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Abstract

The affine resolvable 2-(27, 9, 4) designs were classified by Lam
and Tonchev [9, 10]. We use their construction of the designs to
examine the ternary codes of the designs and show, using Magma
[3], that each of the codes, apart from two, contains, amongst its
constant weight-9 codewords, a copy of the ternary code of the affine
geometry design of points and planes in AG3(F3). We also show how
the ternary codes of the 68 designs and of their dual designs, together
with properties of the automorphism groups of the designs, can be
used to characterize the designs.

1 Introduction

There are many designs with the same parameters as those of the de-
signs of points and r-dimensional subspaces of a finite projective geometry
PGm(Fq), or of points and r-flats of a finite affine geometry AGm(Fq),
where r is fixed and 1 ≤ r ≤ m. The designs from the geometries have the
largest automorphism groups (see [7]) and the codes associated with these
designs, i.e. the span of the incidence vectors of the blocks over the prime
field of characteristic dividing q, are members of the class of generalized
Reed-Muller codes: see [1, Chapter 5]. It is a long standing conjecture of
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Hamada [5] that the code of the design from the geometry has the smallest
dimension amongst those of the same parameters. This conjecture has not
been contradicted, and in some cases has been proved to be true: see [1] or
[8] for more on this. The proof of this conjecture would provide a partial
“rigidity theorem” for such designs since it would characterize the designs
from geometries as being those whose codes have the smallest dimension for
their class. A further rigidity theorem would hold if they were the unique
designs with codes of this minimal dimension, but this is not true in general:
see [12].

The minimum weight of the codes from the projective or affine geometry
design is always the block size and the words of minimum weight are simply
multiples of the incidence vectors of the blocks, as was shown by Delsarte
and Goethals and others in a series of papers: see [1, Chapter 5] for full
references to this work. For other designs the codes do not necessarily have
this property: for some parameters (see [6] or [1, Corollary 7.5.1]) we know
that this property characterises the design from the geometry, leading to
a rigidity theorem for this kind of design: see [1, Theorem 8.2.1] for an
example of this.

A question that can be raised is the following: given a design with
parameters that of a projective or affine geometry design, does the code of
the design over the “correct” prime field contain a copy of the geometry
design amongst the supports of its constant vectors of weight the block size
of the design? There are certainly cases where this is known not to be
the case: for example, projective planes are always characterized by their
codes, and also certain 2-(31, 7, 7) designs (see Tonchev [12] or Delsarte
and Goethals [4]) and some other designs (see [2, Section 5]). However,
the question has not been answered for all classes with the parameters of a
design from a finite geometry; the result [1, Theorem 8.2.1] quoted above
is one case where it is known to hold.

We look here at the affine resolvable 2-(27, 9, 4) designs, as classified
recently by Lam and Tonchev [9, 10]. There are 68 of these, including the
design AG3,2(F3) of points and planes in AG3(F3). Lam and Tonchev de-
termined the automorphism groups and the dimensions of the ternary codes
of the designs and noted that Hamada’s conjecture was not contradicted
and that AG3,2(F3) is in fact the only design whose ternary code has the
minimal dimension 10.

Using Magma [3] we constructed the code of each design, and collected
all the constant weight-9 codewords. Then, using techniques described in
Section 3, we were able to find, for all but two of the designs, a set of
39 of these codewords whose supports formed the affine geometry design.
The two designs that did not share this property, designs ##15 and 18 in
the numbering of [9, 10], did not have the property for the simple reason
that they each had exactly 39 constant weight-9 words, and these were
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then just the incidence vectors of the design itself. Thus no other design
of these parameters resides amongst the constant codewords in these two
cases. Since the ternary codes of these designs are all self orthogonal,
this also means that all but two of the designs can be found amongst the
constant weight-9 codewords of the dual code of the ternary code of the
design AG3,2(F3). We were also able to determine which designs can be
found amongst the constant codewords of weight 9 of the other designs:
this can be found in Section 3.

