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Abstract

We examine the binary codes from adjacency matrices of the graph with vertices the nodes
of the m-ary n-cube Qm

n and with adjacency defined by the Lee metric. For n = 2 and m odd,
we obtain the parameters of the code and its dual, and show the codes to be LCD. We also
find s-PD-sets of size s+ 1 for s < m−1

2 for the dual codes, i.e. [m2, 2m− 1,m]2 codes, when
n = 2 and m ≥ 5 is odd.

1 Introduction

The graphs defined by the m-ary n-cube Qmn and with adjacency defined by the Lee metric are
defined in various places in the literature, but see [5] for example. They are also known as Lee
graphs.

Definition 1 Let m,n ≥ 1 be positive integers, and R = {0, 1, . . . ,m − 1} with addition and
multiplication as in the ring of integers modulo m, or, if m = q is a prime power, R could be
Fm. The graph Γ = (V,E) on Qmn , has V = Rn, the set of n-tuples with entries in R, with
adjacency defined by x =< x0, x1, . . . , xn−1 > adjacent to y =< y0, y1, . . . , yn−1 > if there exists
an i, 0 ≤ i ≤ n− 1, such that xi − yi ≡ ±1 (mod m) and xj = yj for all j 6= i. Thus Γ is regular
of degree 2n.

We will examine the binary codes from the adjacency matrices of these graphs. Since for
m = 2, 3 the graph is the Hamming graph, the codes of which have been extensively studied, we
take m ≥ 4.
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Our best findings are for n = 2 and m odd, and we summarize our main results for these codes
in a single theorem:

Theorem 1 Let Γ = Qm2 = (V,E) and R = {0, 1, . . . ,m−1} where m ≥ 5 is odd, and C = C2(Γ).
Then C is LCD, i.e. C ∩ C⊥ = {0}, and C is a [m2, (m − 1)2, 4]2 code, C⊥ a [m2, 2m − 1,m]2
code.

The set of points

I = {< 0, i >| i ∈ R} ∪ {< 1, i >| i ∈ R \ {m− 1}}

is an information set for C⊥, and for s < m−1
2 , the set of translations S = {τ<2i,0> | 0 ≤ i ≤ s} is

an s-PD-set of minimal size s+ 1 for the code C⊥ with information set I. The group T = {τX |
X ∈ R2} of translations is a PD-set for full error correction, where the translations are defined
by τ<a,b> :< x, y >7→< x+ a, y + b >.

The theorem combines results from Propositions 2 and 3 in Section 3 and Section 4, respec-
tively. Since the binary code for Qm2 has minimum weight 4 for all m, the better codes are the
duals, with minimum weight m, and these are the codes we use for decoding.

The paper is organized as follows: Section 2 concerns the background definitions, terminology,
and earlier results needed in our propositions, and includes background subsections on the graphs
Qmn , on LCD codes, and on permutation decoding. Section 3 concerns the codes C2(Qmn ) and
has our main results for n = 2 and m odd. Section 4 has our results on permutation decoding
of C2(Qm2 )⊥ for m odd. In Section 5 some computational results for other values of n and m are
given.

2 Background concepts and terminology

The notation for codes and codes from graphs is as in [1]. For an incidence structureD = (P,B,J ),
with point set P, block set B and incidence J , the code CF (D) = Cq(D) of D over the finite
field F = Fq is the space spanned by the incidence vectors of the blocks over F . If Q is any subset
of P, then we will denote the incidence vector of Q by vQ, and if Q = {x} where x ∈ P, then
we will write vx. For any w ∈ FP and P ∈ P, w(P ) denotes the value of w at P .

The codes here are linear codes, and the notation [n, k, d]q will be used for a q-ary code C
of length n, dimension k, and minimum weight d, where the weight wt(v) of a vector v is the
number of non-zero coordinate entries. Vectors in a code are also called words. For two vectors
u, v the distance d(u, v) between them is wt(u−v). The support, Supp(v), of a vector v is the
set of coordinate positions where the entry in v is non-zero. So |Supp(v)| = wt(v). A generator
matrix for C is a k×n matrix made up of a basis for C, and the dual code C⊥ is the orthogonal
under the standard inner product (, ), i.e. C⊥ = {v ∈ Fn | (v, c) = 0 for all c ∈ C}. The hull,
Hull(C), of a code C is the self-orthogonal code Hull(C) = C ∩ C⊥. A check matrix for C is
a generator matrix for C⊥. The all-one vector will be denoted by , and is the vector with
all entries equal to 1. If we need to specify the length m of the all-one vector, we write m. A
constant vector is a non-zero vector in which all the non-zero entries are the same. We call two
linear codes isomorphic (or permutation isomorphic) if they can be obtained from one another
by permuting the coordinate positions. An automorphism of a code C is an isomorphism from
C to C. The automorphism group will be denoted by Aut(C), also called the permutation group
of C, and denoted by PAut(C) in [11].
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The graphs, Γ = (V,E) with vertex set V and edge set E, discussed here are undirected with
no loops, apart from the case where all loops are included, in which case the graph is called the
reflexive associate of Γ, denoted by RΓ. If x, y ∈ V and x and y are adjacent, we write x ∼ y,
and xy for the edge in E that they define. The set of neighbours of x ∈ V is denoted by N(x),
and the valency of x is |N(x)|. Γ is regular if all the vertices have the same valency.

