Binary codes from *m*-ary *n*-cubes Q_n^m

Jennifer D. Key^{*} Department of Mathematics and Applied Mathematics University of the Western Cape 7535 Bellville, South Africa

Bernardo G. Rodrigues[‡] Department of Mathematics and Applied Mathematics University of Pretoria Hatfield 0028, South Africa

June 18, 2020

Abstract

We examine the binary codes from adjacency matrices of the graph with vertices the nodes of the *m*-ary *n*-cube Q_n^m and with adjacency defined by the Lee metric. For n = 2 and m odd, we obtain the parameters of the code and its dual, and show the codes to be LCD. We also find *s*-PD-sets of size s + 1 for $s < \frac{m-1}{2}$ for the dual codes, i.e. $[m^2, 2m - 1, m]_2$ codes, when n = 2 and $m \ge 5$ is odd.

1 Introduction

The graphs defined by the *m*-ary *n*-cube Q_n^m and with adjacency defined by the Lee metric are defined in various places in the literature, but see [5] for example. They are also known as Lee graphs.

Definition 1 Let $m, n \ge 1$ be positive integers, and $R = \{0, 1, \ldots, m-1\}$ with addition and multiplication as in the ring of integers modulo m, or, if m = q is a prime power, R could be \mathbb{F}_m . The graph $\Gamma = (V, E)$ on Q_n^m , has $V = R^n$, the set of n-tuples with entries in R, with adjacency defined by $x = \langle x_0, x_1, \ldots, x_{n-1} \rangle$ adjacent to $y = \langle y_0, y_1, \ldots, y_{n-1} \rangle$ if there exists an $i, 0 \le i \le n-1$, such that $x_i - y_i \equiv \pm 1 \pmod{m}$ and $x_j = y_j$ for all $j \ne i$. Thus Γ is regular of degree 2n.

We will examine the binary codes from the adjacency matrices of these graphs. Since for m = 2, 3 the graph is the Hamming graph, the codes of which have been extensively studied, we take $m \ge 4$.

^{*}Email:keyj@clemson.edu

[†]Email:rodrigues@ukzn.ac.za

[‡]This work is based on the research supported by the National Research Foundation of South Africa (Grant Numbers 95725 and 106071)

Our best findings are for n = 2 and m odd, and we summarize our main results for these codes in a single theorem:

Theorem 1 Let $\Gamma = Q_2^m = (V, E)$ and $R = \{0, 1, ..., m-1\}$ where $m \ge 5$ is odd, and $C = C_2(\Gamma)$. Then C is LCD, i.e. $C \cap C^{\perp} = \{0\}$, and C is a $[m^2, (m-1)^2, 4]_2$ code, C^{\perp} a $[m^2, 2m-1, m]_2$ code.

The set of points

$$\mathcal{I} = \{ <0, i > | i \in R \} \cup \{ <1, i > | i \in R \setminus \{m-1\} \}$$

is an information set for C^{\perp} , and for $s < \frac{m-1}{2}$, the set of translations $S = \{\tau_{<2i,0>} \mid 0 \le i \le s\}$ is an s-PD-set of minimal size s + 1 for the code C^{\perp} with information set \mathcal{I} . The group $T = \{\tau_X \mid X \in \mathbb{R}^2\}$ of translations is a PD-set for full error correction, where the translations are defined by $\tau_{<a,b>} :< x, y > \mapsto < x + a, y + b >$.

The theorem combines results from Propositions 2 and 3 in Section 3 and Section 4, respectively. Since the binary code for Q_2^m has minimum weight 4 for all m, the better codes are the duals, with minimum weight m, and these are the codes we use for decoding.

The paper is organized as follows: Section 2 concerns the background definitions, terminology, and earlier results needed in our propositions, and includes background subsections on the graphs Q_n^m , on *LCD* codes, and on permutation decoding. Section 3 concerns the codes $C_2(Q_n^m)$ and has our main results for n = 2 and m odd. Section 4 has our results on permutation decoding of $C_2(Q_2^m)^{\perp}$ for m odd. In Section 5 some computational results for other values of n and m are given.

2 Background concepts and terminology

The notation for codes and codes from graphs is as in [1]. For an incidence structure $\mathcal{D} = (\mathcal{P}, \mathcal{B}, \mathcal{J})$, with point set \mathcal{P} , block set \mathcal{B} and incidence \mathcal{J} , the **code** $C_F(\mathcal{D}) = C_q(\mathcal{D})$ of \mathcal{D} over the finite field $F = \mathbb{F}_q$ is the space spanned by the incidence vectors of the blocks over F. If \mathcal{Q} is any subset of \mathcal{P} , then we will denote the **incidence vector** of \mathcal{Q} by $v^{\mathcal{Q}}$, and if $\mathcal{Q} = \{x\}$ where $x \in \mathcal{P}$, then we will write v^x . For any $w \in F^{\mathcal{P}}$ and $P \in \mathcal{P}, w(P)$ denotes the value of w at P.

The codes here are **linear codes**, and the notation $[n, k, d]_q$ will be used for a q-ary code C of length n, dimension k, and minimum weight d, where the **weight wt**(v) of a vector v is the number of non-zero coordinate entries. Vectors in a code are also called **words**. For two vectors u, v the **distance d**(u, v) between them is wt(u - v). The **support**, Supp(v), of a vector v is the set of coordinate positions where the entry in v is non-zero. So |Supp(v)| = wt(v). A **generator matrix** for C is a $k \times n$ matrix made up of a basis for C, and the **dual** code C^{\perp} is the orthogonal under the standard inner product (,), i.e. $C^{\perp} = \{v \in F^n \mid (v, c) = 0 \text{ for all } c \in C\}$. The **hull**, Hull(C), of a code C is the self-orthogonal code Hull(C) = $C \cap C^{\perp}$. A **check matrix** for C is a generator matrix for C^{\perp} . The **all-one vector** will be denoted by \boldsymbol{j} , and is the vector with all entries equal to 1. If we need to specify the length \mathbf{m} of the all-one vector, we write $\boldsymbol{j}_{\mathbf{m}}$. A **constant vector** is a non-zero vector in which all the non-zero entries are the same. We call two linear codes **isomorphic** (or permutation isomorphic) if they can be obtained from one another by permuting the coordinate positions. An **automorphism** of a code C is an isomorphism from C to C. The automorphism group will be denoted by Aut(C), also called the permutation group of C, and denoted by PAut(C) in [11].

The **graphs**, $\Gamma = (V, E)$ with vertex set V and edge set E, discussed here are undirected with no loops, apart from the case where **all** loops are included, in which case the graph is called the **reflexive** associate of Γ , denoted by $R\Gamma$. If $x, y \in V$ and x and y are adjacent, we write $x \sim y$, and xy for the **edge** in E that they define. The **set of neighbours** of $x \in V$ is denoted by N(x), and the **valency of** x is |N(x)|. Γ is **regular** if all the vertices have the same valency.

An **adjacency** matrix $A = [a_{x,y}]$ for Γ is a $|V| \times |V|$ matrix with rows and columns labelled by the vertices $x, y \in V$, and with $a_{x,y} = 1$ if $x \sim y$ in Γ , and $a_{x,y} = 0$ otherwise. Then RA = A + Iis an adjacency matrix for $R\Gamma$. The row corresponding to $x \in V$ in A will be denoted by r_x , that in RA by s_x . In the following, we may simply identify r_x and s_x with the support of the row, so $r_x = \{y \mid x \sim y\}$ and $s_x = \{x\} \cup \{y \mid x \sim y\}$.

The **code** over a field F of Γ will be the row span of an adjacency matrix A for Γ , and written as $C_F(A)$, $C_F(\Gamma)$, or $C_p(A)$, $C_p(\Gamma)$, respectively, if $F = \mathbb{F}_p$.

2.1 The graphs Q_n^m

The graphs are defined in Definition 1. For any $x \in \mathbb{R}^n$, x_i will denote the i^{th} coordinate of x, for $0 \le i \le n-1$.

For $a \in \mathbb{R}^n$, $a = \langle a_0, a_1, \ldots, a_{n-1} \rangle$, the translation τ_a is the map defined on $x = \langle x_0, x_1, \ldots, x_{n-1} \rangle$ by

$$\tau_a: x \mapsto < x_0 + a_0, x_1 + a_1, \dots, x_{n-1} + a_{n-1} > .$$

If $\sigma_i \in S_n$ for $0 \le i \le n-1$, then the map σ is defined by

$$\sigma^{-1}: x \mapsto \langle x_0 \sigma_0, x_1 \sigma_1, \dots, x_{n-1} \sigma_{n-1} \rangle$$

where the symmetric group S_n is acting on the *n* symbols $0, 1, \ldots, n-1$.

For any *i* such that $0 \le i \le n-1$, the map μ_i is defined by

 $\mu_i : x = < x_0, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_{n-1} > \mapsto < x_0, \dots, x_{i-1}, -x_i, x_{i+1}, \dots, x_{n-1} >,$

where $-x_i = m - x_i$.

It is easy to verify that the translations τ_a for $a \in \mathbb{R}^n$ and the permutations σ , for all σ_i , and μ_i for all i, are automorphisms of Γ , and that $\operatorname{Aut}(\Gamma)$ is both vertex and edge transitive.