We have recorded all the blocks of each design, along with the blocks of
the included affine geometry design, at the www site:

http://www.math.clemson.edu/faculty/Key

under the heading “affine resolvable 2-(27, 9, 4) designs”. Alternatively,
printed versions can be obtained from either author or in a Clemson Tech-
nical Report.

Finally we also looked at the ternary codes of the dual designs, in the
hopes that these would be different for the distinct designs. We were able
to obtain all the weight enumerators and found that all the designs can be
distinguished from properties of either the group, the ternary code, or the
ternary code of the dual design: see Proposition 3. We show how this can
be done in the final section. Since an affine resolvable design can always
be extended to a symmetric 2-(40, 13, 4) design in the standard way by
adjoining a projective plane of order 3 at infinity, the code of each of these
dual designs (which are just 1-designs) are subcodes of the shortened code of
the dual of the symmetric design. Hence again only the ternary code gives
any hope of classification. A recent paper by Mavron and Tonchev [11]
studies some other distinguishing properties of the 68 designs. Note that
Tonchev and Weishaar [13] characterized all the 80 distinct Steiner triple
systems on 15 points by the binary codes of their dual designs.

2 Terminology and notation

An incidence structure D = (P,B, I), with point set P, block set B and
incidence I is a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident
with precisely k points, and every t distinct points are together incident
with precisely λ blocks. The dual structure of D is Dt = (B,P, I). Thus
the transpose of an incidence matrix for D is an incidence matrix for Dt.

We write AGm,n(Fq) for the the 2-(v, k, λ) design of points and n-flats
(cosets of dimension n) in the affine geometry AGm(Fq), where

v = qm, k = qn, λ =
(qm−1 − 1) . . . (qm+1−n − 1)

(qn−1 − 1) . . . (q − 1)
.
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The code CF of the design D over the finite field F is the space spanned
by the incidence vectors of the blocks over F . We take F to be a prime
field Fp, in which case we write also Cp for CF , and refer to the dimension
of Cp as the p-rank of D; in the case of the designs from finite geometries,
p will be the same as the characteristic of the field over which the geometry
is defined. In the general case of a 2-design, the prime must divide the
order of the design, i.e. r − λ, where r is the replication number for the
design, that is, the number of blocks through a point. If the point set of D
is denoted by P and the block set by B, and if Q is any subset of P, then
we will denote the incidence vector of Q by vQ. Thus CF =

〈
vB |B ∈ B

〉
,

and is a subspace of FP , the full vector space of functions from P to F .
For any code C, the dual or orthogonal code C⊥ is the orthogonal under
the standard inner product. If a linear code over a field of order q is of
length n, dimension k, and minimum weight d, then we write [n, k, d]q to
show this information. If c is a codeword then the support of c is the set
of non-zero coordinate positions of c. A constant word in the code is a
codeword, all of whose coordinate entries are either 0 or 1. The all-one
vector will be denoted by , and is the constant vector of weight the length
of the code. Two linear codes of the same length and over the same field
are equivalent if each can be obtained from the other by permuting the
coordinate positions and multiplying each coordinate position by a non-
zero field element. They are isomorphic if they can be obtained from one
another by permuting the coordinate positions.

Suppose that D is a 2-(v, k, λ) design with b blocks and with replication
number r. Let S be any set of points of D. A block is called an i-secant
if the block meets S in i points. Let |S| = s. For i = 0, . . . , k, let xi denote
the number of i-secants to S; for a fixed point z ∈ S, let zi (or zi(z)) be
the number of i-secants passing through z. Standard counting gives the
following equations:

k∑
i=0

xi = b;
k∑

i=1

ixi = sr;
k∑

i=2

i(i− 1)xi = s(s− 1)λ, (1)

and
k∑

i=1

zi = r;
k∑

i=2

(i− 1)zi = (s− 1)λ. (2)