An adjacency matrix A = [ax,y] for Γ is a |V |×|V | matrix with rows and columns labelled by
the vertices x, y ∈ V , and with ax,y = 1 if x ∼ y in Γ, and ax,y = 0 otherwise. Then RA = A+ I
is an adjacency matrix for RΓ. The row corresponding to x ∈ V in A will be denoted by rx, that
in RA by sx. In the following, we may simply identify rx and sx with the support of the row, so
rx = {y | x ∼ y} and sx = {x} ∪ {y | x ∼ y}.

The code over a field F of Γ will be the row span of an adjacency matrix A for Γ, and written
as CF (A), CF (Γ), or Cp(A), Cp(Γ), respectively, if F = Fp.

2.1 The graphs Qm
n

The graphs are defined in Definition 1. For any x ∈ Rn, xi will denote the ith coordinate of x, for
0 ≤ i ≤ n− 1.

For a ∈ Rn, a =< a0, a1, . . . , an−1 >, the translation τa is the map defined on x =<
x0, x1, . . . , xn−1 > by

τa : x 7→< x0 + a0, x1 + a1, . . . , xn−1 + an−1 > .

If σi ∈ Sn for 0 ≤ i ≤ n− 1, then the map σ is defined by

σ−1 : x 7→< x0σ0 , x1σ1 , . . . , xn−1σn−1 >

where the symmetric group Sn is acting on the n symbols 0, 1, . . . , n− 1.
For any i such that 0 ≤ i ≤ n− 1, the map µi is defined by

µi : x =< x0, . . . , xi−1, xi, xi+1, . . . , xn−1 >7→< x0, . . . , xi−1,−xi, xi+1, . . . , xn−1 >,

where −xi = m− xi.
It is easy to verify that the translations τa for a ∈ Rn and the permutations σ, for all σi, and

µi for all i, are automorphisms of Γ, and that Aut(Γ) is both vertex and edge transitive.
Qmn is the cartesian product (Qm1 )�,n of n copies of Qm1 . If An,m denotes the adjacency

matrix for Qmn where the elements of R are labelled naturally, and the n-tuples likewise, we have
A2,m = A1,m ⊗ Im + Im ⊗ A1,m (Kronecker product) and An,m = A1,m ⊗ Imn−1 + Im ⊗ An−1,m.
Since the matrix A1,m will be m×m of the form

A1,m =



0 1 0 0 · · · 0 0 1
1 0 1 0 · · · 0 0 0
0 1 0 1 · · · 0 0 0
...

...
...

...
0 0 0 0 · · · 1 0 1
1 0 0 0 · · · 0 1 0


,
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the matrix for An,m has the form

An,m =



An−1,m I 0 0 · · · 0 I
I An−1,m I 0 · · · 0 0
0 I An−1,m I · · · 0 0
...

...
...

...
0 0 0 0 · · · I An−1,m I
I 0 0 0 · · · I An−1,m


, (1)

where I is the mn−1 ×mn−1 identity matrix.
From the form of A1,m, one sees that for Qm1 ,

rank2(A1,m) =

{
m− 2 if m is even
m− 1 if m is odd

and

rank2(A1,m + I) =

{
m− 2 if m ≡ 0 (mod 3)
m if m 6≡ 0 (mod 3)

Note that A1,m + I is a circulant m ×m matrix generated by (1, 1, 1, 0, . . . , 0). If m is divisible
by 3, one sees that the 2-rank is m− 2. Otherwise it is m: see, for example, [17].

For m odd, C2(Qm1 ) clearly has zero hull.

2.2 LCD codes

The background on LCD codes from [21] is described below.

Definition 2 A linear code C over any field is a linear code with complementary dual
(LCD) code if Hull(C) = C ∩ C⊥ = {0}.

If C is an LCD code of length n over a field F , then Fn = C ⊕ C⊥. Thus the orthogonal
projector map ΠC from Fn to C can be defined as follows: for v ∈ Fn,

vΠC =

{
v if v ∈ C,
0 if v ∈ C⊥ , (2)

and ΠC is defined to be linear. 1 This map is only defined if C (and hence also C⊥) is an LCD
code. Similarly then ΠC⊥ is defined.

