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Incidence matrix of a graph

An incidence matrix for an undirected graph Γ = (V ,E ) is a |V | × |E |
matrix G = [gx ,e ] with

rows labelled by the vertices x ∈ V and

columns by the edges e ∈ E ,

where gx ,e = 1 if x ∈ e, gx ,e = 0 if x 6∈ e.
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Row span of incidence matrix of a graph

For any prime p let Cp(G ) be the row span of G over Fp.

It has been found that for many classes of connected graphs that have
some regularity and symmetry, these codes have parameters

[|E |, |V | − εp, δ(Γ)]p

where

ε2 = 1, εp = 0, 1 for p odd;

δ(Γ) is the minimum degree of Γ;

the words of minimum weight are precisely the non-zero scalar
multiples of the rows of G of weight δ(Γ).
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Gap in the weight enumerator

Furthermore, it was found that there is often a gap in the weight
enumerator between k and 2(k − 1), the latter weight arising from the
difference of two rows, i.e. there are no words of weight m where

k < m < 2(k − 1).
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Comment on the gap in the weight enumerator

This gap occurs for the p-ary code of the desarguesian projective plane

PG2(Fq), where q = pt ; also for other designs from desarguesian
geometries PGn,k(Fq): see [Cho00, LSdV08a, LSdV08b]

But, not always true for non-desarguesian planes: e.g. there are planes of
order 16 that have words in this gap: see [GdRK08].

This has also shown that there are affine planes of order 16 whose binary
code has words of weight 16 that are not incidence vectors of lines.
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Adjacency matrix

Note:

For Γ = (V ,E ), the row span Cp(Γ) of a |V | × |V | adjacency matrix for
Γ over Fp gives linear code of length |V | that may have properties that are
of use in classifications or in applications.

However no uniform properties of these codes, other than possibly their
dimension over different p, seems to emerge, even for attractive infinite
classes of graphs.

Exception: for the line graph L(Γ),

C2(L(Γ)) ⊆ C2(G )

where G is an incidence matrix for Γ.
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Note on earlier work

The code C2(G ) has been referred to in the literature as the bond space or
the cut space. See for example, Hakimi and Bredeson [HB68, BH67] for
binary codes.
Their interest in the codes was for the application of majority logic
decoding.

The codes C2(G )⊥ were termed graphical codes by Jungnickel and
Vanstone and studied for a number of coding properties in
[JV96, JV97b, JV99b, JV95, JV99a, JV97a].
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Graphs terminology

The graphs, Γ = (V ,E ) with vertex set V , N = |V |, and edge set E , are
undirected with no loops.

If x , y ∈ V and x and y are adjacent, x ∼ y , and

[x, y] or xy is the edge they define.

A graph is regular if all the vertices have the same valency k.

An adjacency matrix A = [ai ,j ] of Γ is an N × N matrix with
aij = 1 if vertices vi ∼ vj , and aij = 0 otherwise.

An incidence structure D = (P,B,J ), with point set P, block set B
and incidence J is a t-(v , k, λ) design, if |P| = v , every block
B ∈ B is incident with precisely k points, and every t distinct points
are together incident with precisely λ blocks.
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Terminology and definitions continued

The neighbourhood design D(Γ) of a regular graph Γ is the

1-(N, k , k) symmetric design with points the vertices of Γ and blocks
the sets of neighbours of a vertex, for each vertex, i.e. an adjacency
matrix of Γ is an incidence matrix for D.

An incidence matrix of Γ is an N × |E | matrix B with bi ,j = 1 if
the vertex labelled by i is on the edge labelled by j , and bi ,j = 0
otherwise.

If Γ is regular with valency k , then |E | = Nk
2 and the 1-(Nk

2 , k , 2)

design with incidence matrix B is called the incidence design G(Γ)
of Γ.

The line graph L(Γ) of Γ = (V ,E ) is the graph with vertex set E
and e and f in E are adjacent in L(Γ) if e and f as edges of Γ share a
vertex in V .
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Terminology and definitions continued

The code CF(D) of the design D over a field F is the space
spanned by the incidence vectors of the blocks over F .

For X ⊆ P, the incidence vector in FP of X is vX .

The code CF(Γ) or Cp(A) of graph Γ over Fp is the row span of

an adjacency matrix A over Fp. So Cp(Γ) = Cp(D(Γ)) if Γ is regular.

If G is an incidence matrix for Γ, Cp(G ) denotes the row span of G

over Fp. So Cp(G ) = Cp(G(Γ)) if Γ is regular.