 Q_n^m is the cartesian product $(Q_1^m)^{\Box,n}$ of n copies of Q_1^m . If $A_{n,m}$ denotes the adjacency matrix for Q_n^m where the elements of R are labelled naturally, and the *n*-tuples likewise, we have $A_{2,m} = A_{1,m} \otimes I_m + I_m \otimes A_{1,m}$ (Kronecker product) and $A_{n,m} = A_{1,m} \otimes I_{m^{n-1}} + I_m \otimes A_{n-1,m}$. Since the matrix $A_{1,m}$ will be $m \times m$ of the form

$$A_{1,m} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}$$

2 BACKGROUND CONCEPTS AND TERMINOLOGY

the matrix for $A_{n,m}$ has the form

$$A_{n,m} = \begin{bmatrix} A_{n-1,m} & I & 0 & 0 & \cdots & 0 & I \\ I & A_{n-1,m} & I & 0 & \cdots & 0 & 0 \\ 0 & I & A_{n-1,m} & I & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & I & A_{n-1,m} \end{bmatrix},$$
(1)

where I is the $m^{n-1} \times m^{n-1}$ identity matrix.

From the form of $A_{1,m}$, one sees that for Q_1^m ,

$$\operatorname{rank}_2(A_{1,m}) = \begin{cases} m-2 & \text{if } m \text{ is even} \\ m-1 & \text{if } m \text{ is odd} \end{cases}$$

and

$$\operatorname{rank}_2(A_{1,m} + I) = \begin{cases} m-2 & \text{if } m \equiv 0 \pmod{3} \\ m & \text{if } m \not\equiv 0 \pmod{3} \end{cases}$$

Note that $A_{1,m} + I$ is a circulant $m \times m$ matrix generated by (1, 1, 1, 0, ..., 0). If m is divisible by 3, one sees that the 2-rank is m - 2. Otherwise it is m: see, for example, [17].

For m odd, $C_2(Q_1^m)$ clearly has zero hull.

2.2 *LCD* codes

The background on LCD codes from [21] is described below.

Definition 2 A linear code C over any field is a linear code with complementary dual (LCD) code if $\operatorname{Hull}(C) = C \cap C^{\perp} = \{0\}.$

If C is an LCD code of length n over a field F, then $F^n = C \oplus C^{\perp}$. Thus the **orthogonal projector map** Π_C from F^n to C can be defined as follows: for $v \in F^n$,

$$v\Pi_C = \begin{cases} v & \text{if } v \in C, \\ 0 & \text{if } v \in C^{\perp} \end{cases},$$
(2)

and Π_C is defined to be linear.¹ This map is only defined if C (and hence also C^{\perp}) is an LCD code. Similarly then $\Pi_{C^{\perp}}$ is defined.

Note that for all $v \in F^n$,

$$v = v\Pi_C + v\Pi_{C^\perp}.\tag{3}$$

We will use [21, Proposition 4]:

Result 1 (Massey) Let C be an LCD code of length n over the field F and let φ be a map $\varphi : C^{\perp} \mapsto C$ such that $u \in C^{\perp}$ maps to one of the closest codewords v to it in C. Then the map $\tilde{\varphi} : F^n \mapsto C$ such that

$$\tilde{\varphi}(r) = r\Pi_C + \varphi(r\Pi_{C^{\perp}})$$

maps each $r \in F^n$ to one of it closest neighbours in C.²

¹Note typographical error on p.338, l.-11, in [21]

²Note typographical error on p.341, l.-7, in [21]

We make the following observation which will be of use in the next section:

Lemma 1 If C is a q-ary code of length n such that $C + C^{\perp} = \mathbb{F}_q^n$ then C is LCD.

Proof: Since $(C + C^{\perp})^{\perp} = C^{\perp} \cap C = (\mathbb{F}_q^n)^{\perp} = \{0\} = \operatorname{Hull}(C), C \text{ (and } C^{\perp}) \text{ are } LCD. \blacksquare$

From [15, 16]:

Definition 3 Let $\Gamma = (V, E)$ be a graph with adjacency matrix A. Let p be any prime, $C = C_p(A)$, $RC = C_p(RA)$ (for the reflexive graph), where RA = A + I. Then If $C = RC^{\perp}$ we call C a reflexive LCD code, and write RLCD for such a code

We will also use the following from [21, Proposition 1]:

Result 2 (Massey) If G is a generator matrix for the (n, k) linear code C over the field F, then C is LCD if and only if the $k \times k$ matrix GG^T is nonsingular. Moreover, if C is LCD then $\Pi_C = G^T (GG^T)^{-1} G$ is the orthogonal projector from F^n onto C.

2.3 Permutation decoding

Permutation decoding was first developed by MacWilliams [19] and involves finding a set of automorphisms of a code called a PD-set. The method is described fully in MacWilliams and Sloane [20, Chapter 16, p. 513] and Huffman [11, Section 8]. In [12] and [18] the definition of PD-sets was extended to that of *s*-PD-sets for *s*-error-correction:

Definition 4 If C is a t-error-correcting code with information set \mathcal{I} and check set C, then a **PD-set** for C is a set S of automorphisms of C which is such that every t-set of coordinate positions is moved by at least one member of S into the check positions C.

For $s \leq t$ an s-PD-set is a set S of automorphisms of C which is such that every s-set of coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding is as follows: we have a *t*-error-correcting $[n, k, d]_q$ code *C* with check matrix *H* in standard form. Thus the generator matrix $G = [I_k|A]$ and $H = [-A^T|I_{n-k}]$, for some *A*, and the first *k* coordinate positions correspond to the information symbols. Any vector *v* of length *k* is encoded as *vG*. Suppose *x* is sent and *y* is received and at most *t* errors occur. Let $S = \{g_1, \ldots, g_s\}$ be the PD-set. Compute the syndromes $H(yg_i)^T$ for $i = 1, \ldots, s$ until an *i* is found such that the weight of this vector is *t* or less. Compute the codeword *c* that has the same information symbols as yg_i and decode *y* as cg_i^{-1} .

Notice that this algorithm actually uses the PD-set as a sequence. Thus it is expedient to index the elements of the set S by the set $\{1, 2, \ldots, |S|\}$ so that elements that will correct a small number of errors occur first. Thus if **nested** *s*-**PD-sets** are found for all $1 < s \leq t$ then we can order S as follows: find an *s*-PD-set S_s for each $0 \leq s \leq t$ such that $S_0 \subset S_1 \ldots \subset S_t$ and arrange the PD-set S as a sequence in this order:

$$S = [S_0, (S_1 - S_0), (S_2 - S_1), \dots, (S_t - S_{t-1})].$$

(Usually one takes $S_0 = \{id\}$.)

There is a bound on the minimum size that a PD-set S may have, due to Gordon [10], from a formula due to Schönheim [22], and quoted and proved in [11]:

Result 3 If S is a PD-set for a t-error-correcting $[n, k, d]_q$ code C, and r = n - k, then

$$|S| \ge \left\lceil \frac{n}{r} \left\lceil \frac{n-1}{r-1} \left\lceil \dots \left\lceil \frac{n-t+1}{r-t+1} \right\rceil \dots \right\rceil \right\rceil \right\rceil = G(t).$$
(4)

This result can be adapted to s-PD-sets for $s \leq t$ by replacing t by s in the formula and G(s) for G(t).

We note the following result from [14, Lemma 1]:

Result 4 If C is a t-error-correcting $[n, k, d]_q$ code, $1 \le s \le t$, and S is an s-PD-set of size G(s) then $G(s) \ge s + 1$. If G(s) = s + 1 then $s \le \lfloor \frac{n}{k} \rfloor - 1$.

In [13, Lemma 7] the following was proved:

Result 5 Let C be a linear code with minimum weight d, \mathcal{I} an information set, \mathcal{C} the corresponding check set and $\mathcal{P} = \mathcal{I} \cup \mathcal{C}$. Let G be an automorphism group of C, and n the maximum value of $|\mathcal{O} \cap \mathcal{I}|/|\mathcal{O}|$, over the G-orbits \mathcal{O} . If $s = \min(\lceil \frac{1}{n} \rceil - 1, \lfloor \frac{d-1}{2} \rfloor)$, then G is an s-PD-set for C.

This result holds for any information set. If the group G is transitive then $|\mathcal{O}|$ is the degree of the group and $|\mathcal{O} \cap \mathcal{I}|$ is the dimension of the code.

A simple argument yields that the worst-case time complexity for the decoding algorithm using an s-PD-set of size z on a code of length n and dimension k is $\mathcal{O}(nkz)$.

3 The codes $C_2(Q_n^m)$

We first note, referring to Definition 3:

Lemma 2 The codes $C_2(Q_n^m)$ are not RLCD for any $n, m \ge 4$.

Proof: Denoting the row of A for the vertex x as r_x and that of A + I for x as s_x it is easy to see that $s_{<0,...,0>} \cap r_{<1,0,...,0>} = \{<0,...,0>\}$ and thus the inner product is not 0 modulo 2, so $C_2(Q_n^m)$ is not *RLCD*.

Proposition 1 Let $\Gamma = Q_2^m = (V, E)$ and $R = \{0, 1, \dots, m-1\}$ where $m \ge 4$, and $C = C_2(\Gamma)$. Then if $\Lambda = \{\langle i, i \rangle | i \in R\}$, it follows that the word $v^{\Lambda} \in C^{\perp}$.

Furthermore, there are 2m distinct words of weight m obtained from v^{Λ} by applying the automorphisms $\tau_{(1,0)}$ repeatedly and μ_0 to each of these.

If m is odd then the 2m words span a subspace D of C^{\perp} of dimension 2m - 1. Furthermore, Hull(D) = {0}. If $m \ge 4$ is even, the 2m words span a self-orthogonal subspace D of C^{\perp} of dimension 2m - 2.

Proof: For $\langle x, y \rangle \in V$, $N(\langle x, y \rangle) = \{\langle x, y+1 \rangle, \langle x, y-1 \rangle, \langle x+1, y \rangle, \langle x-1, y \rangle\}$. We need to show that Λ meet every $N(\langle x, y \rangle)$ evenly. Suppose $\langle a, a \rangle \in N(\langle x, y \rangle)$. Then a = x or a = y so without loss of generality we assume a = x, and $\langle a, a \rangle = \langle x, y+1 \rangle$. Thus a = y + 1, i.e. y = a - 1, and so $\langle x - 1, y \rangle = \langle a - 1, a - 1 \rangle \in \Lambda \cap N(\langle x, y \rangle)$. Since $\langle a, a \rangle \neq \langle a - 1, a - 1 \rangle$, Λ meets $N(\langle x, y \rangle)$ evenly.