Note that for all v ∈ Fn,
v = vΠC + vΠC⊥ . (3)

We will use [21, Proposition 4]:

Result 1 (Massey) Let C be an LCD code of length n over the field F and let ϕ be a map
ϕ : C⊥ 7→ C such that u ∈ C⊥ maps to one of the closest codewords v to it in C. Then the map
ϕ̃ : Fn 7→ C such that

ϕ̃(r) = rΠC + ϕ(rΠC⊥)

maps each r ∈ Fn to one of it closest neighbours in C. 2

1Note typographical error on p.338, l.-11, in [21]
2Note typographical error on p.341, l.-7, in [21]
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We make the following observation which will be of use in the next section:

Lemma 1 If C is a q-ary code of length n such that C + C⊥ = Fnq then C is LCD.

Proof: Since (C + C⊥)⊥ = C⊥ ∩ C = (Fnq )⊥ = {0} = Hull(C), C (and C⊥) are LCD. �

From [15, 16]:

Definition 3 Let Γ = (V,E) be a graph with adjacency matrix A. Let p be any prime, C = Cp(A),
RC = Cp(RA) (for the reflexive graph), where RA = A + I. Then If C = RC⊥ we call C a
reflexive LCD code, and write RLCD for such a code

We will also use the following from [21, Proposition 1]:

Result 2 (Massey) If G is a generator matrix for the (n, k) linear code C over the field F , then
C is LCD if and only if the k × k matrix GGT is nonsingular. Moreover, if C is LCD then
ΠC = GT (GGT )−1G is the orthogonal projector from Fn onto C.

2.3 Permutation decoding

Permutation decoding was first developed by MacWilliams [19] and involves finding a set of
automorphisms of a code called a PD-set. The method is described fully in MacWilliams and
Sloane [20, Chapter 16, p. 513] and Huffman [11, Section 8]. In [12] and [18] the definition of
PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 4 If C is a t-error-correcting code with information set I and check set C, then a
PD-set for C is a set S of automorphisms of C which is such that every t-set of coordinate
positions is moved by at least one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set of
coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding is as follows: we have a t-error-correcting [n, k, d]q
code C with check matrix H in standard form. Thus the generator matrix G = [Ik|A] and
H = [−AT |In−k], for some A, and the first k coordinate positions correspond to the information
symbols. Any vector v of length k is encoded as vG. Suppose x is sent and y is received and
at most t errors occur. Let S = {g1, . . . , gs} be the PD-set. Compute the syndromes H(ygi)

T

for i = 1, . . . , s until an i is found such that the weight of this vector is t or less. Compute the
codeword c that has the same information symbols as ygi and decode y as cg−1

i .
Notice that this algorithm actually uses the PD-set as a sequence. Thus it is expedient to

index the elements of the set S by the set {1, 2, . . . , |S|} so that elements that will correct a small
number of errors occur first. Thus if nested s-PD-sets are found for all 1 < s ≤ t then we can
order S as follows: find an s-PD-set Ss for each 0 ≤ s ≤ t such that S0 ⊂ S1 . . . ⊂ St and arrange
the PD-set S as a sequence in this order:

S = [S0, (S1 − S0), (S2 − S1), . . . , (St − St−1)].

(Usually one takes S0 = {id}.)
There is a bound on the minimum size that a PD-set S may have, due to Gordon [10], from

a formula due to Schönheim [22], and quoted and proved in [11]:
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Result 3 If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r = n− k, then

|S| ≥
⌈
n

r

⌈
n− 1

r − 1

⌈
. . .

⌈
n− t+ 1

r − t+ 1

⌉
. . .

⌉⌉⌉
= G(t). (4)

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the formula and G(s) for
G(t).

We note the following result from [14, Lemma 1]:

Result 4 If C is a t-error-correcting [n, k, d]q code, 1 ≤ s ≤ t, and S is an s-PD-set of size G(s)
then G(s) ≥ s+ 1. If G(s) = s+ 1 then s ≤ bnk c − 1.

In [13, Lemma 7] the following was proved:

Result 5 Let C be a linear code with minimum weight d, I an information set, C the correspond-
ing check set and P = I ∪ C. Let G be an automorphism group of C, and n the maximum value
of |O ∩ I|/|O|, over the G-orbits O. If s = min(d 1

ne − 1, bd−1
2 c), then G is an s-PD-set for C.

This result holds for any information set. If the group G is transitive then |O| is the degree
of the group and |O ∩ I| is the dimension of the code.

A simple argument yields that the worst-case time complexity for the decoding algorithm
using an s-PD-set of size z on a code of length n and dimension k is O(nkz).

3 The codes C2(Q
m
n )

We first note, referring to Definition 3:

Lemma 2 The codes C2(Qmn ) are not RLCD for any n,m ≥ 4.

