
Information sets and partial permutation

decoding for codes from finite geometries

J. D. Key a,∗,1,2 T. P. McDonough b,2 V. C. Mavron b,2

aDepartment of Mathematical Sciences, Clemson University, Clemson SC 29634,
U.S.A.

bInstitute of Mathematical and Physical Sciences, University of Wales,
Aberystwyth, Ceredigion SY23 3BZ, U.K.

Abstract

We determine information sets for the generalized Reed-Muller codes and use these
to apply partial permutation decoding to codes from finite geometries over prime
fields. We also obtain new bases of minimum-weight vectors for the codes of the
designs of points and hyperplanes over prime fields.
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1 Introduction

In the 1960s, the codes obtained from the row span of the incidence vectors
of the blocks of designs obtained from finite geometries were shown to have
some useful properties which made them good candidates for practical us-
age: see [AK92] for references to this work. In particular, the dual codes of
those from planes were capable of being used with majority-logic decoding.
MacWilliams [Mac64] at this time introduced the notion of permutation de-
coding and applied it mainly to cyclic codes and the Golay codes. In [KMM],
codes from planes were looked at with a view to permutation decoding; here we
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obtain similar results for the codes of higher dimensional geometries, mostly
in the case of those over prime fields.

The codes from finite geometries are the generalized Reed-Muller codes and
their subfield subcodes. They have the projective and affine semi-linear groups
as automorphism groups. We found in [KMM] that permutation decoding to
correct up to the full capability of the code cannot be used for the whole
class of codes from planes as the order of the plane increases; this is due to
the existence of a lower bound (see Result 1) on the size of the PD-set, which
depends on the length, dimension and minimum weight of the code, and which
is larger than the size of the full automorphism group above a certain field
order. The same will hold for the codes of higher dimensional geometries,
for the same reasons. Thus we introduced the notion of s-PD-sets to correct
s errors, where s may be lower than the full error-correction capability. We
examine these again here in the higher dimensional cases. Also we note that
suitable information sets need to be found for the decoding; we were aided
in this in the case of planes of prime order through the previously known
bases for the codes that were obtained using the geometry of the plane: see
Moorhouse [Moo91]. Here we will obtain suitable information sets, at least in
the prime case, linked to the polynomial basis for the codes.

Our principle results for information sets and bases are Theorem 1, Corollary 2
and Proposition 5. In Theorem 1 we obtain information sets for a class of poly-
nomial codes that includes the q-ary generalized Reed-Muller codes RFq(ν, m),
and in Corollary 2 a particularly simple information set is given in the case
where q is a prime. This then applies in particular to the codes from the affine
geometry designs over fields of prime order, and this leads to information sets
for the codes of projective geometry designs (see Section 5). From this we can
obtain a simple description for bases of minimum-weight vectors for the codes
of the symmetric point-hyperplane designs in the prime case which leads to
similar bases of minimum-weight vectors for the affine point-hyperplane de-
signs: see Proposition 5. These bases are different in general from those found
in [GK98].

The establishment of information sets is of assistance in the search for s-PD-
sets and here our main results are Proposition 1, Proposition 2 and Proposi-
tion 6. In Proposition 1 we show that the translation group will provide an
s-PD-set, within certain bounds for s, for RFq(ν, m), and we obtain, for q a
prime, some relatively small 2-PD-sets for the point-hyperplane designs in the
affine case in Proposition 2 and in the projective case in Proposition 6.

The paper is laid out as follows: in Section 2 we give the background notation
and definitions; in Section 3 we obtain the information sets; in Section 4 we
examine partial permutation decoding in the affine case; in Section 5 we apply
the previous results to the projective geometry designs.
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2 Background

An incidence structure D = (P ,B, I), with point set P , block set B and
incidence I is a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident
with precisely k points, and every t distinct points are together incident with
precisely λ blocks. The design is symmetric if it has the same number of
points and blocks. The code Cp(D) of D over the finite field Fp, is the space
spanned by the incidence vectors of the blocks over Fp, and is thus a subspace
of FPp , the full vector space of functions from P to Fp. Its dimension is called
the p-rank of D.

The notation [n, k, d]q will denote a linear code C of length n, dimension k,
and minimum weight d, over the field Fq. A generator matrix for the code is
a k×n matrix made up of a basis for C. The dual code C⊥ is the orthogonal
subspace under the standard inner product (, ), i.e. C⊥ = {v ∈ Fn

q |(v, c) =
0 for all c ∈ C}. A check matrix for C is a generator matrix H for C⊥; the
syndrome of a vector y ∈ Fn

q is HyT . If c ∈ C then the support of c is the
set of non-zero coordinate positions of c, and the weight of c is the cardinality
of the support. Two linear codes of the same length and over the same field
are isomorphic if they can be obtained from one another by permuting the
coordinate positions. Any linear code is isomorphic to a code with generator
matrix in so-called standard form, i.e. the form [Ik |A]; a check matrix then is
given by [−AT | In−k]. The first k coordinates are the information symbols
(or set) and denoted by I, and the last n − k coordinates are the check
symbols, denoted by C. An automorphism of a code C is an isomorphism
from C to C. The automorphism group will be denoted by Aut(C).

