS 6∈ C2(Gn)⊥. Finally, note that the
Si are disjoint, and there are n of them of size 2n−1, so they sum to  of weight 2n−1n. �

We now find words of smaller weight in Hull(Dn)∩Hull(Gn). For n ≥ 7 we believe, on
computational evidence, that these are minimum words for the hulls, but have not been
able to prove it.

Lemma 12. For n ≥ 3, if

wn =
n∑

i=1

v[0,ei] = nv0 +
n∑

i=1

vei , (13)

then wn ∈ Hull(Dn) ∩Hull(Gn) and

Supp(wn) = S =

 {[ei, ei + ej ] | 1 ≤ i, j ≤ n} n even

{[ei, ei + ej ] | 1 ≤ i, j ≤ n, i 6= j} n odd.
(14)

Furthermore, wt(wn) = n(n− 1) for n odd, and wt(wn) = n2 for n even. 2

Proof. Clearly wn ∈ C = C2(Dn). To show that wn ∈ C⊥, consider the blocks
[u, u+ ei]. It is easy to see that if wt(u),wt(u + ei) ≥ 3 then there is no intersection
with wn at all, and it is easy to verify that if u = 0, ej , ej + ek, j, k 6= i, then the inner
product is 0.

Finally, it is easy to verify that wn ∈ C2(Gn)⊥. �

In the following lemma, recall that Ei, for 1 ≤ i ≤ n, is defined in Equation (10) and
that Tu denotes the translation of elements of Vn by the vector u ∈ Vn. Since the hulls
are invariant under the translation group T , it follows that vSTu ∈ Hull(Dn) ∩ Hull(Gn)
for all u ∈ Vn, where S is as in Equation (14). In fact we will show that the vSTu for
u ∈ E1 will suffice to generate all the vSTu for u ∈ Vn.

Lemma 13. For n ≥ 3, if S is as in Equation (14), and

S = {STw | w ∈ E1},

then points of Pn can be in the following number of sets in S: 2, n, 2(n− 1) n even

2, n− 1, 2(n− 2) n odd.

Further,
∑

R∈S v
R = 0. 2
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Proof. This is a direct count on the number of possibilities. In the following, ∅ ⊆ I ⊆
{2, . . . , n}, and if I = ∅, then

∑
i∈I ei = 0. Again we consider cases.

(i) If n is even, so that
S = {[ei, ei + ej ] | 1 ≤ i, j ≤ n}.

For each type of point P = [u, u+ei], where 1 ≤ i ≤ n, we will list and count the elements
of w ∈ E1 for which PTw ∈ S.

(1) [e1 +
∑

i∈I ei, e1 +
∑

i∈I ei + ej ], 1, j 6∈ I:
∑

i∈I ei,
∑

i∈I ei + ej ; thus 2 elements.
(2) [

∑
i∈I ei, e1+

∑
i∈I ei], 1 6∈ I:

∑
i∈I ei,

∑
i∈I ei+ei(i ∈ I),

∑
i∈I ei+ek(k 6∈ I, k 6= 1);

thus n elements.
(3) [

∑
i∈I ei, ej +

∑
i∈I ei], j 6∈ I, j 6= 1:

∑
i∈I ei,

∑
i∈I ei + ej ,

∑
i∈I ei + ei(i ∈

I),
∑

i∈I ei + ei + ej(i ∈ I),
∑

i∈I ei + ek(k 6∈ I, k 6= 1, j),
∑

i∈I ei + ek + ej(k 6∈
I, k 6= 1, j); thus 2n− 2 elements.

(ii) If n is odd, so that

S = {[ei, ei + ej ] | 1 ≤ i, j ≤ n, i 6= j}.

(1) [e1 +
∑

i∈I ei, e1 +
∑

i∈I ei + ej ], 1, j 6∈ I:
∑

i∈I ei,
∑

i∈I ei + ej ; thus 2 elements.
(2) [

∑
i∈I ei, e1 +

∑
i∈I ei], 1 6∈ I:

∑
i∈I ei + ei(i ∈ I),

∑
i∈I ei + ek(k 6∈ I, k 6= 1); thus

n− 1 elements.
(3) [

∑
i∈I ei, ej +

∑
i∈I ei], j 6∈ I, j 6= 1:

∑
i∈I ei + ei(i ∈ I),

∑
i∈I ei + ei + ej(i ∈

I),
∑

i∈I ei + ek(k 6∈ I, k 6= 1, j),
∑

i∈I ei + ek + ej(k 6∈ I, k 6= 1, j); thus 2(n − 2)
elements.