Applying $\tau_{(1,0)}$ to Λ gives m distinct words (including v^{Λ}), and applying μ_0 to each of these gives a further m distinct words. We label these words as u_i and v_i , for $i \in R$, where u_i has support

3 THE CODES $C_2(Q_N^M)$

 $\Lambda^{\tau_{(i,0)}}$ and v_i has support $\Lambda^{\tau_{(i,0)}\mu_0}$, for $i \in R$, respectively. Thus $\operatorname{Supp}(u_i) = \{ \langle i+j, j \rangle | j \in R \}$ and $\operatorname{Supp}(v_i) = \{ \langle -i-j, j \rangle | j \in R \}$, where we are working modulo m.

To show that the set $\{u_i, v_i \mid i \in R\}$ spans a space of dimension 2m-1 for m odd, and 2m-2 for m even, we note first that every vertex (a, b), where $a, b \in R$, occurs in the support of exactly two of these weight-m words, $viz., u_{a-b}, v_{-a-b}$. This follows since $(a, b) = (b, b)\tau_{(a-b,0)} = (b, b)\tau_{(-a-b,0)}\mu_0$. Thus clearly if we add all the 2m words we get the zero vector, and so the dimension is at most 2m-1.

Suppose $w = \sum_{i=0}^{m-1} \alpha_i u_i + \sum_{i=0}^{m-1} \beta_i v_i = 0$. Then $w(\langle a, b \rangle) = 0 = \alpha_{a-b} + \beta_{-a-b}$, for all a, b, and taking a = 0 this shows that $\alpha_i = \beta_i$ for all i. So $\alpha_{a-b} = \alpha_{-a-b}$ for all a, b, i.e. $\alpha_c = \alpha_{-c-2b}$ for all c, b. For m odd we deduce that $\alpha_i = \alpha$, a constant, and thus the only relation we get for m odd is the sum of all the words being zero, and thus any 2m - 1 are linearly independent. For m even, we divide the u_i and v_j into two sets each for i and j both even or both odd. Note that a - b and -a - b are both even or both odd, so that if we form the sum $w = \sum_{i \text{ even}} (u_i + v_i)$ we have w = 0, and similarly for i odd, giving dimension 2m - 2 in the case where m is even.

For the final statements, take first m odd. For $w \in D$, we have $w = \sum_{i=0}^{m-1} \alpha_i u_i + \sum_{i=0}^{m-1} \beta_i v_i$. If $w \in D^{\perp}$, then $(w, u_j) = (w, v_j) = 0$ for all $j \in R$. Thus

$$(w, u_j) = \sum_{i=0}^{m-1} \alpha_i(u_i, u_j) + \sum_{i=0}^{m-1} \beta_i(v_i, u_j) = m\alpha_j + \sum_{i=0}^{m-1} \beta_i = 0,$$

and so $\alpha_j = \alpha = \sum_{i=0}^{m-1} \beta_i$ for $j \in R$, i.e. a constant. Similarly, $(w, v_j) = m\beta_j + \sum_{i=0}^{m-1} \alpha_i = 0$, so $\beta_j = \alpha$ for all $j \in R$, and $w = \alpha \sum_{i \in R} (w_i + v_i) = 0$ as was shown above.

For *m* even, we show that $(u_i, u_j) = (u_i, v_j) = (v_j, v_j) = 0$ for all i, j. Note first that it is clear that $(u_i, u_j) = (v_j, v_j) = 0$ since the *m* words u_i (respectively v_j) do not intersect, so we need only consider (u_i, v_j) . Here it is not difficult to see that $\langle x, y \rangle \in u_i \cap v_j$ implies that $\langle x - \frac{m}{2}, y - \frac{m}{2} \rangle \in u_i \cap v_j$, and since the points are distinct, the inner product is zero, as we require.

Corollary 2 For *m* odd dim $(C_2(Q_2^m)) \le (m-1)^2$, and for *m* even dim $(C_2(Q_2^m)) \le (m-1)^2 + 1$.

Proof: Follows from the lemma. \blacksquare

Lemma 3 If $m \ge 4$ is even and D, u_i, v_i are as in Proposition 1, $\Gamma = Q_2^m$, then

1. If $S = \{ <0, 0 >, <\frac{m}{2}, \frac{m}{2} > \}$, then $v^S \in D^{\perp}$; 2. $u_0 + u_2 = \sum_{i=0}^{\frac{m}{2}-1} r_{<2i+1,2i>}$ and $\dim(C \cap D) \ge 2m - 4$.

Proof: (1) < 0, 0 > $\in u_0, v_0$ and $< \frac{m}{2}, \frac{m}{2} > \in u_0, v_0$, and neither point is any other of the u_i, v_j , so $(v^S, u_i) = (v^S, v_j) = 0$ for all i, j.

(2) Using the fact that $r_{\langle 2i+1,2i\rangle} = v^T$ where

$$T = \{ \langle 2i + 1, 2i + 1 \rangle, \langle 2i + 1, 2i - 1 \rangle, \langle 2i, 2i \rangle, \langle 2i + 2, 2i \rangle \},\$$

it is easy to verify the given identity.

Applying the translations to this gives $u_i + u_j, v_i + v_j \in C$ for both i, j even or both odd, and hence gives $C \cap D$ of index at most 2 in D.

Note: According to Magma[3, 4], if 4 | m then $D \subset C$ and for m = 8 we have

$$u_7 = r_{<3,1>} + r_{<5,3>} + r_{<5,7>} + r_{<7,1>} + r_{<6,2>} + r_{<2,2>} + r_{<4,4>} + r_{<4,0>}.$$

Lemma 4 Let $\Gamma = Q_2^m$ and $R = \{0, 1, \ldots, m-1\}$ where $m \ge 4$, and $C = C_2(\Gamma)$. For m odd, the minimum weight of C is 4. For $m \ge 4$ even, the code $D^{\perp} \supset C$, where D is as in Proposition 1, has words of weight 2, but if $m = 2m_1$ where $m_1 \ge 3$ is odd, then C has minimum weight 4.

Proof: Clearly the rows of an adjacency matrix have weight 4, and C is an even weight code, so there are no words of weight 3. Suppose it has a word w of weight 2. Without loss of generality, we can assume w has support $\{<0,0>,< i,j>\}$. Since $(w,v^{\Lambda}) = 0$, where Λ is as in Proposition 1, we must have $i = j \neq 0$. Since $\mu_1 \in \operatorname{Aut}(\Gamma)$, w^{μ_1} with support $\{<0,0>,< -i,i>\}$ is also in C. But $i \neq -i$ for $i \neq 0$ in R for m odd. Thus C cannot have weight-2 vectors.

If $m \ge 4$ is even, then the word with support $\{<0,0>,<\frac{m}{2},\frac{m}{2}>\}$ is in D^{\perp} and so the argument for words from D does not rule out words of weight 2 in C. From Result 6, we can form words in C^{\perp} using words in $C_2(Q_1^m)^{\perp}$. It is easy to see that words with support $s_1 = \{0, 2, \ldots m - 2\}$ and $s_2 = \{1, 3, \ldots, m - 1\}$ are in $C_2(Q_1^m)^{\perp}$. Thus from Result 6 the word with support $\{< x, y > | x, y \in s_1\}$ of weight $(\frac{m}{2})^2$ will be in $C_2(Q_2^m)^{\perp}$. If $\frac{m}{2}$ is odd this word will meet the weight-2 with support $\{<0,0>,<\frac{m}{2},\frac{m}{2}>\}$ only once, so we can deduce that $C_2(Q_2^m)$ has minimum weight 4 when $m \equiv 2 \pmod{4}$.

Note that the above argument does not give a contradiction for $m \equiv 0 \pmod{4}$ so one must find other words in C^{\perp} that cannot be orthogonal to weight-2 words in such cases, and in particular to the word with support $\{<0, 0>, <\frac{m}{2}, \frac{m}{2}>\}$.

In [7] the following result is proved:

Result 6 Let $\Gamma^{\square} = \Gamma_1 \square \Gamma_2$, where $\Gamma_i = (V_i, E_i)$ for i = 1, 2. Let $w_i \in C_2(\Gamma_i)^{\perp}$ be of weight d_i , with $S_1 = \operatorname{Supp}(w_1) = \{a_1, \ldots, a_{d_1}\}, S_2 = \operatorname{Supp}(w_2) = \{b_1, \ldots, b_{d_2}\}$, where $a_i \in V_1, b_j \in V_2$. Then the word with weight d_1d_2 and support

$$S = \{ \langle a_i, b_j \rangle | i = 1, \dots d_1, j = 1, \dots d_2 \},\$$

is in $C_2(\Gamma^{\Box})^{\perp}$.

From Proposition 1 and Result 6 we may deduce the following:

Lemma 5 Let $\Gamma = Q_n^m = (Q_1^m)^{\Box,n}$, and $C = C_2(\Gamma)$. Then

- 1. if $m \ge 5$ is odd, then for $n \ge 2$, C^{\perp} has words of weight m^{n-1} ;
- 2. if $m \ge 4$ is even, then for $n \ge 2$, C^{\perp} has words of weight $\frac{m^{n-1}}{2^{n-2}}$.