If G is an incidence matrix for Γ = (V ,E ), L is an adjacency matrix
for L(Γ), then

(GT )G = L + 2I|E |
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Some classes of graphs studied

Infinite classes of graphs studied and found, by combinatorial and coding
theoretic methods, along with induction, to have the properties described
for Cp(G ), G an incidence matrix, include:

1. Hamming graphs Hk(n,m) [FKM10, FKM11]

For n, k ,m integers, 1 ≤ k < n, the Hamming graph Hk(n,m)=(V,E)
where

V is the set of mn n-tuples of Rn, where R is a set of size m;

two n-tuples are adjacent if they differ in k coordinate positions.

They are the graphs from the Hamming association scheme.

In particular, the n-cube: Qn = H(n, 2) = H1(n, 2) (R = F2).
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Some classes of graphs studied

2. Uniform subset graphs Γ(n, k ,m)

A uniform subset graph Γ(n, k,m) = (V ,E ) where V = Ω{k}, where
|Ω| = n, and adjacency defined by a ∼ b if |a ∩ b| = m.
The symmetric group Sn ⊆ Aut(Γ(n, k,m)).

All classes studied satisfy the properties described, and include:

the odd graphs Γ(2k + 1, k , 0)[FKMa]

triangular graphs Γ(n, 2, 1) (strongly regular) and Γ(n, 2, 0)[FKMc]

Γ(n, 3,m) for m = 0, 1, 2.[FKMb]
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Some classes of graphs studied, continued

3. Complete multipartite graphs Kn1,n2,...,nk

Kn the complete graph[KMR10]

Kn,n the complete bipartite graph[KR10]

Kn,m for n 6= m

Kn1,n2,...,nk
where ni = n for i = 1, . . . , k
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Some classes of graphs studied, continued

4. Strongly regular graphs (n, k , λ, µ)

A graph Γ = (V ,E ) is strongly regular with parameters (n, k , λ, µ) if

|V | = n;

Γ is regular with valency (degree) k ;

for any P,Q ∈ V such that P ∼ Q,

|{R ∈ V | R ∼ P & R ∼ Q}| = λ;

for any P,Q ∈ V such that P 6∼ Q,

|{R ∈ V | R ∼ P &R ∼ Q}| = µ.
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Some classes of graphs studied, continued

Triangular graphs T (n) = L(Kn), n ≥ 4,

(
(n

2

)
, 2(n − 2), n − 2, 4)[KMR10]

Paley graphs P(q), vertex set Fq where q ≡ 1 (mod 4) and x ∼ y if

x − y is a non-zero square, (q, q−1
2 , q−5

4 , q−1
4 )[GK11]

Lattice graphs L2(n) = L(Kn,n), the line graph of the complete

bipartite graph, (n2, 2(n − 1), n − 2, 2)[KS08]

Symplectic graphs [KMR],

Γ2m(q) with parameters (q2m−1
q−1 , q2m−1−1

q−1 − 1, q2m−2−1
q−1 − 2, q2m−2−1

q−1 )
and complement

Γc
2m(q) with parameters (q2m−1

q−1 , q2m−1, q2m−2(q − 1), q2m−2(q − 1))
where m ≥ 2, q a prime power.
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Dimension of Cp(G )

Result

Γ = (V ,E ) is a connected graph, G an incidence matrix, then

1 dim(C2(G )) = |V | − 1.

2 If Γ has a closed path of odd length ≥ 3, then dim(Cp(G )) = |V | for
p odd.

3 If Γ is regular, and G the incidence design, Aut(Γ) = Aut(G).
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Incidence vectors and notation

For Γ = (V ,E ) a graph,

for X ⊆ E , the incidence vector in F E of X is vX ;

for u ∈ V , N(u) the neighbours of u,

u = {uv | v ∈ N(u)}

where uv or [u, v ] denotes an edge;

for u ∈ V ,
vu =

∑
e∈u

v e =
∑

v∈N(u)

vuv ,

i.e. the row Gu of the incidence matrix G corresponding to u.
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Words in Cp(G )⊥

Result

Let Γ be a graph, L(Γ) its line graph, and G an incidence matrix for Γ.
If π = (x1, . . . , xl) is a closed path in Γ, then

1 w(π) =
∑l−1

i=1 v xixi+1 + v xlx1 ∈ C2(G )⊥;

2 if l = 2m and

w(π) =
m∑

i=1

v x2i−1x2i −
m−1∑
i=1

v x2ix2i+1 − v x2mx1 ,

then w(π) ∈ Cp(G )⊥ for all primes p, and if p is odd,
w(π) ∈ Cp(L(Γ)).
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Methods of attack for specific classes

The graphs considered all had large automorphism groups, mostly
transitive on vertices and on edges.
Method 1: Combinatorial
All the graphs has short paths of even length t, hence producing words of
this weight in the dual code C⊥.
Form a 1-(|E |, t, r) design of the supports of these words, compute r (the
replication number) for this design, and then count incidence with the
support of any word of C .
This frequently was good enough to get the minimum weight, and further
the minimum words.