For any finite field Fq of order q, the set of points and r-dimensional subspaces
of an m-dimensional projective geometry forms a 2-design which we will de-
note by PGm,r(Fq). Similarly, the set of points and r-dimensional flats of an
m-dimensional affine geometry forms a 2-design, AGm,r(Fq). The automor-
phism groups of these designs (and codes) are the full projective or affine
semi-linear groups, PΓLm+1(Fq) or AΓLm(Fq), and are always 2-transitive on
points. If q = pe where p is a prime, the codes of these designs are over Fp

and are subfield subcodes of the generalized Reed-Muller codes: see [AK92,
Chapter 5] for a full treatment. The dimension and minimum weight is known
in each case: see [AK92, Theorem 5.7.9].

Permutation decoding was first developed by MacWilliams [Mac64] and in-
volves finding a set of automorphisms of a code called a PD-set. The method
is described fully in MacWilliams and Sloane [MS83, Chapter 15] and Huff-
man [Huf98, Section 8]. We extend the definition of PD-sets to s-PD-sets for
s-error-correction:
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Definition 1 If C is a t-error-correcting code with information set I and
check set C, then a PD-set for C is a set S of automorphisms of C which is
such that every t-set of coordinate positions is moved by at least one member
of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that
every s-set of coordinate positions is moved by at least one member of S into
C.

That a PD-set will fully use the error-correction potential of the code follows
easily and is proved in Huffman [Huf98, Theorem 8.1], and that an s-PD-set
will correct s errors follows in a similar manner.

The algorithm for permutation decoding is as follows: we have a t-error-
correcting [n, k, d]q code C with check matrix H in standard form. Thus the
generator matrix G = [Ik|A] and H = [−AT |In−k], for some A, and the first k
coordinate positions correspond to the information symbols. Any vector v of
length k is encoded as vG. Suppose x is sent and y is received and at most s
errors occur, where s ≤ t. Let S = {g1, . . . , gm} be an s-PD-set. Compute the
syndromes H(ygi)

T for i = 1, . . . ,m until an i is found such that the weight of
this vector is s or less. Compute the codeword c that has the same information
symbols as ygi and decode y as cg−1

i .

Such sets might not exist at all, and the property of having a PD-set will not,
in general, be invariant under isomorphism of codes, i.e. it depends on the
choice of I and C. Furthermore, there is a bound on the minimum size of S
(see [Gor82],[Sch64], or [Huf98]):

Result 1 If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r =

n− k, then |S| ≥
⌈

n
r

⌈
n−1
r−1

⌈
. . .

⌈
n−t+1
r−t+1

⌉
. . .

⌉⌉⌉
.

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the
formula.

To obtain PD-sets, a generator matrix for the code needs to be in standard
form, and thus the question of what points to take as information symbols
arises.

We use the notation of [AK92, Chapter 5] or [AK98] for generalized Reed-
Muller codes. Let q = pt, where p is a prime, and let V be the vector space Fm

q

of m-tuples, with standard basis. The codes will be q-ary codes with ambient
space the function space FV

q , with the usual basis of characteristic functions
of the vectors of V . We can denote the elements f of FV

q by functions of
the m-variables denoting the coordinates of a variable vector in V , i.e. if
x = (x1, x2, . . . , xm) ∈ V, then f ∈ FV

q is given by f = f(x1, x2, . . . , xm) and
the xi take values in Fq. Since aq = a for a ∈ Fq, the polynomial functions
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can be reduced modulo xq
i −xi. Furthermore, every polynomial can be written

uniquely as a linear combination of the qm monomial functions

M = {xi1
1 xi2

2 . . . xim
m | 0 ≤ ik ≤ q − 1, for 1 ≤ k ≤ m}.

For any such monomial the degree ρ is the total degree, i.e. ρ =
∑m

k=1 ik and
clearly 0 ≤ ρ ≤ m(q − 1).

The generalized Reed-Muller codes are defined as follows (see [AK92, Def-
inition 5.4.1]):

Definition 2 Let V = Fm
q be the vector space of m-tuples, for m ≥ 1, over

Fq, where q = pt and p is a prime. For any ρ such that 0 ≤ ρ ≤ m(q − 1),
the ρth-order generalized Reed-Muller code RFq(ρ, m) is the subspace of
FV

q (with basis the characteristic functions of vectors in V ) of all m-variable
polynomial functions (reduced modulo xq

i − xi) of degree at most ρ. Thus

RFq(ρ, m) = 〈xi1
1 xi2

2 · · ·xim
m | 0 ≤ ik ≤ q − 1, for 1 ≤ k ≤ m,

m∑
k=1

ik ≤ ρ〉.