Proof: If *m* is odd then $C_2(Q_1^m)^{\perp} = \langle \boldsymbol{j} \rangle$ with minimum weight *m*. By Proposition 1, $C_2(Q_2^m)^{\perp}$ has a word of weight *m*. Since $Q_3^m = Q_2^m \Box Q_1^m$, by Result 6, $C_2(Q_3^m)^{\perp}$ has words of weight m^2 . By induction then $C_2(Q_n^m)^{\perp}$ has words of weight m^{n-1} .

If m is even, then $C_2(Q_1^m)^{\perp}$ has dimension 2, and contains vectors of weight $\frac{m}{2}$. The same argument as for the odd case, but using $\frac{m}{2}$ instead of m, shows that $C_2(Q_n^m)^{\perp}$ has words of weight $\frac{m^{n-1}}{2^{n-2}}$.

Lemma 6 For $4 \leq m$, the minimum weight of $C_2(Q_2^m)^{\perp}$ is m.

Proof: Let $w \in C_2(Q_2^m)^{\perp}$ have support *S* and |S| = s. We can suppose $< 0, 0 > \in S$. Every row r_x of $A_{2,m}$ that contains < 0, 0 > must meet *S* again. Now $r_{<0,0>} = \{<1, 0>, <-1, 0>, <0, 1>, <0, -1>\}$, and

$$\begin{array}{rcl} r_{<1,0>} &=& \{<0,0>,<2,0>,<1,1>,<1,-1>\}\\ r_{<-1,0>} &=& \{<0,0>,<-2,0>,<-1,1>,<-1,-1>\}\\ r_{<0,1>} &=& \{<0,0>,<0,2>,<1,1>,<-1,1>\}\\ r_{<0,-1>} &=& \{<0,0>,<0,-2>,<1,-1>,<-1,-1>\}.\end{array}$$

Taking S as small as it can be, all these blocks will meet S again if we include the two points < 1, 1 >, < -1, -1 >. Since all blocks containing < 1, 1 > must meet S again, we consider $r_{<1,1>} = \{<1, 0>, <1, 2>, <0, 1>, <2, 1>\}$. Then

$$r_{<1,2>} = \{<1,1>,<1,3>,<0,2>,<2,2>\}, r_{<2,1>} = \{<1,1>,<3,1>,<2,0>,<2,2>\}.$$

Thus a further point $\langle 2, 2 \rangle$ must be included, so that S contains the set $\{\langle 0, 0 \rangle, \langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle -1, -1 \rangle\}$. If m = 4 this is the set Λ of Proposition 1, so 4 is the minimum weight for m = 4. Otherwise we need to make sure that all the blocks through $\langle -1, -1 \rangle$ meet S again. Now $r_{\langle -1, -1 \rangle} = \{\langle -1, 0 \rangle, \langle -1, -2 \rangle, \langle 0, -1 \rangle, \langle -2, -1 \rangle\}$, and

$$r_{<-1,-2>} = \{<-1, -1>, <-1, -3>, <0, -2>, <-2, -2>\},$$
 and

 $r_{<-2,-1>} = \{<-1, -1>, <-3, -1>, <-2, 0>, <-2, -2>\}$. Thus including <-2, -2> will ensure that all blocks through <-1, -1> meet S again. For m = 4, <-2, -2> = < 2, 2> but for m > 4 this is a new point. Thus the set S contains at least the five points $T = \{<0, 0>, <1, 1>, <2, 2>, <-2, -2>, <-1, -1>\}$. For m = 5 this is precisely the set Λ of Proposition 1.

We now proceed in this way by induction on m, knowing it is true for $m \leq 5$. Suppose we have $S = \{<0, 0>, <1, 1>, <-1, -1>, \ldots, < k, k>, <-k, -k>\}, m \geq 2k+1$. For the blocks through < k, k > we have $r_{< k, k>} = \{< k+1, k>, < k-1, k>, < k, k+1>, < k, k-1>\}$. The two blocks to look at are

$$\begin{array}{ll} r_{< k+1, k>} &= \{ < k, k>, < k+2, k>, < k+1, k+1>, < k+1, k-1> \} \\ r_{< k, k+1>} &= \{ < k, k>, < k, k+2>, < k+1, k+1>, < k-1, k+1> \}. \end{array}$$

The point $\langle k + 1, k + 1 \rangle \in S$ only if m = 2k + 1 and thus k + 1 = -k, in which case the set S would have m elements already, which we know is possible from Λ of Proposition 1. So supposing this is a new point and $m \ge 2k + 2$, we still need to make sure blocks through $\langle -k, -k \rangle$ meet again. Now $r_{\langle -k, -k \rangle} = \{\langle -k + 1, -k \rangle, \langle -k - 1, -k \rangle, \langle -k, -k + 1 \rangle, \langle -k, -k - 1 \rangle\}$. The two blocks to look at are

$$\begin{array}{lll} r_{<-k-1,-k>} &=& \{<-k,-k>,<-k-2,-k>,<-k-1,-k-1>,<-k-1,-k+1>\}\\ r_{<-k,-k-1>} &=& \{<-k,-k>,<-k,-k-2>,<-k-1,-k-1>,<-k+1,-k-1>\}. \end{array}$$

Thus including $\langle -k-1, -k-1 \rangle$ will show that for m = 2(k+1)+1 the word must have weight at least m. This completes the proof of the assertion, by induction.

Note: In [9, Proposition 8.2.17] or [6] it was shown that $C_2(Q_n^8)$ is a $[8^n, 8^{n-1}6, 2n]_2$ code that contains its dual.

For the next proposition we introduce a new notation for n = 2 to clarify the proof. For any $\langle x, y \rangle \in V$, we write for its neighbours,

$$(x,y) = N(\langle x,y \rangle) = \{\langle x,y \pm 1 \rangle, \langle x \pm 1,y \rangle\} \equiv r_{\langle x,y \rangle}.$$
(5)

We sometimes refer to the (x, y) as blocks, considering the neighbourhood design of the graph. The row $r_{\langle x,y\rangle}$ would then be considered as the incidence vector of the block.

Proposition 2 For $m \ge 5$ odd, $C_2(Q_2^m)$ is LCD. Furthermore, $C_2(Q_2^m)$ is a $[m^2, (m-1)^2, 4]_2$ code and $C_2(Q_2^m)^{\perp}$ is a $[m^2, 2m - 1, m]_2$ code.

Proof: We show that $w = v^{\langle 0,0 \rangle} + u_0 + \sum_{i=1}^{m-1} v_i \in C_2(Q_2^m)$, using the notation of the Proposition 1. Writing $C = C_2(Q_2^m)$, this will show that $F^{R^2} = C \oplus D$, where the code D is as in Proposition 1, and since $\dim(D) = 2m - 1$, it implies that $\dim(C) = m^2 - 2m + 1 = (m - 1)^2$. So $C^{\perp} = D$ and C is LCD.

It is easy to verify that if $S_m = \text{Supp}(w)$, then

$$S_m = \{ < -a + b, a > \mid a \in R, b \in R, b \neq 0 \} \setminus \{ < a, a > \mid a \in R \}.$$

Note that $\langle a, b \rangle \in S_m$ if and only if $\langle b, a \rangle \in S_m$, and $\langle -a, a \rangle \notin S_m$ for any $a \in R$. It follows that $|S_m| = \operatorname{wt}(w) = (m-1)^2$.

To show that $w \in C_2(Q_2^m)$ we find a set of rows of the adjacency matrix A that sum up to w. The set taken will differ for $m \equiv 1 \pmod{4}$ and $m \equiv 3 \pmod{4}$. Thus, for $m \equiv 1 \pmod{4}$ let

$$\mathcal{B}_m = \{ (2i, 2i+2+4r), (2i+3+4r) \mid i, r \ge 0, 2i+3+4r \le \frac{m-1}{2} \},$$
(6)

and for $m \equiv 3 \pmod{4}$ let

$$\mathcal{B}_m = \{(2i, 2i), (2i, 2i+3+4r), (2i+4+4r) \mid i, r \ge 0, 2i+4+4r \le \frac{m-1}{2}\}.$$
(7)

Then in either case we define our full set of rows by

$$\mathcal{B}_m^* = \mathcal{B}_m \cup \{ (\pm x, \mp y), (y, x) \mid (x, y) \in \mathcal{B}_m \}.$$

We will show that $w = \sum_{(x,y)\in \mathcal{B}_m^*} r_{\langle x,y \rangle}$. Thus the members of \mathcal{B}_m produce one, four or eight blocks in \mathcal{B}_m^* : (0,0) gives just the one block, (a, a) for $a \neq 0$ gives four, viz. (a, a), (-a, a), (a, -a), (-a, -a). Likewise (0, a) for $a \neq 0$ gives four, while for $a \neq b$, and neither 0, (a, b) gives eight:

$$(a, b), (-a, b), (a, -b), (-a, -b), (b, a), (b, -a), (-b, a), (-b, -a).$$

Below we will show that $|\mathcal{B}_m^*| = (\frac{m-1}{2})^2$.

For example, Table 1 shows the blocks (a, b) in \mathcal{B}_m for $5 \leq m \leq 19$ odd. The parentheses have been omitted to save space.

The cases $m \equiv 1 \pmod{4}$ and $m \equiv 3 \pmod{4}$ need to be taken separately, and in fact each case breaks down again into two cases depending on m modulo 8.