The last statement now follows. �

Proposition 14. For n ≥ 3, with S as in Lemma 13, dim〈vR | R ∈ S〉 = 2n−1 − 1.
Further, dim(Hull(Gn)) ≥ 2n−1 − 1 and dim(Hull(Dn)) ≥ 2n−1. 2

Proof. We use the count obtained in Lemma 13 and show that the set {vR | R ∈ S\{S}}
is linearly independent.

Suppose n is even. For u ∈ E1, let Su = STu. Let U ⊂ E1, 0 6∈ U and U 6= ∅. Suppose∑
u∈U v

Su = 0. From the proof of (i)(1) of Lemma 13, with I = ∅, we see that ei 6∈ U
for any i. Using this, we see now from (i)(1) that ei + ej 6∈ U for any i, j. Now we can
use (i)(1) inductively so show that U is empty, contrary to assumption. Thus the set is
linearly independent. An identical argument works for the case n odd.

For the statement concerning the hulls, all the vR for R ∈ S are in both the hulls,
by Lemma 12 and the fact that the translation group preserves the codes. This implies
the statement about Hull(Gn) immediately; for the statement about Hull(Dn), we have
shown that the words Si of weight 2n−1 of Equation (11) of Lemma 11 are in Hull(Dn)
but not in Hull(Gn), so that the code spanned by the vR together with one of these words
will have dimension 2n−1. �

In fact it is not hard to verify that

n∑
i=1

vSTei =

 0 for n even

vS for n odd.

We now turn to the code spanned by the weight-4 vectors of Equation (9) in the dual
codes C⊥. In the notation u(x, y, z) defined there, note that any three vectors of the set
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{x, y, z, x + y + z} can be used to uniquely define the vector. Notice that two points of
Pn are together in the support of at most one of these weight-4 vectors.

Proposition 15. For n ≥ 3, the weight-4 vectors u(x, y, z) span C2(Gn)⊥. 2

Proof. We prove this inductively by showing that vectors u(x, y, z) can be chosen so
that the matrix formed by these words, using the ordering of the points of the designs
as described in Section 3, can be written in echelon form with at least 2n−1(n − 2) + 1
leading terms. Since this is the dimension of C2(Gn)⊥ and all the vectors are in C2(Gn)⊥

by Lemma 7, they will thus span C2(Gn)⊥. We will speak of the leading term of the word
u(x, y, z) as the left-most term with this ordering. Thus for example the leading term of
u(0, e1, e2) is [0, e1].

For n ≥ 3 we will construct a set Fn of vectors u(x, y, z) that have fn = 2n−1(n−2)+1
leading terms in echelon array. Let ln = 2n−1n, the length of the code C2(Gn) or C2(Dn).
We will order the columns as described in Section 3 for Gn, and label them with the
numbers 1 to ln.

We start with n = 3. Here l3 = 12, f3 = 5, and we take F3 to consist of the five
weight-4 vectors: u(0, e1, e3) (leading term [0, e1] at position 1); u(0, e2, e3) (leading term
[0, e2] at position 2); u(e1, e1 + e2, e1 + e3) (leading term [e1, e1 + e2] at position 3);
u(e2, e2 + e1, e2 + e3) (leading term [e2, e1 + e2] at position 4); u(e3, e1 + e3, e2 + e3)
(leading term [e3, e1 + e3] at position 9). Notice that we have no leading terms in the
range 5 ≤ k ≤ 8 of length 4 = 22 = 2n−1 corresponding to the middle section of G3 as
given in the matrix of Equation (2), or Example 1.

Now suppose n > 3 and we have constructed Fn−1 of size fn−1 in this way, having the
centre section of 2n−2 positions with no leading terms. We construct Fn as follows: the
first ln−1 positions will all be leading terms by first taking all the elements of Fn−1 apart
from the last one u(

∑n−1
i=3 ei, e1+

∑n−1
i=3 ei, e2+

∑n−1
i=3 ei) with the right-most leading term

[
∑n−1

i=3 ei, e1 +
∑n−1

i=3 ei]. Then, for each of the remaining columns in this first ln−1 set, for
the edge [x, x+e] where x ∈ 〈ei | 1 ≤ i ≤ n−1〉 and e = ei, for 1 ≤ i ≤ n−1, we adjoin to
our set Fn the word u(x, x+e, x+en) which will clearly have leading term [x, x+e]. Thus
far we have ln−1 elements in Fn. Now we skip the next 2n−1 column positions, and then
adjoin fn−1 words formed from the words of Fn−1 as follows: if u(x, x+e, x+f) ∈ Fn−1

with leading term [x, x + e] then u(x + en, x + e + en, x + f + en) ∈ Fn with leading
term [x+ en, x+ e+ en]. This gives the required fn = ln−1 + fn−1 words, and they are in
echelon form, with the middle section of length 2n−1 excluded. This concludes the proof,
but we will show below in Example 2 the 17 elements of F4 obtained in this way. �

Example 2. For n = 4 note that f4 = 17 = 12 + 5 = l3 + f3. We show the weight-4
vectors and the leading terms and their positions in Table 1, where L.T. denotes leading
term. The 2n−1 = 23 = 8 positions 13 to 20 are excluded.