These codes are thus codes of length qm and the codewords are obtained
by evaluating the m-variable polynomials in the subspace at all the points
of the vector space V = Fm

q . From [AK92, Theorem 5.4.2] we know that
RFq(ν,m)⊥ = RFq(µ, m) for ν < m(q − 1) and where ν + µ + 1 = m(q − 1).

The code RFp((m−r)(p−1), m) is the p-ary code of the affine geometry design
AGm,r(Fp): see [AK92, Theorem 5.7.9].

3 Information sets

In this section we determine some useful information sets for the generalized
Reed-Muller codes that will be used in later sections to obtain some small
2-PD-sets for some of the codes from geometries, and also to obtain bases
of minimum-weight vectors for the codes from affine and projective point-
hyperplane designs in the prime case.

The set of monomial functions of degree at most ν,

B = {xi1
1 xi2

2 . . . xim
m | 0 ≤ ik ≤ q − 1, for 1 ≤ k ≤ m,

m∑
k=1

ik ≤ ν},

is an Fq-basis of RFq(ν, m). A subset S ⊆ V = Fm
q will be an information set

of the code if, and only if, the subspace of FS
q spanned by the restriction of B

to S has dimension |B|.
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The following theorem holds for a wider class of codes spanned by monomials
and we state and prove it in the more general form:

Theorem 1 Let V = Fm
q be the vector space of m-tuples, for m ≥ 1, over the

finite field Fq of order q, where q = pt and p is a prime. Let α0, . . . , αq−1 be
the elements of Fq and let

S = {[i1, i2, . . . , im] | ik ∈ Z, 0 ≤ ik ≤ q − 1, 1 ≤ k ≤ m}.

Let ≤ denote the partial order defined on S by [i1, i2, . . . , im] ≤ [j1, j2, . . . , jm]
if and only if ik ≤ jk for all k such that 1 ≤ k ≤ m.

Let X ⊆ S have the property that y ∈ X if y ∈ S and y ≤ x for some x ∈ X ,
and let C = 〈xi1

1 xi2
2 · · ·xim

m | [i1, i2, . . . , im] ∈ X〉. Then the set of vectors

I = {(αi1 , . . . , αim) | [i1, i2, . . . , im] ∈ X}

is an information set for C.

In particular, if X = {[i1, i2, . . . , im] ∈ S | ∑m
k=1 ik ≤ ν}, then I is an infor-

mation set for the ν-th order generalized Reed-Muller code RFq(ν,m).

The proof depends on some identities involving polynomials and these will be
stated and proved through a series of lemmas. Let u0, u1, . . .uq−1 be indepen-
dent commuting indeterminates, and for 0 ≤ i, j ≤ q−1, let ai,j = ui−uj. For
q − 1 ≥ t ≥ 0, let sr,t =

∑
0≤i1≤i2≤...≤ir≤t

ui1ui2 . . . uir for r ≥ 1 and let s0,t = 1.

Lemma 1 For 0 ≤ r, t ≤ q − 1, sr,t =
∑

0≤i≤t

ur+t
i∏

0≤`≤t, 6̀=i

ai,`

.

PROOF. If t = 0, sr,0 = ur
0 which is also the only term occurring in the

righthand sum.

If r = 0 and t ≥ 1, consider the first term of the righthand sum and obtain
partial fractions.

ur+t
0∏

1≤k≤t

(u0 − uk)
= 1 +

∑
1≤k≤t

bk

u0 − uk

, where bk =
ur+t

k∏
1≤`≤t, ` 6=k

(uk − u`)
. Hence

ur+t
0∏

1≤k≤t

(u0 − uk)
= 1 −

∑
1≤k≤t

ur+t
k∏

0≤`≤t, ` 6=k

(uk − u`)
, which establishes the identity

in this case as s0,t = 1.
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Now use induction on r + t. If r, t ≥ 1,

sr,t = sr,t−1 + sr−1,tut =
∑

0≤i≤t−1

ur+t−1
i∏

0≤`≤t−1, 6̀=i

ai,`

+
∑

0≤i≤t

ur+t−1
i ut∏

0≤`≤t, ` 6=i

ai,`

=
∑

0≤i≤t−1

ur+t−1
i∏

0≤`≤t−1, 6̀=i

ai,`

(1 +
ut

ai,t

) +
ur+t

t∏
0≤`≤t−1

ai,`

=
∑

0≤i≤t

ur+t
i∏

0≤`≤t, ` 6=i

ai,`

since ai,t + ut = ui. �

Lemma 2 Let y be an indeterminate which commutes with u0, u1, . . .uq−1.
For 0 ≤ t ≤ r and t ≤ q − 1,∑
0≤k≤t

(sr−k,k

∏
0≤`≤k−1

(y − u`)) =
∑

0≤i≤t

ur
i (

∏
0≤`≤t, 6̀=i

y − u`

ai,`

).