To show that $|\mathcal{B}_m^*| = (\frac{m-1}{2})^2$ it is simplest to exhibit the elements of \mathcal{B}_m in an array of rows $\mathcal{B}_m(i)$ where for $m \equiv 1 \pmod{4}$

$$\mathcal{B}_m(i) = \{(2i, 2i+2+4r), (2i+3+4r) \mid r \ge 0, 2i+3+4r \le \frac{m-1}{2}\},\$$

m															
5	0, 2														
7	0,0	0,3	2, 2												
9	0, 2	0,3	2, 4												
11	0, 0	0,3	0, 4	2, 2	2, 5	4, 4									
13	0, 2	0,3	0, 6	2, 4	2, 5	4, 6									
15	0, 0	0,3	0, 4	0,7	2, 2	2, 5	2, 6	4, 4	4,7	6, 6					
17	0, 2	0, 3	0, 6	0, 7	2, 4	2, 5	2, 8	4,6	4, 7	6, 8					
19	0, 0	0,3	0, 4	0, 7	0,8	2, 2	2, 5	2, 6	2,9	4,4	4,7	4,8	6,6	6,9	8,8

Table 1: Blocks in B_m

and for $m \equiv 3 \pmod{4}$

$$\mathcal{B}_m(i) = \{(2i, 2i), (2i, 2i+3+4r), (2i+4+4r) \mid r \ge 0, 2i+4+4r \le \frac{m-1}{2}\},\$$

for $i \geq 0$. We need first to determine how many of these rows there are and this depends on m modulo 8. Recall that for $(a, b) \in \mathcal{B}_m$, $a, b \leq \frac{m-1}{2}$.

Case (1): $m \equiv 1 \pmod{4}$

Thus here m = 1 + 4k and $\frac{m-1}{2}$ is even, and $m \equiv 1, 5 \pmod{8}$. Recall that

$$\mathcal{B}_m = \{(2i, 2i+2+4r), (2i+3+4r) \mid i, r \ge 0, 2i+3+4r \le \frac{m-1}{2}\}.$$

Subcase 1(a) $m \equiv 1 \pmod{8}$.

Here m = 1 + 8l and $\frac{m-1}{2} = 4l$. To find the last row, i.e. the highest value of i, we cannot have $2i = \frac{m-1}{2}$ since then $2i + 2 + 4r > \frac{m-1}{2}$. If $2i = \frac{m-1}{2} - 2 = \frac{m-5}{2}$ then $2i + 2 + 4r = \frac{m-1}{2}$ for r = 0, and we have $\mathcal{B}_m(\frac{m-5}{4}) = \{(\frac{m-5}{2}, \frac{m-1}{2})\}$, i.e. just the one term. The number of rows in the array is thus $\frac{m-5}{4} + 1 = \frac{m-1}{4}$.

For the row $\mathcal{B}_m(0)$, the final term will be $(0, \frac{m-3}{2})$ with $r = \frac{m-9}{8}$. Thus the number of terms in the row $\mathcal{B}_m(0)$ is $2(r+1) = \frac{m-1}{4}$. For $\mathcal{B}_m(1)$ we have $2+2+4r = \frac{m-1}{2}$ for $r = \frac{m-9}{8}$, so the last term is $(2, \frac{m-1}{2})$ and the number of entries in the row is $2r+1 = \frac{m-1}{4} - 1$, i.e. one less than the row above. Clearly each row will decrease by one as we go down with the last entries alternating from $(0, \frac{m-3}{2}), (2, \frac{m-1}{2}), (4, \frac{m-3}{2}), \dots, (\frac{m-5}{2}, \frac{m-1}{2}).$

We can now count the number of elements of \mathcal{B}_m^* . The first row of the array each give four entries, and the remainder each give eight. Thus the total is

$$4\left(\frac{m-1}{4}\right) + 8\left(\left(\frac{m-1}{4}-1\right) + \left(\frac{m-1}{4}-2\right) + \ldots + \left(\frac{m-1}{4}-\frac{m-5}{4}\right)\right) = \left(\frac{m-1}{2}\right)^2.$$

We now show that every $\langle x, y \rangle \in S_m$ is in an element of \mathcal{B}_m^* . Since $|S_m| = (m-1)^2$ and there are four points on each $(a,b) \in \mathcal{B}_m^*$, and $|\mathcal{B}_m^*| = (\frac{m-1}{2})^2$, this will show that the blocks $(a,b) \in \mathcal{B}_m^*$ are mutually disjoint and that $w = \sum_{(x,y) \in \mathcal{B}_m^*} r_{\langle x,y \rangle}$.

First note that since $\langle x, y \rangle \in (a, b)$ if and only if $\langle -x, y \rangle \in (-a, b)$, we only need to show that each $\langle x, y \rangle \in S_m$ for $x < y \leq \frac{m-1}{2}$.

(i) x, y both even.

Then x = 2i and $y \le \frac{m-1}{2}$. If $y < \frac{m-1}{2}$ and y = 2i+2+4r, then $\langle x, y \rangle \in (2i, 2i+3+4r) \in \mathcal{B}_m$; if y = 2i+4r = 2i+4+4(r-1), then $\langle x, y \rangle \in (2i, 2i+3+4(r-1)) \in \mathcal{B}_m$.

If $y = \frac{m-1}{2}$ then y = 2i+2+4r or y = 2i+4r. In the first case $(x, y) = (2i, 2i+2+4r) \in \mathcal{B}_m$, i.e. $(2i, \frac{m-1}{2}) \in \mathcal{B}_m$. In this case $(2i, -\frac{m-1}{2}) \in \mathcal{B}_m^*$, and $(2i, -\frac{m-1}{2}) = (2i, \frac{m+1}{2}) \ni \langle 2i, \frac{m+1}{2} - 1 \rangle = \langle 2i, \frac{m-1}{2} \rangle$, so $\langle x, y \rangle \in \mathcal{B}_m^*$. If $y = \frac{m-1}{2} = 2i + 4r = 2i + 4 + 4(r-1)$, then $\langle x, y \rangle \in (2i, 2i+3+4(r-1)) \in \mathcal{B}_m$.

(ii) x even, y odd, x < y.

Then x = 2i and y = 2i + 1 + 4r or 2i + 3 + 4r. In either case $\langle x, y \rangle \in (2i, 2i + 2 + 4r) \in \mathcal{B}_m$. (iii) x odd, y even, x < y.

Then x = 2i + 1, y = 2i + 2j, i.e. 2i + 2 + 4r or 2i + 4r. In the first case, $\langle 2i + 1, 2i + 2 + 4r \rangle \in (2i, 2i + 2 + 4r) \in \mathcal{B}_m$. If y = 2i + 4r = 2i + 4 + 4(r - 1) = 2(i + 1) + 2 + 4(r - 1), then $\langle x, y \rangle \in (2(i + 1), 2(i + 1) + 2 + 4(r - 1)) \in \mathcal{B}_m$.

(iv) x < y both odd.

Then x = 2i + 1, y = 2i + 1 + 2j, i.e. 2i + 1 + 2 + 4r = 2i + 3 + 4r or 2i + 1 + 4r. If the former, then $< 2i + 1, 2i + 3 + 4r > \in (2i, 2i + 3 + 4r) \in \mathcal{B}_m$, and if the latter, then y = 2i + 1 + 4r = 2(i+1) - 1 + 4r = 2(i+1) + 3 + 4(r-1), and $< 2i, 2i + 1 + 4r > \in (2(i+1), 2(i+1) + 3 + 4(r-1)) \in \mathcal{B}_m$ since $x \neq \frac{m-3}{2}$ because $y < \frac{m-1}{2}$. This completes all possibilities for $m \equiv 1 \pmod{8}$. Subcase $1(b) \ m \equiv 5 \pmod{8}$.

Here m = 5 + 8l and $\frac{m-1}{4} = 1 + 2l$. As in (a), the last row is $\mathcal{B}_m(\frac{m-5}{4}) = \{(\frac{m-5}{2}, \frac{m-1}{2})\}$. There are $\frac{m-1}{4}$ rows for $i = 0, 1, \ldots, \frac{m-5}{4}$, and the last term in the first row, $\mathcal{B}_m(0)$, is $(0, \frac{m-1}{2})$ where $\frac{m-1}{2} = 2 + 4r$ and $r = \frac{m-5}{8}$. For $\mathcal{B}_m(1)$ the last term is $(2, \frac{m-3}{2})$ where $\frac{m-3}{2} = 2 + 3 + 4r$ for $r = \frac{m-5}{8} - 1$. The last rows decrease by one entry as we descend and the last entries alternate $(0, \frac{m-1}{2}), (2, \frac{m-3}{2}), (4, \frac{m-1}{2}), \ldots, (\frac{m-5}{2}, \frac{m-1}{2})$.

The count of the number of elements of \mathcal{B}_m^* follows exactly as in 1(*a*), and gives $(\frac{m-1}{2})^2$. To check that every $\langle x, y \rangle \in S_m$ for x < y is in an element of \mathcal{B}_m^* follows exactly as in 1(*a*) since the set \mathcal{B}_m^* is given by the same formula, and the arguments as to when $\frac{m-1}{2}$ is y depends only on congruence of m modulo 4.

Case (2): $m \equiv 3 \pmod{4}$ Thus here m = 3 + 4k and $\frac{m-1}{2}$ is odd, and $m \equiv 3, 7 \pmod{8}$. Recall that

$$\mathcal{B}_m = \{(2i, 2i), (2i, 2i+3+4r), (2i+4+4r) \mid i, r \ge 0, 2i+4+4r \le \frac{m-1}{2}\}.$$

Since $\frac{m-1}{2}$ is odd, the last row of the array for \mathcal{B}_m will have $i = \frac{m-3}{4}$ and consist of $(\frac{m-3}{2}, \frac{m-3}{2})$ for either congruence modulo 8.

Subcase 2(a) $m \equiv 3 \pmod{8}$.