Method 2: Induction, linear algebra and coding theory
This works when taking a class for n ∈ N, by embedding an incidence
matrix for n − 1 in that for n, and using induction.
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General method using edge-cuts in graphs

(Joint work with Peter Dankelmann and Bernardo Rodrigues of UKZN)

More general method showing that these properties hold for many classes
of well-behaved connected graphs: see [DKR]

If Γ = (V ,E ) is connected and S ⊂ E , let Γ− S = (V ,E − S).
If Γ− S is disconnected then S is called an edge-cut .

The edge-connectivity λ(Γ) of Γ is the minimum size of an edge-cut.

So λ(Γ) ≤ δ(Γ) (the minimum degree of Γ) since removing all the edges
containing a vertex disconnects the graph.

If λ(Γ) = δ(Γ) and the only edge sets of cardinality λ(Γ) whose removal
disconnects Γ are the sets of edges incident with a vertex of degree δ(Γ),
then Γ is called super-λ .
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Binary case

Theorem for the binary case:

Theorem

Let Γ = (V ,E ) be a connected graph, G a |V | × |E | incidence matrix for
Γ. Then

1 C2(G ) = [|E |, |V | − 1, λ(Γ)]2;

2 if Γ is super-λ , then C2(G ) = [|E |, |V | − 1, δ(Γ)]2, and the minimum
words are the rows of G of weight δ(Γ).
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Proof

Proof: C = C2(G ) has dimension |V | − 1 by Result 1.
Let d be the minimum weight of C .
(1). Let

x =
∑
u∈V

µuvu ∈ C

where µv ∈ F2, and wt(x) = d . Then

x(uv) = µu + µv .

So, for every edge uv ∈ E

uv ∈ Supp(x) ⇐⇒ µu 6= µv .
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Proof continued

Let Γx = (V ,E − Supp(x)).
If u ∼ v in Γx , then µu + µv = 0, and so µu = µv .
So for any two vertices u and v in the same component of Γx we have
µu = µv .

Thus Γx is disconnected since otherwise, if Γx were connected, all µv would
have the same value, µ say, and so x = µ

∑
u vu = µ0, a contradiction.

Hence Supp(x) is an edge-cut of Γ, and so |Supp(x)| ≥ λ(Γ) and
d = wt(x) ≥ λ(Γ).
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Proof continued

Now construct a word of weight λ(Γ).
Let S ⊆ E be a minimal edge-cut of Γ.
Then Γ− S = (V ,E − S) has V partitioned into two connected
components, W and V −W which are such that if u, v ∈W and u ∼ v ,
then uv 6∈ S , and similarly for V −W .
Thus the edges in S are precisely the edges between W and V −W , and
not those within either of the components.
Let x =

∑
u∈V µuvu, where µu = 1 if u ∈W , and µu = 0 if u ∈ V −W .

For an edge uv ∈ E we have

uv ∈ Supp(x) ⇐⇒ µu 6= µv ⇐⇒ uv ∈ S .

Hence wt(x) = |Supp(x)| = |S | = λ(Γ).
So the minimum weight of C is λ(Γ).
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Proof continued, Γ super-λ

(2). Now suppose Γ is super-λ.
The minimum weight of C is λ(Γ) = δ(Γ).
Let x =

∑
u∈V µuvu be a word in C of weight δ(Γ).

Then Γx = (V ,E − Supp(x)) is disconnected, and Supp(x) is an edge-cut
of cardinality λ(Γ).
Since Γ is super-λ, it follows that Γx has exactly two components, one
consisting of a single vertex u of degree δ(Γ), and the other component
containing the vertices in V − {u}.
Thus Supp(x) = {uv | v ∈ N(u)} so x = vu, which proves (2).�
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Examples of super-λ

Let Γ = (V ,E ) be a connected k-regular graph.
Then Γ is super-λ if one of the following conditions is satisfied, so C2(G )
has minimum weight k and the words of weight k are the rows of G :

1a Γ is vertex-transitive and has no complete subgraph of order k
(Tindell [Tin]);