PROOF. We use induction on t. If t = 0, the lefthand side is sr,0 and the
righthand side is ur

0. Now suppose t ≥ 1. Then the lefthand side is∑
0≤i≤t−1

ur
i (

∏
0≤`≤t−1, 6̀=i

y − u`

ai,`

) + sr−t,t

∏
0≤`≤t−1

(y − u`)

=
∑

0≤i≤t−1

ur
i (

∏
0≤`≤t−1, 6̀=i

y − u`

ai,`

) + (
∑

0≤i≤t

ur
i∏

0≤`≤t, ` 6=i

ai,`

)
∏

0≤`≤t−1

(y − u`)

=
∑

0≤i≤t−1

ur
i (

∏
0≤`≤t−1, 6̀=i

y − u`

ai,`

)(1 +
y − ui

ai,t

) + ur
t

∏
0≤`≤t−1

y − u`

at,`

=
∑

0≤i≤t

ur
i (

∏
0≤`≤t, ` 6=i

y − u`

ai,`

). �

Replacing y by ut in Lemma 2 and setting ci,j =
∏

0≤`≤j−1

ai,`, for 0 ≤ j ≤ i ≤

q − 1, we get the following result.

Lemma 3 For 0 ≤ t ≤ r and t ≤ q − 1,
∑

0≤k≤t

sr−k,kct,k = ur
t .

We also derive an identity for certain polynomials in y using Lemma 2.

Lemma 4 For 0 ≤ r ≤ q − 1,
∑

0≤k≤r

(sr−k,k

∏
0≤`≤k−1

(y − u`)) = yr.

PROOF. The lefthand side of the equation in Lemma 2 with t = r, is equal
to the polynomial ∑

0≤i≤r

ur
i (

∏
0≤`≤r, 6̀=i

y − u`

ai,`

)
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in y of degree r. Replacing y by uj, for each j with 0 ≤ j ≤ r, we get ur
j .

Hence this polynomial coincides with yr for r + 1 values. Consequently, these
polynomials are identical. �

From this we derive an identity similar to that of Lemma 3 by substituting ut

for y in Lemma 4:

Lemma 5 For 0 ≤ r ≤ t and t ≤ q − 1,
∑

0≤k≤r

sr−k,kct,k = ur
t .

We denote the lexicographic order on X by ≺, i.e. [i1, . . . , im] ≺ [j1, . . . , jm]
if, and only if, for some k with 1 ≤ k ≤ m, ik < jk and i` = j` for ` < k. We
use � to denote the corresponding non-strict order; that is, the union of ≺
and =. Note that � is a total order. We use ≤ for the partial order on X , as
defined in the statement of the theorem.

We define three matrices M , L and R whose rows and columns are indexed by
X , ordered by ≺. Let x, y ∈ X and write x = [i1, . . . , im] and y = [j1, . . . , jm].
We set Mx,y = ux

y = ui1
j1 . . . uim

jm
. We set Lx,y = si1−j1,j1 . . . sim−jm,jm if y ≤ x

and Lx,y = 0 otherwise. We set Rx,y = cj1,i1 . . . cjm,im if x ≤ y and Rx,y = 0
otherwise. Note that x ≺ y implies that y 6≤ x. So, L is lower triangular and
R is upper triangular.

Lemma 6 M = LR and det M =
∏

0≤j<i≤q−1

ani
i,j where ni is the number of

occurrences of i among the coordinates of elements of X .

PROOF. We calculate the (x, y)-entry in the product LR. For 1 ≤ k ≤ m,
let hk = min{ik, jk} and z = [h1, . . . , hm]. Then z ≤ x and z ≤ y implies z ∈ X
and every w ∈ S for which w ≤ z is also in X , by the assumed properties of
X . Now (LR)x,y =

∑
w∈X Lx,wRw,y. Since Lx,w = 0 if w 6≤ x and Rw,y = 0 if

w 6≤ y, we may take the sum over all w ∈ X such that w ≤ z. Thus we have

(LR)x,y =
∑
w≤z

Lx,wRw,y

=
∑

0≤gk≤hk, 1≤k≤m

si1−g1,g1 . . . sim−gm,gmcj1,g1 . . . cjm,gm

=
∏

1≤k≤m

(
∑

0≤gk≤hk

sik−gk,gk
cjk,gk

) =
∏

1≤k≤m

uik
jk

= Mx,y,

using Lemmas 3 and 5.

To compute det M , we only need to determine the diagonal entries of L and
R. The diagonal entry of L at position [i1, . . . , im] is s0,i1 . . . s0,im = 1. The di-
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agonal entry of R at position [i1, . . . , im] is ci1,i1 . . . cim,im and ci,i =
∏

0≤`≤i−1

ai,`.

This completes the proof. �

We now return to the proof of Theorem 1.