The last row is $\mathcal{B}_m(\frac{m-3}{4}) = \{(\frac{m-3}{2}, \frac{m-3}{2})\}$. There are $\frac{m-3}{4} + 1 = \frac{m+1}{4}$ and $\frac{m+1}{4}$ terms in $\mathcal{B}_m(0)$. The last term on $\mathcal{B}_m(0)$ is not $(0, \frac{m-1}{2})$ since $\frac{m-1}{2}$ is odd and if $\frac{m-1}{2} = 3 + 4r$ we would have $r = \frac{m-7}{8}$. For the last term to be $(0, \frac{m-3}{2})$ we would have $\frac{m-3}{2} = 4 + 4r$, so $r = \frac{m-11}{8}$. The number of terms in $\mathcal{B}_m(0)$ is then $1 + 2(\frac{m-11}{8} + 1) = \frac{m+1}{4}$ as expected. For $\mathcal{B}_m(1), \frac{m-1}{2} = 2 + 3 + 4r$ for $r = \frac{m-11}{8}$, so the number of terms in $\mathcal{B}_m(1)$ is $1 + 2(\frac{m-11}{8}) + 1 = \frac{m-3}{4} = \frac{m+1}{4} - 1$, and the number of terms decrease as we descend, with the last entries the rows alternating $(0, \frac{m-3}{2}), (2, \frac{m-1}{2}), (4, \frac{m-3}{2}), \dots, (\frac{m-3}{2}, \frac{m-3}{2})$.

To count the number of blocks in \mathcal{B}_m^* , note first that, apart from the first entry (0,0), the first row and first column only produce four blocks each in \mathcal{B}_m^* , so for these we get $1 + 4.2(\frac{m+1}{4} - 1) =$

2m-5. For the remaining elements in each row we get eight blocks each. For the array from $\mathcal{B}_m(1)$ we get $\frac{m-3}{4}-1$, for the next row $\frac{m-3}{4}-2$, and so on for the last row $\mathcal{B}_m(\frac{m-3}{4})$ we get zero. The number in \mathcal{B}_m in this count is thus $(\frac{m-3}{4})^2 - \frac{1}{2}(\frac{m-3}{4})(\frac{m+1}{4}) = \frac{1}{32}(m-3)(m-7)$, and then counting for \mathcal{B}_m^* gives

$$2m-5+\frac{8}{32}(m-3)(m-7)=(\frac{m-1}{2})^2,$$

as expected.

We now show that every $\langle x, y \rangle \in S_m$ is in an element of \mathcal{B}_m^* , using similar arguments as in the case $m \equiv 1 \pmod{4}$. Thus we need only consider $x < y \leq \frac{m-1}{2}$. Note that $\frac{m-1}{2}$ is odd here. (i) x, y both even.

So $y \leq \frac{m-3}{2}$. If x = 2i and $y = 2i + 4 + 4r \leq \frac{m-3}{2}$, then $\langle x, y \rangle \in (2i, 2i + 3 + 4r) \in \mathcal{B}_m$. If y = 2i + 2 + 4r then $\langle x, y \rangle \in (2i, 2i + 3 + 4r)$ which is in \mathcal{B}_m as long as $2i + 3 + 4r \leq \frac{m-1}{2}$. This is true since if $2i + 3 + 4r > \frac{m-1}{2}$ then $2i + 2 + 4r > \frac{m-3}{2}$ so $2i + 2 + 4r \geq \frac{m-3}{2} + 2 = \frac{m+1}{2}$ contradicting our choices.

(ii) x even, y odd.

Then x = 2i, y = 2i + t where t is odd. First suppose $y = \frac{m-1}{2}$. Then $\langle x, y \rangle \in (x, y+1) = (x, \frac{m+1}{2}) = (x, -\frac{m-1}{2})$. So if $(x, \frac{m-1}{2} \in \mathcal{B}_m$ then $\langle x, y \rangle \in (x, \frac{m-1}{2} + 1) = (x, -\frac{m-1}{2}) \in \mathcal{B}_m^*$, and if $(x, \frac{m-1}{2} \notin \mathcal{B}_m$, then $\langle x, y \rangle \in (x, \frac{m-1}{2} - 1) = (x, \frac{m-3}{2}) \in \mathcal{B}_m$. If $y < \frac{m-1}{2}$ then if y = 2i + 1 + 4r, and r = 0, $\langle x, y \rangle \in (2i, 2i)$; if r > 0, then y = 2i + 1 + 4r, and r = 0, $\langle x, y \rangle \in (2i, 2i)$; if r > 0, then y = 2i + 1 + 4r.

If $y < \frac{m-1}{2}$ then if y = 2i + 1 + 4r, and $r = 0, < x, y > \in (2i, 2i)$; if r > 0, then y = 2i + 5 + 4(r - 1) and $< x, y > \in (2i, 2i + 4 + 4(r - 1)) \in \mathcal{B}_m$. If $y = 2i + 3 + 4r < \frac{m-1}{2}$ then $< x, y > \in (2i, 2i + 4 + 4r) \in \mathcal{B}_m$ since $y \le \frac{m-1}{2} - 2$ implies $y + 1 \le \frac{m-3}{2}$. (iii) x odd, y even.

So x = 2i+1, y = 2i+2j = 2i+2+4r or 2i+4+4r. Since $x < y \le \frac{m-1}{2}$, clearly $x < \frac{m-1}{2}$ and in fact $x < \frac{m-3}{2}$. If y = 2i+4+4r, then $< 2i+1, 2i+4+4r > \in (2i, 2i+4+4r) \in \mathcal{B}_m$. If y = 2i+2+4r, then if $r = 0, < x, y > = < 2i+1, 2(i+1) > \in (2(i+1), 2(i+1)) \in \mathcal{B}_m$ since $2(i+1) \le \frac{m-3}{2}$. If $r \neq 0$ then y = 2(i+1)+4+4(r-1) and $< 2i+1, 2(i+1)+4+4(r-1) > \in (2(i+1), 2(i+1)+4+4(r-1) \in \mathcal{B}_m$. (iv) Both x and y odd.

Here x = 2i + 1, y = 2i + 1 + 2j = 2i + 1 + 2 + 4r $(r \ge 0)$ or 2i + 1 + 4r (r > 0). If y = 2i + 1 + 2j = 2i + 1 + 2 + 4r then $< 2i + 1, 2i + 3 + 4r > \in (2i, 2i + 3 + 4r) \in \mathcal{B}_m$. If y = 2i + 1 + 4r = 2(i+1) + 3 + 4(r-1), then $< 2i + 1, 2(i+1) + 3 + 4(r-1) > \in (2(i+1), 2(i+1) + 3 + 4(r-1)) \in \mathcal{B}_m$ since $2i + 2 \le \frac{m-3}{2}$.

This completes the proof for $m \equiv 3 \pmod{8}$.

Subcase $2(b) \ m \equiv 7 \pmod{8}$

The proof here will mostly be as that in 2(a). The last row is again $\mathcal{B}_m(\frac{m-3}{4}) = \{(\frac{m-3}{2}, \frac{m-3}{2})\}$, so again there are $\frac{m+1}{4}$ rows. The last term in $\mathcal{B}_m(0)$ is $(0, \frac{m-1}{2})$ since $\frac{m-1}{2} = 3 + 4r$ for $r = \frac{m-7}{8}$. The number of terms in $\mathcal{B}_m(0)$ is $2(\frac{m-7}{8}+1) = \frac{m+1}{4}$. The last term of $\mathcal{B}_m(2)$ is $(2, \frac{m-3}{2})$ and these last entries alternate as before, and the rows decrease in length by 1 as we descend. The count is thus the same as in (a), and $|\mathcal{B}_m^*| = (\frac{m-1}{2})^2$. Likewise, to check that every $\langle x, y \rangle \in S_m$ for x < y is in an element of \mathcal{B}_m^* follows exactly as in 2(a) since the set \mathcal{B}_m^* is given by the same formula, and the arguments as to when $\frac{m-1}{2}$ is y depends only on congruence of m modulo 4.

This completes the proof that the code is LCD. For the other code parameters, i.e. the minimum weights, refer to Lemmas 4 and 6.

Note: Proposition 2 holds also for m = 3, where the graph is a Hamming graph: see [8, Theorem 1].

Examples of arrays for \mathcal{B}_m :

$$m = 21: \begin{bmatrix} 0,2 & 0,3 & 0,6 & 0,7 & 0,10 \\ 2,4 & 2,5 & 2,8 & 2,9 \\ 4,6 & 4,7 & 4,10 \\ 6,8 & 6,9 \\ 8,10 \end{bmatrix}, m = 23: \begin{bmatrix} 0,0 & 0,3 & 0,4 & 0,7 & 0,8 & 0,11 \\ 2,2 & 2,5 & 2,6 & 2,9 & 2,10 \\ 4,4 & 4,7 & 4,8 & 4,11 \\ 6,6 & 6,9 & 6,10 \\ 8,8 & 8,11 \\ 10,10 \end{bmatrix}$$

Examples of $\langle x, y \rangle \in (a, b) \in \mathcal{B}_m^*, x \neq \pm y$

- 1. m = 21: $\langle 4, 9 \rangle = \langle 4, 4 + 5 \rangle = \langle 4, 4 + 1 + 4 \rangle \in (4, 4 + 2 + 4) = (4, 10) \in \mathcal{B}_{21}$.
- 2. m = 21: $<5,8> = <5,5+3> = <5,6+2> \in (6,8) \in \mathcal{B}_{21}$.
- 3. m = 21: < 13, 15 >~< -13, -15 >=< 8, 6 >~< 6, 6 + 2 > \in (6, 6 + 3) = (6, 9) \in \mathcal{B}_{21}, so < 13, 15 > $\in (-9, -6) = (12, 15) \in \mathcal{B}_{21}^*$.
- 4. $m = 19: \langle 7, 5 \rangle \langle 5, 7 \rangle = \langle 4 + 1, 4 + 3 \rangle \langle (4, 7) \in \mathcal{B}_{19}, \text{ so } \langle 7, 5 \rangle \langle (7, 4) \in \mathcal{B}_{19}^*.$
- 5. m = 19: $< 11, 16 > < 8, 3 > < 3, 8 > = < 3, 3 + 1 + 4 > \in (4, 8) \in \mathcal{B}_{19}$, so $< 11, 16 > \in (-8, -4) = (11, 15) \in \mathcal{B}_{19}^*$.