Proof: Denoting the row of A for the vertex x as rx and that of A + I for x as sx it is easy to
see that s<0,...,0> ∩ r<1,0,...,0> = {< 0, . . . , 0 >} and thus the inner product is not 0 modulo 2, so
C2(Qmn ) is not RLCD. �

Proposition 1 Let Γ = Qm2 = (V,E) and R = {0, 1, . . . ,m − 1} where m ≥ 4, and C = C2(Γ).
Then if Λ = {< i, i >| i ∈ R}, it follows that the word vΛ ∈ C⊥.

Furthermore, there are 2m distinct words of weight m obtained from vΛ by applying the auto-
morphisms τ(1,0) repeatedly and µ0 to each of these.

If m is odd then the 2m words span a subspace D of C⊥ of dimension 2m− 1. Furthermore,
Hull(D) = {0}. If m ≥ 4 is even, the 2m words span a self-orthogonal subspace D of C⊥ of
dimension 2m− 2.

Proof: For < x, y >∈ V , N(< x, y >) = {< x, y + 1 >,< x, y − 1 >,< x+ 1, y >,< x− 1, y >}.
We need to show that Λ meet every N(< x, y >) evenly. Suppose < a, a >∈ N(< x, y >). Then
a = x or a = y so without loss of generality we assume a = x, and < a, a >=< x, y + 1 >.
Thus a = y + 1, i.e. y = a − 1, and so < x − 1, y >=< a − 1, a − 1 >∈ Λ ∩ N(< x, y >). Since
< a, a > 6=< a− 1, a− 1 >, Λ meets N(< x, y >) evenly.

Applying τ(1,0) to Λ gives m distinct words (including vΛ), and applying µ0 to each of these
gives a further m distinct words. We label these words as ui and vi, for i ∈ R, where ui has support
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Λτ(i,0) and vi has support Λτ(i,0)µ0 , for i ∈ R, respectively. Thus Supp(ui) = {< i+ j, j >| j ∈ R}
and Supp(vi) = {< −i− j, j >| j ∈ R}, where we are working modulo m.

To show that the set {ui, vi | i ∈ R} spans a space of dimension 2m−1 for m odd, and 2m−2 for
m even, we note first that every vertex (a, b), where a, b ∈ R, occurs in the support of exactly two of
these weight-m words, viz., ua−b, v−a−b. This follows since (a, b) = (b, b)τ(a−b,0) = (b, b)τ(−a−b,0)µ0.
Thus clearly if we add all the 2m words we get the zero vector, and so the dimension is at most
2m− 1.

Suppose w =
∑m−1

i=0 αiui +
∑m−1

i=0 βivi = 0. Then w(< a, b >) = 0 = αa−b + β−a−b, for all a, b,
and taking a = 0 this shows that αi = βi for all i. So αa−b = α−a−b for all a, b, i.e. αc = α−c−2b

for all c, b. For m odd we deduce that αi = α, a constant, and thus the only relation we get for
m odd is the sum of all the words being zero, and thus any 2m− 1 are linearly independent. For
m even, we divide the ui and vj into two sets each for i and j both even or both odd. Note that
a− b and −a− b are both even or both odd, so that if we form the sum w =

∑
i even(ui + vi) we

have w = 0, and similarly for i odd, giving dimension 2m− 2 in the case where m is even.
For the final statements, take first m odd. For w ∈ D, we have w =

∑m−1
i=0 αiui +

∑m−1
i=0 βivi.

If w ∈ D⊥, then (w, uj) = (w, vj) = 0 for all j ∈ R. Thus

(w, uj) =
m−1∑
i=0

αi(ui, uj) +
m−1∑
i=0

βi(vi, uj) = mαj +
m−1∑
i=0

βi = 0,

and so αj = α =
∑m−1

i=0 βi for j ∈ R, i.e. a constant. Similarly, (w, vj) = mβj +
∑m−1

i=0 αi = 0, so
βj = α for all j ∈ R, and w = α

∑
i∈R(wi + vi) = 0 as was shown above.

For m even, we show that (ui, uj) = (ui, vj) = (vj , vj) = 0 for all i, j. Note first that it is
clear that (ui, uj) = (vj , vj) = 0 since the m words ui (respectively vj) do not intersect, so we
need only consider (ui, vj). Here it is not difficult to see that < x, y >∈ ui ∩ vj implies that
< x − m

2 , y −
m
2 >∈ ui ∩ vj , and since the points are distinct, the inner product is zero, as we

require. �

Corollary 2 For m odd dim(C2(Qm2 )) ≤ (m−1)2, and for m even dim(C2(Qm2 )) ≤ (m−1)2 + 1.