2a. Γ has diameter at most 2, and in addition Γ has no complete
subgraph of order k (Fiol [Fio92]);

3a. Γ is strongly regular with parameters (n, k , λ, µ), and µ ≥ 1,
λ ≤ k − 3 (follows from 2. above);

4a. Γ is distance-regular and k > 2 (Brouwer and Haemers [BH05]);

5a. k ≥ |V |+1
2 (Kelmans [Kel72]);

6a. Γ has girth g , and diam(Γ) ≤ g − 1 if g is odd, or diam(Γ) ≤ g − 2 if
g is even. (Fabrega, Fiol [FF89]).
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Argument for p odd

The same argument does not follow through for p odd (although the
result is surely true for most nice classes of graphs).
If w ∈ Cp(G ), p odd, w 6= 0, and

w =
∑
x∈V

µxv x ,

then Supp(w) is an edge-cut, but Γ−Supp(w) might not be disconnected.

A modified argument yields a similar but somewhat more restrictive result.

Note: The same argument as in the binary case does follow for odd p for
Γ connected and bipartite .
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Counter example for p odd: Petersen graph O2

The Petersen graph , i.e. the smallest odd graph O2 = (V ,E ), where

V = Ω{2}, and Ω = {1, 2, 3, 4, 5} (strongly regular (10, 3, 0, 1)), yields a
counterexample: (see [FKMa]).
Here x denotes the support of the row of an incidence matrix indexed by
x ∈ V . So, for example

{1, 2} = {{1, 2}{3, 4}, {1, 2}{3, 5}, {1, 2}{4, 5}}.
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Counter example: Petersen graph O2

Let w = v{1,2} + v{3,4} + v{1,3} + v{2,4} + v{1,4} + v{2,3} − 15 =
v{1,2}{3,4} + v{1,3}{2,4} + v{1,4}{2,3} ∈ Cp(G ) for p odd, since∑

x∈V v x = 215 ∈ Cp(G ) and is not 0 for p odd. w is not a row of G .
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O2 − Supp(w)

So Supp(w) = {{1, 2}{3, 4}, {1, 3}{2, 4}, {1, 4}{2, 3}}, O2 − Supp(w) is
bipartite (connected) and Supp(w) is not an edge-cut.

O2 − Supp(w)
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Bipartite and p odd

For bipartite connected graphs the argument is similar for p odd to that
for general connected graphs for p = 2:

Theorem

Let Γ = (V ,E ) be a connected bipartite graph, G a |V | × |E | incidence
matrix for Γ, and p any prime. Then

1 Cp(G ) = [|E |, |V | − 1, λ(Γ)]p;

2 if Γ is super-λ, then Cp(G ) = [|E |, |V | − 1, δ(Γ)]p, and the the
minimum words are the non-zero scalar multiples of the rows of G of
weight δ(Γ).
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General theorem for p odd

For p odd we have:

Theorem

Let Γ = (V ,E ) be a connected k-regular graph that is not bipartite on
|V | = n vertices, G an n × nk

2 incidence matrix for Γ, and p an odd prime.
If

1 k ≥ (n + 3)/2 and n ≥ 6, or
2 Γ is strongly regular with parameters (n, k, µ, λ), where

1 n ≥ 7, µ ≥ 1, and 1 ≤ λ ≤ k − 3, or
2 n ≥ 11, µ ≥ 1, and λ = 0,

then the code Cp(G ) has minimum weight k, and the minimum words are
the non-zero scalar multiples of the rows of G .
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Restricted edge-connectivity λ′(Γ)

For Γ = (V ,E ) a connected graph, a restricted edge-cut is a set S ⊆ E
such that

Γ− S is disconnected,

and no component of Γ− S is an isolated vertex.

It was shown in [EH88] that every graph with |V | ≥ 4 which is not a star
has a restricted edge-cut.

The restricted edge-connectivity λ′(Γ) is the minimum number of
edges in a restricted edge-cut, if such an edge-cut exists.

If Γ is k-regular with k ≥ 2 and |V | ≥ 4, then

λ′(Γ) ≤ 2k − 2.

(since removing all the edges other than uv through adjacent vertices u
and v will produce a restricted edge-cut of size 2(k − 1)).
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Gap in the weight enumerator

Theorem

Let Γ = (V ,E ) be a connected k-regular graph with |V | ≥ 4,
G an incidence matrix for Γ,
λ(Γ) = k and λ′(Γ) > k.