Note 3. In fact a basis for C2(Gn)⊥ of weight-4 vectors can be constructed rather
easily by using the check-set Cn of Equation (8) and considering an echelon form using
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Weight-4 vector L.T. Position

u(0, e1, e3) [0, e1] 1

u(0, e2, e3) [0, e2] 2

u(e1, e1 + e2, e1 + e3) [e1, e1 + e2] 3

u(e2, e2 + e1, e2 + e3) [e2, e1 + e2] 4

u(0, e3, e4) [0, e3] 5

u(e1, e1 + e3, e1 + e4) [e1, e1 + e3] 6

u(e2, e2 + e3, e2 + e4) [e2, e2 + e2] 7

u(e1 + e2, e1 + e2 + e3, e1 + e2 + e4) [e1 + e2, e1 + e2 + e3] 8

u(e3, e1 + e3, e3 + e4) [e3, e1 + e3] 9

u(e3, e2 + e3, e3 + e4) [e3, e2 + e3] 10

u(e1 + e3, e1 + e2 + e3, e1 + e3 + e4) [e1 + e3, e1 + e2 + e3] 11

u(e2 + e3, e1 + e2 + e3, e2 + e3 + e4) [e2 + e3, e1 + e2 + e3] 12

u(e4, e1 + e4, e3 + e4) [e4, e1 + e4] 21

u(e4, e2 + e4, e3 + e4) [e4, e2 + e4] 22

u(e1 + e4, e1 + e2 + e4, e1 + e3 + e4) [e1 + e4, e1 + e2 + e4] 23

u(e2 + e4, e2 + e1 + e4, e2 + e3 + e4) [e2 + e4, e1 + e2 + e4] 24

u(e3 + e4, e1 + e3 + e4, e2 + e3 + e4) [e3 + e4, e1 + e3 + e4] 29

Table 1. Example 2: Basis weight-4 vectors and leading terms for C2(G4)⊥

the right-most element of the weight-4 vector. In this way the set of weight-4 vectors

Wn =
n⋃

i=2
[x,x+e]∈Pi−1

u(x, x+ e, x+ ei) =Wn−1 ∪
⋃

[x,x+e]∈Pn−1

u(x, x+ e, x+ en)

has precisely the vectors in Cn as the right-most terms, in echelon array, reading to the
right, if the ordering is according to that of the columns of Gn. However, this set does
not lend itself as readily to Lemma 16 below.

Lemma 16. For n ≥ 3, dim(C2(Gn) +C2(Gn)⊥) ≥ 2n−1(n− 1) + 1 and dim(C2(Dn) +
C2(Dn)⊥) ≥ 2n−1(n− 1). 2

Proof. In our echelon form for the code C2(Gn)⊥ obtained in Proposition 15, we showed
that the first 2n−2(n− 1) positions are all leading terms and that the middle section of
2n−1 positions has no leading term. Thus, in a generating matrix for C2(Gn) +C2(Gn)⊥,
we can reduce the first 2n−2(n−1) positions to 0, and obtain leading terms for all the next
2n−1 without disturbing the remaining leading terms for C2(Gn)⊥. This then provides
2n−1(n− 2) + 1 + 2n−1 = 2n−1(n− 1) + 1 leading terms for C2(Gn) + C2(Gn)⊥.
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For C2(Dn)+C2(Dn)⊥, we use a similar argument, but look at the form of the matrix
Mn in Equation (3). Again we have the first 2n−2(n − 1) leading terms from C2(Dn)⊥,
then the next 2n−1 points will provide 2n−1−1 leading terms, since this is the dimension
of GT

n−1. Thus we have 2n−1(n− 2) + 1 + 2n−1 − 1 = 2n−1(n− 1) leading terms. �

Corollary 17. For n ≥ 3, dim(Hull(Gn)) = 2n−1 − 1, dim(Hull(Dn)) = 2n−1 and
Hull(Gn) ⊂ Hull(Dn). An information set for Hull(Gn) is the set of positions