We can use Result 2 to get the orthogonal projector map for the code $D = C_2(Q_2^m)^{\perp}$ for m odd.

Corollary 3 For $m \ge 5$ odd, let G be the generator matrix for $D = C_2(Q_2^m)^{\perp}$ with rows given by the vectors $u_0, \ldots, u_{m-1}, v_0, \ldots, v_{m-2}$ and columns in the natural order $< 0, 0 >, < 0, 1 >, \ldots, < m-1, m-1 >$. Then if $J_{r,t}$ denotes the all-one matrix of size $r \times t$ over \mathbb{F}_2 , then

$$M = GG^{T} = \begin{bmatrix} I_{m} & J_{m,m-1} \\ \hline J_{m-1,m} & I_{m-1} \end{bmatrix}, \text{ and } M^{-1} = \begin{bmatrix} I_{m} & J_{m,m-1} \\ \hline J_{m-1,m} & I_{m-1} + J_{m-1,m-1} \end{bmatrix}.$$

Furthermore, $v\Pi_D = vG^T M^{-1}G$ for any $v \in \mathbb{F}_2^{m^2}$.

Proof: The proof follows immediately, since the distinct u_i meet in no points, and likewise the distinct v_i , while each u_i meets each v_j exactly once. The inverse is simple to check.

Lemma 7 If Γ_i for i = 1, 2 are bipartite graphs, then so is $\Gamma_1 \Box \Gamma_2$, and hence also $\Gamma_i^{\Box,n}$ if all the Γ_i are bipartite.

Proof: Let V_1, V_2 be the partition of vertices for Γ_1 , and W_1, W_2 that for Γ_2 . Then it is easy to see that bipartite sets for $\Gamma_1 \Box \Gamma_2$ are

$$V_1 \times W_1 \cup V_2 \times W_2$$
, and $V_1 \times W_2 \cup V_2 \times W_1$.

This extends obviously to the product of any number of bipartite graphs.

Corollary 4 If m is even then Q_n^m is bipartite.

Proof: This is clear since Q_1^m is clearly bipartite with the two classes of vertices being the even numbers and the odd numbers.

Note: That for m even, Q_n^m is bipartite is also mentioned in [2].

4 Permutation decoding for $C_2(Q_2^m)^{\perp}$ for m odd

We will show that s-PD-sets of smallest size s + 1 can be found for the codes $C_2(Q_2^m)^{\perp}$ for $m \ge 5$ odd.

Lemma 8 For $\Gamma = Q_2^m$ where $m \ge 5$ is odd, $R = \{0, .., m-1\}$, the set

$$\mathcal{I} = \{ <0, i > | i \in R \} \cup \{ <1, i > | i \in R \setminus \{m-1\} \}$$
(8)

is an information set for $C_2(\Gamma)^{\perp}$.

Proof: Use the notation of Proposition 1. Consider the words that generate the code $D = C_2(\Gamma)^{\perp}$, viz. $u_0, \ldots, u_{m-1}, v_0, \ldots, v_{m-1}$, and write them as rows of a $2m \times m^2$ generating matrix for D, but with the rows in the order $u_0, u_{m-1}, u_{m-2}, \ldots, u_1, v_0, v_{m-1}, v_{m-2}, \ldots, v_1$, and columns in the natural order $(0,0), (0,1), \ldots, (m-1,m-1)$. We consider only the first 2m columns, from (0,0) to (1,m-1) as we know D has dimension 2m-1. Then the non-zero entries in these columns are: $u_0 \ge < 0, 0) >, < 1, 1 >; u_{m-1} \ge < 0, 1 >, < 1, 2 >; u_{m-2} \ge < 0, 2 >, < 1, 3 >; \ldots; u_1 \ge < 0, m-1 >, < 1, 0 >; v_0 \ge < 0, 0 >, < 1, m-1 >; v_{m-1} \ge < 0, 1 >, < 1, 2 >; \ldots; v_1 \ge < 0, m-1 >, < 1, m-2 >.$

Now use the first *m* rows, which have leading entries $\langle 0, 0 \rangle, \ldots, \langle 0, m-1 \rangle$ to remove the similar leading entries in the second set of *m* rows, with the new ordered rows $u_0, u_{m-1}, \ldots, u_1, v_0^* = v_0 + u_0, v_{m-1}^* = v_{m-1} + u_{m-1}, \ldots, v_1^* = v_1 + u_1.$

Consider now the lower *m* rows starting with v_0^* , and columns starting at < 1, 0 >, we have $v_0^* \ni < 1, 1 >, < 1, m - 1 >$; $v_{m-1}^* \ni < 1, 0 >, < 1, 2 >$; $v_{m-2}^* \ni < 1, 1 >, < 1, 3 >$; ...; $v_1^* \ni < 1, m - 2 >, < 1, 0 >$. Reorder these rows as $v_{m-1}^*, v_{m-2}^*, \ldots, v_1^*, v_0^*$. Now replace the row of v_1^* by $v_1^* = v_1^* + v_{m-3}^* + v_{m-1}^* \ni < 1, m - 3 >, < 1, m - 2 >$, and v_0^* by $v_0^* = v_0^* + v_{m-4}^* + v_{m-2}^* \ni < 1, m - 3 >, < 1, m - 2 >$. In the first 2m - 1 columns the last three new rows corresponding to $v_2^*, v_1^* *, v_0^*$ have rank 2.

Thus \mathcal{I} is an information set of D.

Recall that for $\Gamma = Q_2^m$, $\operatorname{Aut}(\Gamma) \supseteq \langle T, Q \rangle$, where T is the translation group of order m^2 and Q has order 8 and is the quaternion group of this order. This group is generated by the translations $\tau_{\langle a,b\rangle}$, μ_0, μ_1, σ where $\langle x, y \rangle^{\sigma} = \langle y, x \rangle$. Then $\tau_{\langle a,b\rangle}^{\mu_0} = \tau_{\langle -a,b\rangle}$. It is clear that $T \triangleleft \langle T, Q \rangle = TQ$.

Proposition 3 Let $\Gamma = Q_2^m$ where $m \ge 5$ is odd, $R = \{0, .., m-1\}$. Then for $s < \frac{m-1}{2}$, the set of automorphisms

$$S = \{\tau_{<2i,0>} \mid 0 \le i \le s\}$$
(9)

is an s-PD-set of minimal size s + 1 for the code $C_2(\Gamma)^{\perp}$ with information set \mathcal{I} as given in Equation (8).

The group $T = \{\tau_X \mid X \in \mathbb{R}^2\}$ is a PD-set for full error correction.

Proof: By Proposition 2, $C = C_2(\Gamma)^{\perp}$ is an $[m^2, 2m - 1, m]_2$ code for m odd. Thus the code can correct $t = \frac{m-1}{2}$ errors. It is quite straightforward to show that the bound G(t) in Equation 4 is $\frac{m+3}{2} = \frac{m-1}{2} + 2 = t + 2$. Result 4 tells us that if G(s) = s + 1 then $s \leq \lfloor \frac{m^2}{2m-1} \rfloor - 1$ which is $\frac{m-3}{2} = \frac{m-1}{2} - 1 = t - 1$ here. Thus we take $s \leq \frac{m-3}{2}$ and show that the set S of Equation 9 of size s + 1 will correct s errors for $m \geq 2s + 3$.

If all the *s* errors are in \mathcal{I} then any non-identity element of *S* will take them all into \mathcal{C} , and if all the *s* errors are in \mathcal{C} then the identity $\tau_{<0,0>}$ will keep all the errors in \mathcal{C} . Since any number of errors in \mathcal{I} can be corrected by any non-identity element of *S*, we assume there are s - 1 errors in \mathcal{C} and one in \mathcal{I} . If we prove our result for such a set it will follow for any smaller number.

Suppose the errors in \mathcal{C} occur at $e_r = \langle i_r, j_r \rangle$ for $1 \leq r \leq s-1$, with $e_0 \in \mathcal{I}$ the error in \mathcal{I} . So $2 \leq i_r \leq m-1$ for $1 \leq r \leq s-1$. Since $\tau_{\langle 2i,0 \rangle} = (\tau_{\langle 2,0 \rangle})^i$, we see that the set of images of i_r under the elements of S are all distinct and all have the same parity until m-2 or m-1 is reached, (for odd or even respectively), after which 0 or 1 occurs and the parity changes. Thus any set of s images $i_r + 2i$, for $1 \leq i \leq s$ can contain 0 or 1 only once, and never both, since $s \leq \frac{m-3}{2}$. There are s-1 points e_r , so considering the s sets of images of these points under non-identity elements of S, i.e. $\{e_r^{\tau_{\langle 2i,0 \rangle}} \mid 1 \leq r \leq s-1\}$ for $1 \leq i \leq s$, there must be a value of i such that neither 0 nor 1 is in that image, i.e. the points are all in \mathcal{C} . This $\tau_{\langle 2i,0 \rangle}$ will move the full set of s error positions to \mathcal{C} .

Thus S is an s-PD-set for $s \leq \frac{m-3}{2}$ of s+1 elements.

For the last part of the statement we use Result 5. The group T is transitive on vertices, and $\lceil \frac{m^2}{2m-1} \rceil$ is easily seen to be $\frac{m+1}{2}$, and thus the value of s in that result is $t = \frac{m-1}{2}$, so T, of size m^2 will provide full error correction.

Note: 1. To use the maximal error-correction capacity of the code, t, $G(t) = \frac{m-1}{2} + 2 = t + 2$ as mentioned above. Computationally with Magma we found that for m = 5, where t = 2, and G(t) = 4, 2-PD-sets of size 6 were found; for m = 7 where t = 3 and G(t) = 5, 3-PD-sets of size 10 were found; for m = 9, where t = 4 and G(t) = 6, 4-PD-sets of size 9 were found.