Proof: Follows from the lemma. �

Lemma 3 If m ≥ 4 is even and D, ui, vi are as in Proposition 1, Γ = Qm2 , then

1. If S = {< 0, 0 >,< m
2 ,

m
2 >}, then vS ∈ D⊥;

2. u0 + u2 =
∑m

2
−1

i=0 r<2i+1,2i> and dim(C ∩D) ≥ 2m− 4.

Proof: (1) < 0, 0 >∈ u0, v0 and < m
2 ,

m
2 >∈ u0, v0, and neither point is any other of the ui, vj , so

(vS , ui) = (vS , vj) = 0 for all i, j.
(2) Using the fact that r<2i+1,2i> = vT where

T = {< 2i+ 1, 2i+ 1 >,< 2i+ 1, 2i− 1 >,< 2i, 2i >,< 2i+ 2, 2i >},

it is easy to verify the given identity.
Applying the translations to this gives ui + uj , vi + vj ∈ C for both i, j even or both odd, and

hence gives C ∩D of index at most 2 in D. �
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Note: According to Magma[3, 4], if 4 | m then D ⊂ C and for m = 8 we have

u7 = r<3,1> + r<5,3> + r<5,7> + r<7,1> + r<6,2> + r<2,2> + r<4,4> + r<4,0>.

Lemma 4 Let Γ = Qm2 and R = {0, 1, . . . ,m− 1} where m ≥ 4, and C = C2(Γ). For m odd, the
minimum weight of C is 4. For m ≥ 4 even, the code D⊥ ⊃ C, where D is as in Proposition 1,
has words of weight 2, but if m = 2m1 where m1 ≥ 3 is odd, then C has minimum weight 4.

Proof: Clearly the rows of an adjacency matrix have weight 4, and C is an even weight code, so
there are no words of weight 3. Suppose it has a word w of weight 2. Without loss of generality, we
can assume w has support {< 0, 0 >,< i, j >}. Since (w, vΛ) = 0, where Λ is as in Proposition 1,
we must have i = j 6= 0. Since µ1 ∈ Aut(Γ), wµ1 with support {< 0, 0 >,< −i, i >} is also in C.
But i 6= −i for i 6= 0 in R for m odd. Thus C cannot have weight-2 vectors.

If m ≥ 4 is even, then the word with support {< 0, 0 >,< m
2 ,

m
2 >} is in D⊥ and so the

argument for words from D does not rule out words of weight 2 in C. From Result 6, we
can form words in C⊥ using words in C2(Qm1 )⊥. It is easy to see that words with support
s1 = {0, 2, . . .m − 2} and s2 = {1, 3, . . . ,m − 1} are in C2(Qm1 )⊥. Thus from Result 6 the word
with support {< x, y >| x, y ∈ s1} of weight (m2 )2 will be in C2(Qm2 )⊥. If m

2 is odd this word will
meet the weight-2 with support {< 0, 0 >,< m

2 ,
m
2 >} only once, so we can deduce that C2(Qm2 )

has minimum weight 4 when m ≡ 2 (mod 4). �

Note that the above argument does not give a contradiction for m ≡ 0 (mod 4) so one must
find other words in C⊥ that cannot be orthogonal to weight-2 words in such cases, and in particular
to the word with support {< 0, 0 >,< m

2 ,
m
2 >}.

In [7] the following result is proved:

Result 6 Let Γ� = Γ1�Γ2, where Γi = (Vi, Ei) for i = 1, 2. Let wi ∈ C2(Γi)
⊥ be of weight di,

with S1 = Supp(w1) = {a1, . . . , ad1}, S2 = Supp(w2) = {b1, . . . , bd2}, where ai ∈ V1, bj ∈ V2.
Then the word with weight d1d2 and support

S = {< ai, bj >| i = 1, . . . d1, j = 1, . . . d2},

is in C2(Γ�)⊥.

From Proposition 1 and Result 6 we may deduce the following:

Lemma 5 Let Γ = Qmn = (Qm1 )�,n, and C = C2(Γ). Then

1. if m ≥ 5 is odd, then for n ≥ 2, C⊥ has words of weight mn−1;

2. if m ≥ 4 is even, then for n ≥ 2, C⊥ has words of weight mn−1

2n−2 .

Proof: If m is odd then C2(Qm1 )⊥ = 〈〉 with minimum weight m. By Proposition 1, C2(Qm2 )⊥

has a word of weight m. Since Qm3 = Qm2 �Qm1 , by Result 6, C2(Qm3 )⊥ has words of weight m2.
By induction then C2(Qmn )⊥ has words of weight mn−1.