In =
n⋃

i=3

{2n−1n− t | 2n−i(n− i+ 1) ≤ t ≤ 2n−i(n− i+ 3)− 1} ∪ {2n−1n},

and one for Hull(Dn) is In ∪{s}, where s is any number in the range 2n−2(n− 1) + 1 ≤
s ≤ 2n−2(n+ 1). 2

Proof. By Lemma 16, dim(Hull(Gn)) ≤ 2n−1 − 1 and dim(Hull(Dn)) ≤ 2n−1. By
Proposition 14 dim(Hull(Gn)) ≥ 2n−1 − 1 and dim(Hull(Dn)) ≥ 2n−1. Thus we have
equality. Since the words vR of Proposition 14 span Hull(Gn) and are in Hull(Dn), we
have the inclusion stated. The assertion concerning the information sets follows from
the echelon form in Proposition 15 and Lemma 16, by taking the columns that are not
leading terms for the dual of the hull in each case.�

Corollary 18. For 3 ≤ n ≤ 6, Hull(Dn) has minimum weight 2n−1; for 3 ≤ n ≤ 5,
Hull(Gn) has minimum weight n(n − 1) and for n = 6 it has minimum weight n2 = 36.
For n = 7 both hulls have minimum weight 42 and for n = 8 both hulls have minimum
weight 64. For n ≥ 9, the minimum weight of both hulls is at least 2n and at most n(n−1)
for n odd, and at least 2n and at most n2 for n even. 2

Proof. Use Magma up to n = 8. After that we have words of weight n(n−1) for n odd,
n2 for n even, and 2n−1 > n(n− 1), n2 for n ≥ 8, so the words of Lemma 12 are smaller
than those of Lemma 11. That the minimum weight is at least 2n follows from the fact
that any word of either hull is in C2(Dn) which has minimum weight 2(n− 1). For n ≥ 4
the minimum words of C2(Dn) are the incidence vectors of the blocks of Dn and these
cannot be in either hull since they can meet blocks of either design in one point. Since
the hulls are even-weight codes, the next possible weight is 2n. For n = 7, 8 the minimum
words found were of the type of Lemma 12. �

7. Permutation decoding

In (12, Lemma 7) the following, which generalizes a comment in (17) regarding cyclic
codes, was proved:

Result 1. Let C be a code with minimum distance d, I an information set, C the
corresponding check set and P = I ∪ C. Let G be an automorphism group of C, and
n the maximum of |O ∩ I|/|O|, where O is a G-orbit. If s = min(d 1

ne − 1, bd−1
2 c), then

G is an s-PD-set for C. 2
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Note that this result is true for any information set. If the group G is transitive then
|O| is the degree of the group and |O ∩ I| is the dimension of the code. In our case, if
E = {Tu | u ∈ Vn,wt(u) is even} and g is an n-cycle in Sn, then K = E〈g〉 is regular on
Pn, of order 2n−1n. This is easy to see since 〈g〉 normalizes E. So for dimension k we
have that K is an s-PD-set for s = min(d 2n−1n

k e − 1, bd−1
2 c), where d is the minimum

weight.

Proposition 19. For n ≥ 3 the group K defined above, of order 2n−1n, is an s-PD-set
for the code C of length 2n−1n for any information set in each of the following cases:
• C = C2(Gn) for s = b(n− 1)/2c, full error-correction (PD-set);
• C = C2(Dn) for s = bn/2c;
• C = Hull(Gn) for s = n− 1 for n = 3, n for 4 ≤ n ≤ 8, n− 1 for n ≥ 9;
• C = Hull(Dn) for s = n− 1 for n ≥ 4.

Proof. We use Result 1 and the propositions and lemmas we have obtained for the
dimensions of the codes and the minimum weights. The assertions for C2(Gn) and C2(Dn)
then follow directly.

For the hulls, we have specific vales for the minimum weight up to n = 8. For n ≥ 9
we have not shown that the minimum weight is n2 or n(n − 1) for n even, or odd,
respectively, as expected from Magma computations. However, from Corollary 18, the
minimum weight is at least 2n. Using this for d for n ≥ 9 in the formula gives the stated
result. �

Information sets for C2(Gn) and C2(Dn) are given in Corollary 4, and for the hulls
in Corollary 17. Those of Corollary 4, taking only the first 2n or 2n − 1, respectively,
positions, are information sets for the hulls as well, according to computations with
Magma up to n = 10.

The proof of Theorem 1 is now complete.