Let Wi be the number of codewords of weight i in C2(G ). Then

Wi = 0 for k + 1 ≤ i ≤ λ′(Γ)− 1,

and Wλ′(Γ) 6= 0 if λ′(Γ) > k + 1.
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Some classes for which this holds

Corollary

Let Γ = (V ,E ) be a connected k-regular graph and G an incidence matrix
for Γ. If Γ satisfies one of the conditions

1 Γ is vertex-transitive, and has odd order or does not contain triangles
(Xu [Xu00]);

2 Γ is edge-transitive and has |V | ≥ 4 (Li and Li [LL99]);

3 any two non-adjacent vertices of Γ have at least three neighbours in
common;

4 Γ is strongly regular graph with parameters (n, k , λ, µ) with either
λ = 0 and µ ≥ 2, or with λ ≥ 1 and µ ≥ 3 (from 3. above);

then C2(G ) has minimum weight k, the words of weight k are precisely the
rows of the incidence matrix, and there are no words of weight ` such that
k < ` < 2k − 2.
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Codes from adjacency matrices of line graphs

Γ = (V ,E ), M an |E | × |E | adjacency matrix for the line graph L(Γ).
The rows of M are labelled by the edges [P,Q] ∈ E , which has neighbours:

N([P,Q]) = [P,Q] = {[P,R] | R 6= Q} ∪ {[R,Q] | R 6= P}.

Recall from Result 2:
If π is a closed path in Γ of even length t, p an odd prime, then Cp(M)
has words of weight t.
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Binary codes of line graphs

So codes of adjacency matrices of line graphs (of graphs with closed paths
of small even length t) over Fp for p odd have minimum weight at most
t, and are not of much interest if t is small, as it is for most interesting
classes.

Recall:
if G is an incidence matrix for Γ, M an adjacency matrix for L(Γ) then

GT G = M + 2Ie .

So

C2(M) ⊆ C2(G ) ,

spanned by the differences of pairs of rows of G .
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Binary codes of line graphs

Result

Let Γ = (V ,E ) be a connected graph, G a |V | × |E | incidence matrix for

Γ, and M an adjacency matrix for L(Γ). Let E (G ) denote the binary code
spanned by the differences of all pairs of rows of G. Then

1 C2(M) = E (G );

2 C2(M) = C2(G ) if and only if |V | is odd; if V is even,
[C2(G ),C2(M)] = 1.

To prove this, make use of the well-known fact that the 2-rank of a
symmetric matrix with 0-main-diagonal is always even (see for
example [GR01, Proposition 2.1]), and of the fact that E (G ) is either
C2(G ) or of co-dimension 1 in it.
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Binary codes of line graphs

For classes of graphs examined here previously and from results using
edge-cuts, it has now been found that the minimum weight of C2(M) is

k if C2(M) = C2(G );

2k − 2 if not, i.e. [C2(G ) : C2(M)] = 1.

There are no words of weight between k and 2k − 2 in C2(G ).
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Permutation decoding

Permutation decoding, from MacWilliams [Mac64], involves finding a
set of automorphisms of the code, called a PD-set.
See MacWilliams and Sloane [MS83, Chapter 16, p. 513] and
Huffman [Huf98, Section 8].

Definition

Let C be a t-error-correcting code with information set I and check set C.

A PD-set for C is a set S ⊆ Aut(C ) such that:
every t-set of coordinate positions is moved by at least one member of S
into the check positions C.

For s ≤ t an s-PD-set is a set S ⊆ Aut(C ) such that:
every s-set of coordinate positions is moved by at least one member of S
into C.
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Permutation decoding

In [KMM06, Lemma 7] the following was proved:

Result

Let C be a linear code with minimum weight d, I an information set, C
the corresponding check set and P = I ∪ C.
Let G be an automorphism group of C , and n the maximum value of
|O ∩ I|/|O|, over the G -orbits O.
If s = min(d 1

ne − 1, bd−1
2 c), then G is an s-PD-set for C .

J. D. Key (keyj@clemson.edu) Codes from incidence matrices of graphs 11-15 September 2011 41 / 42



Permutation decoding

This holds for any information set. If the group G is transitive then |O| is
the degree of the group and |O ∩ I| is the dimension of the code. This is
applicable to codes from incidence matrices of connected regular graphs
with automorphism groups transitive on edges:

Result ([FKMb])

Let Γ = (V ,E ) be a regular k-graph with A = Aut(Γ) transitive on edges,
and M be an incidence matrix for Γ.

If C = Cp(M) = [|E |, |V | − ε, k]p, where ε ∈ {0, 1, . . . , |V | − 1},
then any transitive subgroup of A will serve as a PD-set for full error
correction for C .
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