When S is the support of a word in the dual code of the design, clearly
x1 = 0, so from the last two equations of (1) we obtain

k∑
i=3

i(i− 2)xi = s((s− 1)λ− r), (3)
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and, with z1 = 0, from (2) we obtain

k∑
i=3

(i− 2)zi = (s− 1)λ− r. (4)

A parallel class of blocks of a 2-(v, k, λ) design is a set of pairwise disjoint
blocks that partitions the point set. For this to exist, we must have k
a divisor of v. Further, the design is resolvable if the block set can be
partitioned into r disjoint parallel classes, in which case any such partition
is called a resolution. A resolvable design is affine resolvable if any
two blocks that are not in the same parallel class intersect in exactly k2

v
points. Thus an affine resolvable design has a unique resolution. Clearly
the designs from affine geometries are affine resolvable.

Lam and Tonchev [9, 10] proved the following:

Result 1 (Lam & Tonchev) There are exactly 68 non-isomorphic affine
resolvable 2-(27, 9, 4) designs; these are given in [9, 10].

3 Results

For each of the designs given in [9, 10] we constructed the design and the
ternary code of length 27 spanned by the incidence vectors of the blocks
of the design. Using Magma we collected the constant words of weight 9,
and formed the set S of supports of these vectors. Members of S will now
be called blocks. The size of S we found for each design are given below,
where we use the numbering given in [9, 10].

We then collected all the members, T , of S through a point p1; then
we found the number of blocks in T through each of the other 26 points.
Choosing a point p2 with the smallest such set, we looked for sets of four
blocks that met each other mutually in three points, and such that their
intersection had size three; this is the defining property of the affine geom-
etry design. Using a choice of these four blocks as a starting point, we then
chose a set of four blocks with this property for another of the points dis-
tinct from p1, say p3. With these seven blocks covering the blocks through
two triples of points including p1, we then went on to a further point p4

and found the quadruples of blocks with the given restriction through this
point. Next we formed the ternary code spanned by the incidence vectors of
the first seven blocks and this new choice. This code should be a [27, 7, 9]3
code with exactly 13 constant vectors of weight 9 whose supports form the
blocks through the point p1; if the code did not have these properties, a new
quadruple of the blocks through p1 and p4 was chosen and tested. If none
of these gave the correct code, it was necessary to go back to the choice
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of blocks through p3 and repeat the process. In practice we always finally
found the 13 blocks giving the [27, 7, 9]3 code with the above property, for
each of the designs.

Having found the 13 blocks through p1, we took a new point, say p2,
and looked at correctly intersecting quadruples of blocks through p2. A
suitable choice, when adjoined to the 13 blocks through p1 as already found,
was achieved when the code spanned by the incidence vectors of the 13
blocks and of the new set was a [27, 9, 9]3; this was always possible. This
then gave 21 blocks, and the set was completed by simply looking through
the remaining blocks of S and forming the code spanned by including the
incidence vector of this block, until the correct [27, 10, 9]3 was found with
the words of weight 9 forming the design. This worked in all cases where
the size of S was greater than 39.

Thus we proved

Proposition 1 All but two of the affine resolvable 2-(27, 9, 4) designs con-
tain a copy of the affine geometry design AG3,2(F3) amongst the constant
weight-9 codewords of their ternary code of length 27. The two that do not
have this property (## 15 and 18) have only 39 constant weight-9 code-
words.

We can also make a few observations about codewords of low weight for
an affine resolvable 2-(27, 9, 4) design:

Proposition 2 Let C be the ternary code of an affine resolvable 2-(27, 9, 4)
design D. Then C ⊆ C⊥ and

(i) the minimum weight of C⊥ is at least 6;

(ii) a non-zero constant word of C⊥ has weight 9, 18 or 27;

(iii) if the minimum weight of C is 6 then C contains a constant word of
weight 9 whose support is not a block;

(iv) unless D is the affine geometry design, C has words of weight 9 whose
supports are not blocks.