8. Conclusion

The incidence structure of 2n−1n points Pn and 2n blocks the sets ST where S is the
set given in Equation (14) and T is the translation group, is a 1-(2n−1n, n2, 2n) design for
n even, and a 1-(2n−1n, n(n− 1), 2(n− 1)) design for n odd, with binary code Hull(Gn).
Further codes that can be studied in conjunction with those examined here, and for which
we now have some information, are those spanned by the vectors vb − vc, where b and c
are blocks of the relevant design. Properties of such codes from incidence structures are
deduced in (1, Section 2.4).

Smaller PD-sets were found computationally with Magma for most of the codes dis-
cussed in this paper for small n, using the information set as given in Corollary 4.
However, we were unable to find a general result to give smaller PD-sets or s-PD-sets,
as, for example, in (13), using these information sets.

Acknowledgements

J. D. Key thanks the Department of Mathematics and Applied Mathematics at the
University of the Western Cape for their hospitality.

16



References

[1] E. F. Assmus, Jr and J. D. Key. Designs and their Codes. Cambridge: Cambridge
University Press, 1992. Cambridge Tracts in Mathematics, Vol. 103 (Second printing
with corrections, 1993).

[2] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system I: The user
language. J. Symb. Comp., 24, 3/4:235–265, 1997.

[3] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs. Ergeb-
nisse der Mathematik und ihrer Grezgebiete, Folge 3, Band 18. Berlin, New York:
Springer-Verlag, 1989.

[4] J. Cannon, A. Steel, and G. White. Linear codes over finite fields. In J. Cannon
and W. Bosma, editors, Handbook of Magma Functions, pages 3951–4023. Compu-
tational Algebra Group, Department of Mathematics, University of Sydney, 2006.
V2.13, http://magma.maths.usyd.edu.au/magma.

[5] W. Fish, J. D. Key, and E. Mwambene. Codes, designs and groups from the Ham-
ming graphs. J. Combin. Inform. System Sci. (To appear).

[6] W. Fish, J. D. Key, and E. Mwambene. Graphs, designs and codes related to the
n-cube. Discrete Math., 309:3255–3269, 2009.

[7] Washiela Fish. Codes from uniform subset graphs and cyclic products. PhD thesis,
University of the Western Cape, 2007.

[8] D. M. Gordon. Minimal permutation sets for decoding the binary Golay codes.
IEEE Trans. Inform. Theory, 28:541–543, 1982.

[9] Frank Harary. The automorphism group of the hypercube. J.UCS., 6:136–138, 2000.
[10] W. Cary Huffman. Codes and groups. In V. S. Pless and W. C. Huffman, editors,

Handbook of Coding Theory, pages 1345–1440. Amsterdam: Elsevier, 1998. Volume 2,
Part 2, Chapter 17.

[11] J. D. Key, T. P. McDonough, and V. C. Mavron. Partial permutation decoding for
codes from finite planes. European J. Combin., 26:665–682, 2005.

[12] J. D. Key, T. P. McDonough, and V. C. Mavron. Information sets and partial
permutation decoding for codes from finite geometries. Finite Fields Appl., 12:232–
247, 2006.

[13] J. D. Key and P. Seneviratne. Binary codes from rectangular lattice graphs and
permutation decoding. European J. Combin., 28:121–126, 2006.

[14] J. D. Key and P. Seneviratne. Permutation decoding for binary self-dual codes
from the graph Qn where n is even. In T. Shaska, W. C Huffman, D. Joyner, and
V. Ustimenko, editors, Advances in Coding Theory and Cryptology, pages 152–159.
World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. Series on Coding
Theory and Cryptology, 2.

[15] J. D. Key and P. Seneviratne. Permutation decoding of binary codes from lattice
graphs. Discrete Math., 308:2862–2867, 2008.

[16] Hans-Joachim Kroll and Rita Vincenti. PD-sets related to the codes of some classical
varieties. Discrete Math., 301:89–105, 2005.

[17] F. J. MacWilliams. Permutation decoding of systematic codes. Bell System Tech.
J., 43:485–505, 1964.

[18] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes.
Amsterdam: North-Holland, 1983.

[19] E. Prange. The use of information sets in decoding cyclic codes. IRE Trans., IT-
8:5–9, 1962.

17



[20] Gordon F. Royle. Colouring the cube. Preprint.
[21] J. Schönheim. On coverings. Pacific J. Math., 14:1405–1411, 1964.
[22] Padmapani Seneviratne. Permutation decoding of codes from graphs and designs.

PhD thesis, Clemson University, 2007.
[23] Hassler Whitney. Congruent graphs and the connectivity of graphs. Amer. J. Math.,

54:154–168, 1932.

18