Proof of Theorem 1: We determine explicitly a spanning set of size |X | for
the subspace of FIq spanned by the restriction of B to I. The (αj1 , . . . , αjm)-

coordinate of the polynomial function xi1
1 xi2

2 . . . xim
m is αi1

j1α
i2
j2 . . . αim

jm
. The di-

mension of the spanning set is thus the rank of the |X | × |X | matrix N
with Nx,y = αi1

j1α
i2
j2 . . . αim

jm
where x = [i1, . . . , im] and y = [j1, . . . , jm]. For

0 ≤ j < i ≤ q− 1, we write βi,j = αi − αj and note that βi,j 6= 0. Hence, from
Lemma 6, det N =

∏
0≤j<i≤q−1

βni
i,j 6= 0. So, we conclude that I is an information

set for RFq(ν, m). �

In dealing with the field Fp, where p is prime, it is frequently convenient to
describe the elements by 0, 1, . . . , p−1 while at the same time using 0, 1, . . . ,
p − 1 to denote integers. We will use this notation ambiguously below since
the context will clearly determine whether these symbols refer to finite field
elements or to integers.

In the special case where q = p is a prime we have the following corollary to
Theorem 1:

Corollary 2 If p is a prime, the code RFp(ν, m) has information set

I = {(i1, . . . , im) | ik ∈ Fp, 1 ≤ k ≤ m,
m∑

k=1

ik ≤ ν}. (1)

PROOF. The choice αi = i for the elements of Fp will produce this infor-
mation set from the theorem, recalling of course that the sum is taken in Z,
not in Fp. �

Note: The theorem applies not only to the generalized Reed-Muller codes:
for example, if m = 2, q > 2, and X = {[0, 0], [0, 1], [1, 0], [1, 1]}, then C =
〈1, x1, x2, x1x2〉, {(0, 0), (0, 1), (1, 0), (1, 1)} is an information set for C, and C
is not a generalized Reed-Muller code.

Definition 3 For RFp(ν,m), when p is a prime, we call I of Equation (1)
the standard information set for C if αi = i ∈ Fp for all i. More generally,
the information set using the particular ordering [α0, . . . , αp−1] of Fp will be
said to be based on that ordering.
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4 Partial PD-sets

We now look for s-PD-sets for the generalized Reed-Muller codes, and in
particular, for those that are the codes of finite geometry designs. First we
obtain a general lemma that finds a number s such that a code C with an
automorphism group G will have G as an s-PD-set.

Lemma 7 Let C be a code with minimum distance d, I an information set,
C the corresponding check set and P = I ∪ C. Let G be an automorphism
group of C, and n the maximum of |O ∩ I|/|O|, where O is a G-orbit. If
s = min(d 1

n
e − 1, bd−1

2
c), then G is an s-PD-set for C.

PROOF. For each a ∈ P , let G(a) = {g ∈ G | ag ∈ I}. Then |G(a)| =
|Oa ∩ I| |G|/|Oa|, where Oa denotes the G-orbit of a.

Let a1, . . . , as be s distinct elements in P and assume that exactly t of them
are in G-orbits meeting I. We may assume that these t elements are a1, . . . , at.
Then

|
⋃

1≤i≤t

G(ai)| ≤ |G|
∑

1≤i≤s

|Oai
∩ I|/|Oa| ≤ |G|sn < |G|,

since s < 1
n
. Hence there is an element g ∈ G\⋃

1≤i≤s G(ai). Since g 6∈ G(ai),
aig 6∈ I for each i. That is, aig ∈ C for each i.

Hence, for each s-tuple in P , there is an element in G mapping the s-tuple
into C. Since s ≤ bd−1

2
c, C can correct s errors. Thus G is an s-PD-set for C

with respect to the information set I. �

Note that this lemma depends only on the size of the information set. Thus,
when the parameters satisfy the inequality, G will be an s-PD-set with respect
to all information sets. The lemma is a generalization of the observation in
[Mac64] for cyclic codes for the number of errors that the cyclic group will
correct by permutation decoding.

Now turning to the generalized Reed-Muller codes, here C = RFq(ν, m) where
q = pt, p is a prime and 0 ≤ ν ≤ m(q − 1), P = Fm

q and an information

set I has size |I| = fν,m,q =
∑`

i=0(−1)i
(

m
i

)(
m+ν−iq

m

)
where ` = min(m, b(m +

ν)/qc) (see [AK92, Theorem 5.4.1, p.154] for an expression of this number as
a double sum). Moreover, the automorphism group of RFq(ν, m) contains the
translation group Tm(Fq), whose order is qm, and the minimum distance of
the code is dν,m,q = (q − b)qm−a−1, where ν = a(q − 1) + b, 0 ≤ b < q − 1 (see
[AK92, Theorem 5.4.3 & Corollary 5.5.4]).

Applying Lemma 7, we have immediately:
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Proposition 1 Let fν,m,q denote the dimension and dν,m,q the minimum
weight of RFq(ν,m). If s = min(b(qm − 1)/fν,m,qc, b(dν,m,q − 1)/2c, then the
translation group Tm(Fq) is an s-PD-set for RFq(ν, m).