Proof: Since blocks meet in 0 or 3 points, it is clear that C ⊆ C⊥. Also
note that the all-one vector  is in C, since the sum of all the blocks in a
parallel class will give . From this it follows that any vector in C will have
weight divisible by 3, and the sum of the non-zero coordinate entries of any
word of C⊥ must be 0.

To prove (i), let c be a non-zero constant vector in C⊥ of weight s >
0 and support S. Using the notation of Equations (1) to (4), we have,
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from Equation (4), s ≥ r
λ + 1, i.e. s ≥ 5. So assume s = 5. Now from

Equations (2) and (4), we have

z2 = r −
∑
i=3

zi ≥ r −
∑
i=3

(i− 2)zi = r − {(s− 1)λ− r} = 2r − (s− 1)λ,

which becomes z2 ≥ 26−16 = 10, for any point of S. Looking at the entries
in the codeword c ∈ C⊥, then if S = {pi : 1 ≤ i ≤ 5}, since  ∈ C⊥, we
must, essentially, have entries +1 at four of the points, say pi for i = 1 to 4,
and −1 at the other, p5. Every 2-secant through p1 must pass through p5;
there are only four of these, and hence not all of the ten can pass through
p5, and we have a contradiction. Thus we have proved (i).

To prove (ii), we again use Equations (1) to (4), with the notation of
that paragraph. Suppose c is a constant vector in C⊥ of weight s. Since
(c, ) = 0, s is divisible by 3, and since  ∈ C⊥, we can assume that s ≤ 12.
Only x0, x3, x6 and x9 can be non-zero. We have from (i) that s ≥ 6.
Equations (1) with s = 6 or 12 have no positive interger solutions. If s = 9
and c is not the support of a block (i.e. x9 = 0), then the equations show
that x6 = 3, x3 = 33 and x0 = 3.

To prove (iii), suppose C has minimum weight 6, and let c be a codeword
of weight 6. Then c is not constant, by (ii), and hence has three coordinate
positions, say {p1, p2, p3} with entry 1, and three, {p4, p5, p6} with entry
-1. Let Bi for i = 1, 2, 3, 4 be the four blocks of the design through p1 and
p2.

If one of the blocks, say B1, also contains p3 but none of the others,
then vB1 − c will be a constant vector of weight 9, but not a block as it
has six points in common with B1. If B1 contains the full support of c
then since B2 can only meet B1 in three points, the other point must be
p3 and we can argue as for B1. Otherwise, none of the blocks Bi contains
the set {p1, p2, p3}, and so each block must contain two of the points from
{p4, p5, p6}. But there are only three distinct choices of pairs from this
set, and so two of the blocks would have to intersect in four points, a
contradiction.

For (iv), suppose D 6= AG3,2(F3). Then there must be a pair of points
{x, y} such that the four blocks Bi, for i = 1, 2, 3, 4 through them do not
intersect mutually in three points. Let B1 ∩ B2 = {x, y, z}. There are
essentially two possibilities: either there is a third block, say B3, that
contains z, or any three of the blocks intersect only in {x, y}.

In the first event  −
∑4

i=1 vBi is a vector of weight 6, and hence by
(iii) there is a word of weight 9 whose support is not a block; in the second
event, −

∑4
i=1 vBi is a non-constant vector of weight 9, and it follows that

its support is not a block, since otherwise we would contradict (i). 2

We give below, in Figure 1, a summary of the Magma output that gave
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the number of constant weight-9 words, and the weight enumerator of the
design’s ternary code. The numbering is that of [9, 10], as previously, and
note that the ## 31, 41 and 67 refer to the new designs of these numbers,
as given in the correction of [10]. Notice that the codes for the designs
## 15 and 18 are the only ones with minimum weight 9 apart from the
affine geometry design, # 1. The Magma notation < x, y > indicates that
there are y words of weight x.
Note: 1. In every case the design formed by taking all the constant weight-9
vectors from the code or from its dual was at least a 1-design.