If m is even, then C2(Qm1 )⊥ has dimension 2, and contains vectors of weight m
2 . The same

argument as for the odd case, but using m
2 instead of m, shows that C2(Qmn )⊥ has words of weight

mn−1

2n−2 . �
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Lemma 6 For 4 ≤ m, the minimum weight of C2(Qm2 )⊥ is m.

Proof: Let w ∈ C2(Qm2 )⊥ have support S and |S| = s. We can suppose < 0, 0 >∈ S. Every
row rx of A2,m that contains < 0, 0 > must meet S again. Now r<0,0> = {< 1, 0 >,< −1, 0 >,<
0, 1 >,< 0,−1 >}, and

r<1,0> = {< 0, 0 >,< 2, 0 >,< 1, 1 >,< 1,−1 >}
r<−1,0> = {< 0, 0 >,< −2, 0 >,< −1, 1 >,< −1,−1 >}
r<0,1> = {< 0, 0 >,< 0, 2 >,< 1, 1 >,< −1, 1 >}
r<0,−1> = {< 0, 0 >,< 0,−2 >,< 1,−1 >,< −1,−1 >}.

Taking S as small as it can be, all these blocks will meet S again if we include the two points
< 1, 1 >,< −1,−1 >. Since all blocks containing < 1, 1 > must meet S again, we consider
r<1,1> = {< 1, 0 >,< 1, 2 >,< 0, 1 >,< 2, 1 >}. Then

r<1,2> = {< 1, 1 >,< 1, 3 >,< 0, 2 >,< 2, 2 >}, r<2,1> = {< 1, 1 >,< 3, 1 >,< 2, 0 >,< 2, 2 >}.

Thus a further point < 2, 2 > must be included, so that S contains the set {< 0, 0 >,< 1, 1 >,<
2, 2 >,< −1,−1 >}. If m = 4 this is the set Λ of Proposition 1, so 4 is the minimum weight for
m = 4. Otherwise we need to make sure that all the blocks through < −1,−1 > meet S again.
Now r<−1,−1> = {< −1, 0 >,< −1,−2 >,< 0,−1 >,< −2,−1 >}, and
r<−1,−2> = {< −1,−1 >,< −1,−3 >,< 0,−2 >,< −2,−2 >}, and
r<−2,−1> = {< −1,−1 >,< −3,−1 >,< −2, 0 >,< −2,−2 >}. Thus including < −2,−2 > will
ensure that all blocks through < −1,−1 > meet S again. For m = 4, < −2,−2 >=< 2, 2 > but
for m > 4 this is a new point. Thus the set S contains at least the five points T = {< 0, 0 >,<
1, 1 >,< 2, 2 >,< −2,−2 >,< −1,−1 >}. For m = 5 this is precisely the set Λ of Proposition 1.

We now proceed in this way by induction on m, knowing it is true for m ≤ 5. Suppose we
have S = {< 0, 0 >,< 1, 1 >,< −1,−1 >, . . . , < k, k >,< −k,−k >}, m ≥ 2k+ 1. For the blocks
through < k, k > we have r<k,k> = {< k + 1, k >,< k − 1, k >,< k, k + 1 >,< k, k − 1 >}. The
two blocks to look at are

r<k+1,k> = {< k, k >,< k + 2, k >,< k + 1, k + 1 >,< k + 1, k − 1 >}
r<k,k+1> = {< k, k >,< k, k + 2 >,< k + 1, k + 1 >,< k − 1, k + 1 >}.

The point < k + 1, k + 1 >∈ S only if m = 2k + 1 and thus k + 1 = −k, in which case the set S
would have m elements already, which we know is possible from Λ of Proposition 1. So supposing
this is a new point and m ≥ 2k + 2, we still need to make sure blocks through < −k,−k > meet
again. Now r<−k,−k> = {< −k + 1,−k >,< −k − 1,−k >,< −k,−k + 1 >,< −k,−k − 1 >}.
The two blocks to look at are

r<−k−1,−k> = {< −k,−k >,< −k − 2,−k >,< −k − 1,−k − 1 >,< −k − 1,−k + 1 >}
r<−k,−k−1> = {< −k,−k >,< −k,−k − 2 >,< −k − 1,−k − 1 >,< −k + 1,−k − 1 >}.

Thus including < −k−1,−k−1 > will show that for m = 2(k+1)+1 the word must have weight
at least m. This completes the proof of the assertion, by induction. �

Note: In [9, Proposition 8.2.17] or [6] it was shown that C2(Q8
n) is a [8n, 8n−16, 2n]2 code that

contains its dual.
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For the next proposition we introduce a new notation for n = 2 to clarify the proof. For any
< x, y >∈ V , we write for its neighbours,

(x, y) = N(< x, y >) = {< x, y ± 1 >,< x± 1, y >} ≡ r<x,y>. (5)

We sometimes refer to the (x, y) as blocks, considering the neighbourhood design of the graph.
The row r<x,y> would then be considered as the incidence vector of the block.