2. For m = 5, exhaustive searching with Magma yielded a 2-PD-set of size 5 to correct two errors, the error-correction capability of the code. The set obtained was

$$\{Id, \tau_{<1,3>}, \tau_{<2,3>}, \tau_{<3,0>}, \mu_0\tau_{<2,3>}\}.$$

5 Magma observations for other n, and for m even

- 1. For n = 2 and m even we have not been able to obtain the basic parameters of $C_2(Q_2^m)$ as in the case of m odd but computations with Magma yielded that $C_2(Q_2^m)$, for m even, $4 \le m \le 16$, is a $[m^2, m(m-2), 4]_2$ code. The minimum weight of the dual was determined in Lemma 6. The codes are not LCD.
- 2. For $m \ge 5$ odd, $\operatorname{Hull}(C) = \{0\}$ for n = 3 and $5 \le m \le 9$ odd, and also for n = 4, m = 5, 7.
- 3. Indications from Magma suggest that the rows r_X of an adjacency matrix A for Q_2^m where $m \geq 5$ is odd for X in the check set of $C_2(Q_2^m)^{\perp}$ corresponding to \mathcal{I} in Equation (8), i.e. for

$$X \in \mathcal{C} = \{ <1, m-1 >, <2, 0 >, <2, 1 >, \dots, < m-1, m-1 > \},\$$

form a basis for $C_2(Q_2^m)$.

• For an alternative basis set of rows of an adjacency matrix $A_{2,m}$ for m odd we have the following conjecture

Conjecture 1 Let $\Gamma = Q_2^m = (V, E)$ and $R = \{0, 1, \dots, m-1\}$ where $m \ge 5$ is odd. Suppose that the elements of R are ordered naturally and the vertices of V =

 $R \times R$ likewise. Suppose the adjacency matrix $A_{2,m}$ for Γ has the form as shown in Equation (1), with the column blocks labelled C_i for $0 \le i \le m-1$, and the row blocks as \mathcal{R}_i for $0 \le i \le m-1$, and $A_{1,m}$, the adjacency matrix for Q_1^m , on the diagonal. Let \mathcal{S} be the set of size $(m-1)^2$ of rows of $A_{2,m}$ consisting of

- the first
$$(m-1)$$
 rows of the first $(m-2)$ row blocks \mathcal{R}_i , i.e. $0 \le i \le m-3$;

- the first $\frac{m-1}{2}$ rows of the last two row blocks \mathcal{R}_i for i = m - 2, m - 1.

Then S is a linearly independent set.

Notice first that it is clear that the first m-1 rows of $A_{1,m}$ are linearly independent and so the first m-2 row blocks have dimension m-1 each, and the last two have dimension $\frac{m-1}{2}$ each.

Evidence for this conjecture is that we can prove it by hand for m = 5, 7 and Magma verifies it for all the odd m tried, i.e. up to m = 17. Labelling the rows in \mathcal{R}_i as $r_{i,j}$ for $j = 0, \ldots, m-1$, proof by hand involved considering a word w:

$$w = \sum_{i=0}^{m-1} \sum_{j=0}^{d_i} \alpha_{i,j} r_{i,j} = 0,$$

where the $\alpha_{i,j} \in \mathbb{F}_2$ and $d_i = m-2$ for $0 \le i \le m-3$, and $d_i = \frac{m-3}{2}$ for i = m-2, m-1. Then using the fact that w(< i, j >) = 0 for $0 \le i, j \le m-1$, and noting that any < i, j > has a non-zero entry in at most four rows, the coefficients can be shown to be zero.

In fact, for the column blocks C_j for $0 \le j \le m-1$, vertices < j, i > for $0 \le i \le m-1$, the number k of non-zero entries the the column for < i, j >:

- $\begin{array}{l} \ \mathcal{C}_0: < 0, 0 >, \ k = 3; < 0, i >, i \in [1, \frac{m-3}{2}], \ k = 4; < 0, i >, i \in [\frac{m-1}{2}, m-3], \ k = 3; \\ < 0, i >, i \in [m-2, m-1], \ k = 2; \end{array}$
- $-\mathcal{C}_{j}, j \in [1, m-4]: < j, 0 >, k = 3; < j, i >, i \in [1, m-3], k = 4; < j, m-2 >, k = 3; < j, m-1 >, k = 2;$
- $\begin{array}{l} \ \mathcal{C}_{m-3}: < m-3, 0 >, \ k=3; < m-3, i >, i \in [1, \frac{m-3}{2}], \ k=4; < m-3, i >, i \in [\frac{m-1}{2}, m-3], \ k=3; < m-3, i >, i \in [m-2, m-1], \ k=2; \end{array}$
- $\begin{array}{l} \ \mathcal{C}_{j}, \ j = m-2, m-1: \ < j, 0 >, \ k = 3; \ < j, i >, i \in [1, \frac{m-5}{2}], \ k = 4; \ < j, \frac{m-3}{2} >, \\ k = 3; \ < j, \frac{m-1}{2} >, \ k = 2; \ < j, i >, i \in [\frac{m+1}{2}, m-1], \ k = 1. \end{array}$

For example, it follows immediately from the entries in the relevant column, working successively: $\langle m-1, m-1 \rangle \Rightarrow \alpha_{m-1,0} = 0; \langle m-2, m-1 \rangle \Rightarrow \alpha_{m-2,0} = 0; \langle m-1, m-2 \rangle \Rightarrow \alpha_{0,m-2} = 0; \langle m-2, m-2 \rangle \Rightarrow \alpha_{m-3,m-2} = 0; \text{ for } 0 \leq i \leq m-3, \langle i, m-1 \rangle \Rightarrow \alpha_{i,0} = \alpha_{i,m-2}, \Rightarrow \alpha_{0,0} = \alpha_{m-3,0} = 0; \langle m-1, m-3 \rangle \Rightarrow \alpha_{0,m-3} = 0; \langle m-1, 0 \rangle \Rightarrow \alpha_{m-1,1} = 0; \langle m-2, m-3 \rangle \Rightarrow \alpha_{m-3,m-3} = 0.$

References

 E. F. Assmus, Jr and J. D. Key, *Designs and their codes*, Cambridge: Cambridge University Press, 1992, Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections, 1993).

- [2] Bella Bose, Bob Broeg, Youngguen Kwon, and Yaagoub Ashir, Lee distance and topological properties of k-ary n-cubes, IEEE Trans. Computers 44 (No.8) (1995), 1021–1030.
- W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24, 3/4 (1997), 235–265.
- [4] J. Cannon, A. Steel, and G. White, *Linear codes over finite fields*, Handbook of Magma Functions (J. Cannon and W. Bosma, eds.), Computational Algebra Group, Department of Mathematics, University of Sydney, 2006, V2.13, http://magma.maths.usyd.edu.au/magma, pp. 3951–4023.
- [5] Khaled Day and Abdel Elah Al Ayyoub, Fault diameter of k-ary n-cube networks, IEEE Trans. Parallel and Distributed Systems 8 (No.9) (1997), 903–907.
- [6] W. Fish, Binary codes and permutation decoding sets from the graph products of cycles, Appl. Algebra Engrg. Comm. Comput. 28 (5) (2017), 369–389, DOI 10.1007/s00200-016-0310-y.
- [7] W. Fish, J. D. Key, and E. Mwambene, *LCD codes from products of graphs*, (In preparation).
- [8] _____, Codes, designs and groups from the Hamming graphs, J. Combin. Inform. System Sci. 34 (2009), 169–182, No.1 – 4.
- [9] Washiela Fish, *Codes from uniform subset graphs and cycle products*, Ph.D. thesis, University of the Western Cape, 2007.
- [10] Daniel M. Gordon, Minimal permutation sets for decoding the binary Golay codes, IEEE Trans. Inform. Theory 28 (1982), 541–543.
- [11] W. Cary Huffman, *Codes and groups*, Handbook of Coding Theory (V. S. Pless and W. C. Huffman, eds.), Amsterdam: Elsevier, 1998, Volume 2, Part 2, Chapter 17, pp. 1345–1440.
- [12] J. D. Key, T. P. McDonough, and V. C. Mavron, Partial permutation decoding for codes from finite planes, European J. Combin. 26 (2005), 665–682.
- [13] _____, Information sets and partial permutation decoding for codes from finite geometries, Finite Fields Appl. **12** (2006), 232–247.
- [14] _____, Improved partial permutation decoding for Reed-Muller codes, Discrete Math. 340 (2017), 722–728.
- [15] J. D. Key and B. G. Rodrigues, *LCD codes from adjacency matrices of graphs*, Appl. Algebra Engrg. Comm. Comput. **29** (3) (2018), 227–244.
- [16] _____, Special LCD codes from Peisert and generalized Peisert graphs, Graphs Combin. 35 (2019), 633–652, https://doi.org/10.1007/s00373-019-02019-0.
- [17] Christos Kravvaritis, Determinant evaluations for binary circulant matrices, Spec. Matrices, de Gruyter Open 2 (2014), 187–199, DOI 10.2478/spma-2014-0019.
- [18] Hans-Joachim Kroll and Rita Vincenti, PD-sets related to the codes of some classical varieties, Discrete Math. 301 (2005), 89–105.

- [19] F. J. MacWilliams, Permutation decoding of systematic codes, Bell System Tech. J. 43 (1964), 485–505.
- [20] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes, Amsterdam: North-Holland, 1983.
- [21] James L. Massey, Linear codes with complementary duals, Discrete Math. 106/107 (1992), 337–342.
- [22] J. Schönheim, On coverings, Pacific J. Math. 14 (1964), 1405–1411.