2. The codes with the same weight distribution were not necessarily
equivalent, although in most cases they were. In fact only in (c) and (f)
above did we find, using Magma, inequivalent codes, and the equivalent
sets are shown in these two cases. For each equivalence class, the 1-designs
formed by the supports of the constant weight-9 codewords were isomorphic,
and thus the codes are actually isomorphic. Thus we have the incidence
vectors of the blocks of a copy of each of the designs in the equivalence class
amongst the constant weight-9 words of the code of any of the other designs
in the class. Thus, for example, the code of design #9 has copies of all the
other designs in class (d) to be found amongst its constant weight-9 vectors,
along with the affine geometry design. In fact, using the blocks of the affine
geometry design that we found inside the code of any of these designs, we
were able to build from this to establish the containment relations amongst
the codes of the designs. Essentially every containment that appears to
be possible from the weight distributions, does occurr. Thus, for example,
the code of design #59 (in class (g)) has amongst the supports of its 165
constant weight-9 vectors all the other designs in class (g) and all the designs
in classes (d), (c), (c*), (b) and (a); however design #14 (in class (e))
includes all the designs from (e), (d), (b) and (a), but not those from (c)
nor (c*). This provides a use for the partial “rigidity” property of the affine
geometry design in that its code’s containment inside the codes of the other
designs is used to establish inclusions amongst their codes. We show the
inclusions in Figure 2. In all there are nine inequivalent codes to be found
from the ternary codes of the designs, but only seven weight distributions
and seven complete weight enumerators.

3. The dual code of the ternary code of AG3,2(F3) has 975 constant
weight-9 words, and our computations have thus shown that all but two
(## 15 and 18) of the 68 designs can be found amongst these words.

4. The weight enumerator of both of the dual codes of the ternary codes
of designs ## 15 and 18 is:

[<0,1>, <8,702>, <9,1482>, <11,33696>, <12,44928>, <14, 411480>,

<15,356616>, <17,1388556>, <18,771420>, <20,1166724>, <21,388908>,

<23,185328>, <24,30888>, <26,2160>, <27,80>]
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(a) Design #{1} 3-rank design= 10

weight distribution code=

[ <0, 1>, <9, 78>, <12, 1404>, <15, 14040>,

<18, 27300>, <21, 15444>, <24, 702>,<27, 80> ]

no of constant weight-9’s 39

no of constant weight-9’s of dual code 975

--------------------------------------------------

(b) Designs ##{2,4} 3-rank design= 11

weight distribution code=

[<0, 1>, <6, 18>, <9, 114>, <12, 4806>, <15, 40572>,

<18, 84090>, <21, 44604>, <24, 2826>, <27, 116> ]

no of constant weight-9’s 57

no of constant weight-9’s of dual code 489

--------------------------------------------------

(c) Designs ##{3,5,10-13} and (c*)##{6-8,16}

3-rank design= 12

weight distribution code=

[ <0, 1>, <6, 72>, <9, 222>, <12, 15012>, <15,120168>,

<18, 254460>, <21, 132084>, <24, 9198>, <27, 224> ]

no of constant weight-9’s 111

no of constant weight-9’s of dual code 327

--------------------------------------------------

(d) Designs ## {9,19,20,23,29} 3-rank design= 12

weight distribution code=

[ <0, 1>, <6, 36>, <9, 366>, <12, 14904>, <15,119808>,

<18, 255360>, <21, 131220>, <24, 9594>, <27, 152> ]

no of constant weight-9’s 75

no of constant weight-9’s of dual code 219

--------------------------------------------------

(e) Designs ## {14,25,57,60-62,64,65} 3-rank design= 13

weight distribution code=

[ <0, 1>, <6, 54>, <9, 1266>, <12, 45090>, <15,357156>,

<18, 770070>, <21, 390204>, <24, 30294>, <27, 188> ]

no of constant weight-9’s of code and of dual 93

--------------------------------------------------

(f) Designs #{15} and (f*) #{18} 3-rank design= 13

weight distribution code=

[ <0, 1>, <9, 1482>, <12, 44928>, <15, 356616>,

<18,771420>, <21, 388908>, <24, 30888>, <27, 80> ]