Proposition 2 For m ≥ 5 odd, C2(Qm2 ) is LCD. Furthermore, C2(Qm2 ) is a [m2, (m − 1)2, 4]2
code and C2(Qm2 )⊥ is a [m2, 2m− 1,m]2 code.

Proof: We show that w = v<0,0> + u0 +
∑m−1

i=1 vi ∈ C2(Qm2 ), using the notation of the Propo-

sition 1. Writing C = C2(Qm2 ), this will show that FR
2

= C ⊕ D, where the code D is as in
Proposition 1, and since dim(D) = 2m − 1, it implies that dim(C) = m2 − 2m + 1 = (m − 1)2.
So C⊥ = D and C is LCD.

It is easy to verify that if Sm = Supp(w), then

Sm = {< −a+ b, a >| a ∈ R, b ∈ R, b 6= 0} \ {< a, a >| a ∈ R}.

Note that < a, b >∈ Sm if and only if < b, a >∈ Sm, and < −a, a > 6∈ Sm for any a ∈ R. It follows
that |Sm| = wt(w) = (m− 1)2.

To show that w ∈ C2(Qm2 ) we find a set of rows of the adjacency matrix A that sum up to w.
The set taken will differ for m ≡ 1 (mod 4) and m ≡ 3 (mod 4). Thus, for m ≡ 1 (mod 4) let

Bm = {(2i, 2i+ 2 + 4r), (2i+ 3 + 4r) | i, r ≥ 0, 2i+ 3 + 4r ≤ m− 1

2
}, (6)

and for m ≡ 3 (mod 4) let

Bm = {(2i, 2i), (2i, 2i+ 3 + 4r), (2i+ 4 + 4r) | i, r ≥ 0, 2i+ 4 + 4r ≤ m− 1

2
}. (7)

Then in either case we define our full set of rows by

B∗m = Bm ∪ {(±x,∓y), (y, x) | (x, y) ∈ Bm}.

We will show that w =
∑

(x,y)∈B∗m r<x,y>.
Thus the members of Bm produce one, four or eight blocks in B∗m: (0, 0) gives just the one

block, (a, a) for a 6= 0 gives four, viz. (a, a), (−a, a), (a,−a), (−a,−a). Likewise (0, a) for a 6= 0
gives four, while for a 6= b, and neither 0, (a, b) gives eight:

(a, b), (−a, b), (a,−b), (−a,−b), (b, a), (b,−a), (−b, a), (−b,−a).

Below we will show that |B∗m| = (m−1
2 )2.

For example, Table 1 shows the blocks (a, b) in Bm for 5 ≤ m ≤ 19 odd. The parentheses have
been omitted to save space.

The cases m ≡ 1 (mod 4) and m ≡ 3 (mod 4) need to be taken separately, and in fact each
case breaks down again into two cases depending on m modulo 8.

To show that |B∗m| = (m−1
2 )2 it is simplest to exhibit the elements of Bm in an array of rows

Bm(i) where for m ≡ 1 (mod 4)

Bm(i) = {(2i, 2i+ 2 + 4r), (2i+ 3 + 4r) | r ≥ 0, 2i+ 3 + 4r ≤ m− 1

2
},
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m

5 0, 2

7 0, 0 0, 3 2, 2

9 0, 2 0, 3 2, 4

11 0, 0 0, 3 0, 4 2, 2 2, 5 4, 4

13 0, 2 0, 3 0, 6 2, 4 2, 5 4, 6

15 0, 0 0, 3 0, 4 0, 7 2, 2 2, 5 2, 6 4, 4 4, 7 6, 6

17 0, 2 0, 3 0, 6 0, 7 2, 4 2, 5 2, 8 4, 6 4, 7 6, 8

19 0, 0 0, 3 0, 4 0, 7 0,8 2, 2 2, 5 2, 6 2,9 4, 4 4, 7 4,8 6, 6 6,9 8,8

Table 1: Blocks in Bm

and for m ≡ 3 (mod 4)

Bm(i) = {(2i, 2i), (2i, 2i+ 3 + 4r), (2i+ 4 + 4r) | r ≥ 0, 2i+ 4 + 4r ≤ m− 1

2
},

for i ≥ 0. We need first to determine how many of these rows there are and this depends on m
modulo 8. Recall that for (a, b) ∈ Bm, a, b ≤ m−1

2 .
Case (1): m ≡ 1 (mod 4)
Thus here m = 1 + 4k and m−1

2 is even, and m ≡ 1, 5 (mod 8). Recall that

Bm = {(2i, 2i+ 2 + 4r), (2i+ 3 + 4r) | i, r ≥ 0, 2i+ 3 + 4r ≤ m− 1

2
}.