In the special case, q = p and ν = (m− r)(p− 1), RFp((m− r)(p− 1), m) =
Cp(AGm,r(Fp)), i.e. the code of the affine geometry design of points and r-flats.

If r = m − 1, we have points and hyperplanes and |I| =
(

m+p−1
m

)
. We have

a general construction for smaller 2-PD-sets for these designs for p ≥ 3 and
m ≥ 3 (except for p = 3 when we will need m ≥ 4).

Proposition 2 Let C = RFp(p − 1, m) where p is a prime and p ≥ 3 and
let Tm(Fp) be its translation group. For the vector z = (1, 1, . . . , 1) ∈ Fm

p let τ
denote the translation by z and let Z = 〈τ〉. Using the standard information
set

I = {(i1, . . . , im) | ik ∈ Fp, 1 ≤ k ≤ m,
m∑

k=1

ik ≤ p− 1}, (2)

Z is a 2-PD-set of size p for C for m ≥ 3 and p ≥ 5, and for m ≥ 4 when
p = 3.

PROOF. We need to show that any two vectors v and w can be moved
by some multiple of z into the check positions, C = {(i1, i2, . . . , im) | ik ∈
Fp,

∑m
k=1 ik > p − 1}. Notice that if, for a given prime p, we can prove this

for m = t then it will follow for m ≥ t. To shorten the exposition, we will
omit consideration of primes ≤ 11 and prove the result for p ≥ 13 and m = 3.
This leaves m = 3 for the primes p = 5, 7 and 11 and m = 4 for p = 3.
These involve a proliferation of subdivisions which need to be considered but
no essential difficulty.

We consider the various types of pairs of vectors (a, b, c) ∈ F3
p and for each

pair we write down an element k of Fp so that the corresponding element in S
that will move that pair into C. We can always translate such a pair of vectors
into one of the form (a, b, c), (0, d, e). As membership of C depends only on
the sum of the coordinates, we may assume that 0 ≤ a ≤ b ≤ c ≤ p − 1 and
0 ≤ d ≤ e ≤ p− 1. Let ` = bp/3c+ 1.

First, suppose d = e = 0. If p−1−a ≥ `, let k = p−1−a unless b = c = a+1.
In this case, if p−2−a ≥ ` let k = p−2−a, and if p−1−a = ` let k = 2`+1.
If p− 1− a < ` let k = p− 1.

Next, suppose d = 0 and e 6= 0. If a + b + c > p + 2, let k = p − 1. If
a + b + c ≤ p + 2 and p ≥ 11, let k = p − 1− a unless b = c = a + 1. In this
case, let k = p− 2− a if p ≥ 13.
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Finally, suppose a, b and c are distinct and 0, d and e are distinct. If a+b+c >
p+2, let k = p−1. Now suppose a+b+c ≤ p+2. We may choose k = p−1−a
if d ≤ a or if a < d and d + e ≥ 3a + 3. Now suppose additionally that a < d
and d + e < 3a + 3. If e ≤ b let k = p− 1− b and if b < e let k = p− e.

This completes the proof for p ≥ 13 and m ≥ 3. �

For the case m = 2 and planes of prime order, Proposition 1 does not prove
that the translation group is a 2-PD-set. However, this is easily done:

Proposition 3 Let C = RFp(p− 1, m) where p is a prime and p ≥ 3. Using
the standard information set I of Equation (2), the translation group is a
2-PD-set for C for m ≥ 2 and p ≥ 5, and for m ≥ 3 when p = 3.

PROOF. First take p > 5 and m ≥ 2. As in Proposition 2, if we can prove
the result for m = 2, it will follow for all m ≥ 2. We need to show that
any two vectors can be moved by some translation into the check positions
C. If the vectors are already all in C, then the identity map, corresponding to
translation by (0, 0) is used. If not, we can translate the vectors so that one of
them is the zero vector. Suppose they are A = (a, b) and B = (0, 0). We first
translate by (p− 1− a, p− 1) to obtain (p− 1, p− 1+ b) and (p− 1− a, p− 1),
which are in C unless (i) b = 1 or (ii) a = p− 1.

If (i), b = 1, translate A and B by (p−1, p−1−b) to give (p−1+a, p−1) and
(p− 1, p− 1− b), which are in C unless a = 1. In that case the two vectors are
(1, 1) and (0, 0) and translation by (p−2, p−2) yields the vectors (p−1, p−1)
and (p− 2, p− 2), which are in C since 2(p− 2) > p− 1 for p ≥ 5.

If (ii), a = p − 1 the vectors are (p − 1, b) and (0, 0) and translation by
(p − 1, p − 1 − b) gives (p − 2, p − 1) and (p − 1, p − 1 − b), which are in C
unless b = 1. In this case the vectors are (p − 1, 1) and (0, 0) and translation
by (p − 2, p − 2) gives (p − 3, p − 1) and (p − 2, p − 2), which are again in C
for p ≥ 5.