no of constant weight-9’s of code and of dual 39

--------------------------------------------------

(g) Designs ##{17,21,22,24,26-28,30-56,58,59,63,66-68}

3-rank design= 13

weight distribution code=

[ <0, 1>, <6, 126>, <9, 978>, <12, 45306>, <15,357876>,

<18, 768270>, <21, 391932>, <24, 29502>, <27, 332> ]

no of constant weight-9’s of code and of dual 165

Figure 1: Weight distributions of the ternary codes
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Figure 2: Code inclusions

We found that the supports of the words of weight 8, 9, 11 and 12
formed 2-(27,8,28), 2-(27,9,76), 2-(27,11,2640) and 2-(27, 12, 4224) designs
respectively, for each of these dual codes, and that the designs from the
different codes were not isomorphic. We did not check all the other weights
as the number of blocks became too large, but we did note that for weight
24 the structure was not a 2-design. Note that the codes do not satisfy
the conditions of the Assmus-Mattson theorem (see, for example, [1, Theo-
rem 2.11.2]). In the case of the 2-(27,8,28) designs, the size of λ = 28 is the
smallest for a 2-design with this number of points, v = 27, and this block
size, k = 8.

4 The ternary codes of the dual designs

In the hopes of finding another invariant, we constructed the 68 dual designs
and their ternary codes. The designs can now all be distinguished, either
by the size of the automorphism group, or by the lengths of the orbits on
points (as listed in Table 1 of [9, 10]), or by properties of the code, or by
the code of the dual design. The latter properties are either the dimension,
or the weight distribution, or the nature of the designs formed by taking
the supports of words of a fixed weight in the code of the dual design, as
will be explained below.

First of all, we attempt to use the weight distributions of the code of the
dual designs. We list below, in Table 1, tables giving some characteristics of
the ternary code of the dual design of each of the 68 designs that will be the
first step in distinguishing the designs. In fact we observed that only the
numbers of weight-15 and weight-37 vectors need be given to distinguish the
weight distribution, apart from #1 and #6, which are easily distinguished
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anyway. The full weight distributions can be found at the web site with
address as given in the Section 1. The tables below can be used in con-
junction with Table 1 of [9, 10] to distinguish, in most cases, the 2-(27,9,4)
design. Thus for example designs #32 and #33 are distinguished by this
table but not by the order or structure of their automorphism groups, nor
by the ternary codes of the designs. On the other hand, #45, #48 and
#49, for example, are indistinguishable by any of the given invariants so
far: we will show how they can be distinguished from further properties
of these codes below. In the tables, superscripts denote designs with the
same weight distribution. Note again that the numbers 31, 41 and 67 refer
to the new designs of these numbers, as given in the correction of [10]. In
Table 1 the designs are listed horizontally with the number of weight-15
and weight-37 vectors listed in the corresponding column.

D 1 2 3a 4 5 6 7 8a 9 10 11 12
15 0 0 48 12 216 0 36 48 90 108 288 168
37 0 54 48 12 216 0 90 48 216 90 216 132

D 13 14 15 16 17 18 19 20 21b 22c 23 24
15 156 486 624 24 306 624 108 120 396 450 120 372
37 174 486 312 24 576 104 102 174 450 576 72 228

D 25 26b 27 28 29 30 31 32 33 34d 35 36d

15 516 396 468 540 120 468 492 492 468 456 480 456
37 276 450 162 360 40 288 312 216 192 294 318 294

D 37 38c 39 40 41 42e 43 44 45f 46e 47e 48f

15 480 450 408 432 496 556 408 468 544 556 556 544
37 354 576 246 174 218 260 150 192 302 260 260 302

D 49f 50 51g 52g 53 54g 55g 56 57 58 59h 60
15 544 480 676 676 604 676 676 492 494 420 444 532
37 302 258 344 344 344 344 344 186 444 92 116 220