For p = 3, m = 3, a direct simple computation gives the result. �

In Figure 1 we list the sizes of some s-PD-sets for codes of points and hyper-
planes (ν = p− 1) of PGm(Fp), found using Magma [BC94] and GAP [GAP].
In these cases we used the information sets described in Definition 3, observing
that different information sets of this type for a given code produced partial
PD-sets of comparable sizes. In addition, in the affine group AGL5(F2), we
found a 7-PD-set of size 51 and an 8-PD-set of size 74.

We now show how the existence of s-PD-sets for RFq(ν,m) leads to the ex-
istence of (s + 1)-PD-sets for RFq(ν, m + r). If Fq = {α0, . . . , αq−1}, consider
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p 2 2 3 5 7

m 5 6 4 3 3

s 2 3 4 5 6 2 3 4 5 6 7 2 3 4 5 2 3 4 2 3 4

size 4 8 13 19 26 3 9 10 13 15 26 6 11 17 30 8 21 43 11 22 47

Fig. 1. Sizes of some s-PD-sets in the translation group Tm(Fp)

the information set for RFq(ν, m),

Im,ν = {(αi1 , αi2 , . . . , αim) | 0 ≤ ik ≤ q − 1, 1 ≤ k ≤ m,
m∑

k=1

ik ≤ ν}

based on the ordering [α0, . . . , αq−1] of Fq. If P(m) = Fm
q is embedded in

P(m+r) = Fm+r
q by v 7→ (v, 0) where r ≥ 1, then clearly Im,ν embeds in Im+r,ν

and AGLm(Fq) embeds in AGLm+r(Fq) naturally. We use these embeddings
to show how an (s + 1)-PD-set for RFq(ν, m + r) with respect to Im+r,ν can
be constructed from an s-PD-set for RFq(ν,m) with respect to Im,ν .

Proposition 4 Let P be an s-PD-set in AGLm(Fq) for RFq(ν,m) with respect
to Im,ν. Let P ∗ be the image of P under the natural embedding of AGLm(Fq)
in AGLm+r(Fq), where r ≥ 1. Let U be the set of q translations of Fm+r

q which
fix the first m coordinates, and let Q = P ∗U . If ν < r(q − 1), then Q is an
(s + 1)-PD-set in AGLm+r(Fq) for RFq(ν, m + r) with respect to Im+r,ν.

In particular, if P ⊆ Tm(Fq) then Q ⊆ Tm+r(Fq).

PROOF. Let a1, . . . , as+1 ∈ P(m+r). For each i, let a′i be the projection of ai

on the first m coordinates. Choose g ∈ P so that a′ig 6∈ Im,ν for i = 1, . . . , s.
If g 7→ g∗ ∈ P ∗, then aig

∗ 6∈ Im+r,ν for i = 1, . . . , s. Indeed, aig
∗u 6∈ Im+r,ν for

i = 1, . . . , s and u ∈ U . We may choose u ∈ U so that as+1g
∗u has αq−1 as its

j-th coordinate, for all j > m. Since r(q − 1) > ν, as+1g
∗u 6∈ Im+r,ν . �

5 Projective geometries

The codes of the projective geometries over finite fields are the non-primitive
generalized Reed-Muller codes (see [AK92, Chapter 5]). We can obtain some
results about these codes in the prime order case by using some of the facts
we have established for the affine case, and the usual embeddings. We can
also apply Lemma 7 to the projective (non-primitive) generalized Reed-Muller
codes to obtain similar results for s for an automorphism group to be an s-
PD-set, using the known facts about the dimension and minimum weight.
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Firstly, we can construct information sets for the code Cp(PGm,r(Fp)) in the
following way: represent a point of PGm(Fp) by a vector in Fm+1

p whose
first non-zero coordinate is 1. Let βm,r = dim(Cp(AGm,r(Fp))) and γm,r =
dim(Cp(PGm,r(Fp))). Then γm,r = γm−1,r +βm,r (see [AK92, Corollary 5.7.3]).
Note that βm,r = |{(i1, . . . , im) | ∑

1≤j≤m ij ≤ (m − r)(p − 1)}| and thus
γm,r = 1 +

∑
1≤i≤m−r βr+i,r.

If I is an information set for Cp(AGm,m−1(Fp)), then I∗ ∪ {(0, . . . , 0, 1)} is an
information set for Cp(PGm,m−1(Fp)), where

I∗ = {(1, x1, . . . , xm) | (x1, . . . , xm) ∈ I}.

More generally, if I is an information set for Cp(AGm,r(Fp)) and J is an
information set for Cp(PGm−1,r(Fp)), then I∗ ∪ J † is an information set for
Cp(PGm,r(Fp)), where J † = {(0, x1, . . . , xm) | (x1, . . . , xm) ∈ J }.

Using this inductive construction, we see that {(0, . . . , 0, 1)} ∪⋃
1≤i≤r Ki is an

information set for Cp(PGm,r(Fp)), where Ki is the set of vectors

{(0, . . . , 0︸ ︷︷ ︸
r − i

, 1, ar−i+1, . . . , am︸ ︷︷ ︸
m− r + i

) | 0 ≤ aj ≤ p−1, r−i+1 ≤ j ≤ m,
m∑

j=r−i+1

aj ≤ i(p−1)}.

As a by-product of this construction of information sets for the projective
geometry designs, in the case of the design of points and hyperplanes we can
use homogeneous coordinates to obtain a set of hyperplanes whose incidence
vectors will form a basis for the code in the prime case. This construction can
be compared with the basis found in [GK98], where a basis of hyperplanes for
the affine prime case was constructed and this then applied to the projective
case.

Proposition 5 If C = Cp(PGm,m−1(Fp)), where p is a prime and m ≥ 2,
then, using homogeneous coordinates, the incidence vectors of the set

{(1, a1, . . . , am)′ | ai ∈ Fp,
m∑

i=1

ai ≤ p− 1} ∪ {(0, . . . , 0, 1)′}

of hyperplanes form a basis for C.

Similarly, a basis for Cp(AGm,m−1(Fp)) for m ≥ 2, p prime, is the set of
incidence vectors of the hyperplanes with equation

m∑
i=1

aiXi = p− 1 with
m∑

i=1

ai ≤ p− 1,

where ai ∈ Fp for 1 ≤ i ≤ m, and not all the ai are 0, along with the hyperplane
with equation Xm = 0.
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PROOF. This follows from the above discussion of the progression from
projective to affine, and vice-versa, and of the dual nature of the projective
case, noting that if a set of projective points in homogeneous coordinates is an
information set, then the set of hyperplanes with these coordinates will give
a basis. �

Finally we derive some partial PD-sets for these codes from partial PD-sets for
the corresponding affine geometry codes. In Proposition 2, using the informa-
tion set I of Equation (2), we obtained a 2-PD-set R = {τi | 0 ≤ i ≤ p−1} for
Cp(AGm,m−1(Fp)), where τi is the translation τi : v 7→ v+iz and z = (1, . . . , 1).
Using the embedding of AGm(Fp) into PGm(Fp) described above, each τi cor-
responds to a collineation

τ̂i : (x0, x1, . . . , xm) 7→ (x0, x1 + i, . . . , xm + i)

of PGm(Fp). Let Z = {τ̂i | 0 ≤ i ≤ p−1}. We define two further collineations:

µ : (x0, . . . , xm−2, xm−1, xm) 7→ (x0, . . . , xm−2, xm, xm−1),

ν : (x0, x1, . . . , xm−1, xm) 7→ (x0, x1, . . . , xm−1 + xm, xm),

where the images are normalized further if necessary.

Using these collineations we find a ‘small’ 2-PD-set for Cp(PGm,m−1(Fp)).

Proposition 6 For m ≥ 3, p ≥ 5, the set S = Z ∪ µZ ∪ {ν} of collineations
of PGm(Fp) is a 2-PD-set of size 2p + 1 of the code Cp(PGm,m−1(Fp)) with
respect to the information set I∗ ∪ {(0, . . . , 0, 1)}.

PROOF. In this case, the check set

C = {(1, a1, . . . , am) | 0 ≤ aj ≤ p− 1 for 1 ≤ j ≤ m,
∑

1≤j≤m

aj > p− 1}

∪ {(0, a1, . . . , am) | 0 ≤ aj ≤ p− 1 for 1 ≤ j ≤ m, am not the leading entry}.

Clearly a pair of points of the form (1, a1, . . . , am) and (1, b1, . . . , bm) can be
mapped into C by an element of Z by Proposition 2. Also, since m ≥ 3, a pair
of points of the form (1, a1, . . . , am) and (0, . . . , 0, 1) can be mapped into C by
an element of µZ, again by Proposition 2.

Since Z fixes all points with first coordinate 0, a pair of points of the form
(1, a1, . . . , am) and (0, . . . , 0, 1, aj, . . . , am) 6= (0, . . . , 0, 1) can be mapped into
C by an element of Z by Proposition 2.

A pair of points of the form (0, . . . , 0, 1, aj, . . . , am) and (0, . . . , 0, 1, bk, . . . , bm),
neither equal to (0, . . . , 0, 1), can be mapped into C by the identity mapping.
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A pair of points of the form (0, . . . , 0, 1, aj, . . . , am) and (0, . . . , 0, 1), where
either j ≤ m− 1 or j = m and am 6= 0, can be mapped into C by µ. The pair
of points (0, . . . , 0, 1, 0) and (0, . . . , 0, 1) can be mapped into C by ν. �
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