D 61 62 63i 64 65 66h 67 68i

15 532 528 600 572 532 444 348 600
37 342 146 174 152 310 116 108 174

Table 1: Weights in codes of dual designs

The designs ## {34, 36}, {42, 46, 47}, {45, 48, 49} and {51, 52, 54, 55}
are apparently indistinguishable within their groupings from the data that
we currently have, since their codes have the same weight enumerators and
the same complete weight enumerators within the group. To distinguish
these we found the cardinality of the set of supports of fixed-weight vectors
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design weight support weight support
34 19 10671
36 19 10669
42 37 35
46 37 29
47 37 33
45 19 10565
48 19 10562
49 19 10564
51 19 11077
52 19 11073
54 19 11075 37 40
55 19 11075 37 39

Table 2: Weights and supports

(for various chosen weights) from the code of the dual design. It turned out
that weights could be found that would give different cardinalities for these
support sets for the different codes in the grouping. Thus for each of the
four groupings we could find weights that would distinguish the individual
designs. In Table 2, the first column gives the design number, the second
the weight chosen, and the third the cardinality of the set of supports of
vectors of the chosen weight, with the last two columns repeated in case a
single weight does not distinguish all the designs in the set. We record the
weight distributions of these codes in the appendix.

Thus the codes of the 68 dual designs are all inequivalent, although we
were not able to check this directly with Magma as the computations took
too long. These inequivalences can be contrasted with the many equiva-
lences found amongst the codes of the 68 affine 2-designs.

We summarize what we have found in Proposition 3 below.

Proposition 3 The 68 affine resolvable 2-(27, 9, 4) designs can be distin-
guished either by the order of their automorphism group, or by the point
orbits of the group, or by the ternary code of the design or by the ternary
code of the dual design.

The authors thank the Department of Mathematics at the University
of Natal at Pietermaritzburg, and the Department of Mathematical Sci-
ences at Clemson University, respectively, for their hospitality, and also
V. D. Tonchev for valuable comments on a early draft of this paper. The
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5 Appendix

We give here the full weight distributions of the ternary codes of the dual
designs for the designs for which neither the weight distributions, nor the
automorphism groups, are sufficient to distinguish them. As always, the
numbering refers to that in [9, 10].

{34,36}

[ <0, 1>, <6, 4>, <9, 12>, <12, 144>, <13, 78>, <15, 456>, <16, 1320>,

<18, 9300>, <19, 21354>, <21, 49608>, <22, 184848>, <24, 154866>,

<25, 396042>, <27, 216746>, <28, 341232>, <30, 93294>, <31, 109428>,

<33, 6836>, <34, 8286>, <36, 174>, <37, 294> ]

{42,46,47}

[ <0, 1>, <6, 6>, <9, 4>, <12, 142>, <13, 98>, <15, 556>, <16, 1232>, <18,

9556>, <19, 21428>, <21, 47560>, <22, 184646>, <24, 158980>, <25, 397136>,

<27, 212694>, <28, 339356>, <30, 95560>, <31, 110690>, <33, 6076>,

<34, 8036>, <36, 306>, <37, 260> ]

{45,48,49}

[ <0, 1>, <6, 4>, <9, 12>, <12, 124>, <13, 86>, <15, 544>, <16, 1328>,

<18, 9280>, <19, 21146>, <21, 49000>, <22, 185480>, <24, 156526>,

<25, 395162>, <27, 214626>, <28, 341864>, <30, 94786>, <31, 109220>,

<33, 6276>, <34, 8294>, <36, 262>, <37, 302> ]

{51,52,54,55}

[ <0, 1>, <6, 2>, <9, 8>, <12, 106>, <13, 74>, <15, 676>, <16, 1208>,

<18, 8896>, <19, 22160>, <21, 49576>, <22, 183074>, <24,156484>,

<25, 397508>, <27, 213678>, <28, 341132>, <30, 95848>, <31, 109046>,

<33, 5864>, <34, 8336>, <36, 302>, <37, 344> ]
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