Subcase 1(a) m ≡ 1 (mod 8).
Here m = 1 + 8l and m−1

2 = 4l. To find the last row, i.e. the highest value of i, we cannot have
2i = m−1

2 since then 2i+ 2 + 4r > m−1
2 . If 2i = m−1

2 − 2 = m−5
2 then 2i+ 2 + 4r = m−1

2 for r = 0,
and we have Bm(m−5

4 ) = {(m−5
2 , m−1

2 )}, i.e. just the one term. The number of rows in the array
is thus m−5

4 + 1 = m−1
4 .

For the row Bm(0), the final term will be (0, m−3
2 ) with r = m−9

8 . Thus the number of terms
in the row Bm(0) is 2(r+ 1) = m−1

4 . For Bm(1) we have 2 + 2 + 4r = m−1
2 for r = m−9

8 , so the last
term is (2, m−1

2 ) and the number of entries in the row is 2r + 1 = m−1
4 − 1, i.e. one less than the

row above. Clearly each row will decrease by one as we go down with the last entries alternating
from (0, m−3

2 ), (2, m−1
2 ), (4, m−3

2 ), . . . , (m−5
2 , m−1

2 ).
We can now count the number of elements of B∗m. The first row of the array each give four

entries, and the remainder each give eight. Thus the total is

4(
m− 1

4
) + 8

(
(
m− 1

4
− 1) + (

m− 1

4
− 2) + . . .+ (

m− 1

4
− m− 5

4
)

)
= (

m− 1

2
)2.

We now show that every < x, y >∈ Sm is in an element of B∗m. Since |Sm| = (m − 1)2 and
there are four points on each (a, b) ∈ B∗m, and |B∗m| = (m−1

2 )2, this will show that the blocks
(a, b) ∈ B∗m are mutually disjoint and that w =

∑
(x,y)∈B∗m r<x,y>.

First note that since < x, y >∈ (a, b) if and only if < −x, y >∈ (−a, b), we only need to show
that each < x, y >∈ Sm for x < y ≤ m−1

2 .
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(i) x, y both even.
Then x = 2i and y ≤ m−1

2 . If y < m−1
2 and y = 2i+ 2 + 4r, then < x, y >∈ (2i, 2i+ 3 + 4r) ∈ Bm;

if y = 2i+ 4r = 2i+ 4 + 4(r − 1), then < x, y >∈ (2i, 2i+ 3 + 4(r − 1)) ∈ Bm.
If y = m−1

2 then y = 2i+2+4r or y = 2i+4r. In the first case (x, y) = (2i, 2i+2+4r) ∈ Bm, i.e.
(2i, m−1

2 ) ∈ Bm. In this case (2i,−m−1
2 ) ∈ B∗m, and (2i,−m−1

2 ) = (2i, m+1
2 ) 3< 2i, m+1

2 − 1 >=<
2i, m−1

2 >, so < x, y >∈ B∗m. If y = m−1
2 = 2i + 4r = 2i + 4 + 4(r − 1), then < x, y >∈

(2i, 2i+ 3 + 4(r − 1)) ∈ Bm.
(ii) x even, y odd, x < y.
Then x = 2i and y = 2i+ 1 + 4r or 2i+ 3 + 4r. In either case < x, y >∈ (2i, 2i+ 2 + 4r) ∈ Bm.
(iii) x odd, y even, x < y.
Then x = 2i+ 1, y = 2i+ 2j, i.e. 2i+ 2 + 4r or 2i+ 4r. In the first case, < 2i+ 1, 2i+ 2 + 4r >∈
(2i, 2i + 2 + 4r) ∈ Bm. If y = 2i + 4r = 2i + 4 + 4(r − 1) = 2(i + 1) + 2 + 4(r − 1), then
< x, y >∈ (2(i+ 1), 2(i+ 1) + 2 + 4(r − 1)) ∈ Bm.
(iv) x < y both odd.
Then x = 2i+ 1, y = 2i+ 1 + 2j, i.e. 2i+ 1 + 2 + 4r = 2i+ 3 + 4r or 2i+ 1 + 4r. If the former,
then < 2i + 1, 2i + 3 + 4r >∈ (2i, 2i + 3 + 4r) ∈ Bm, and if the latter, then y = 2i + 1 + 4r =
2(i+1)−1+4r = 2(i+1)+3+4(r−1), and < 2i, 2i+1+4r >∈ (2(i+1), 2(i+1)+3+4(r−1)) ∈ Bm
since x 6= m−3

2 because y < m−1
2 . This completes all possibilities for m ≡ 1 (mod 8).

Subcase 1(b) m ≡ 5 (mod 8).
Here m = 5 + 8l and m−1

4 = 1 + 2l. As in (a), the last row is Bm(m−5
4 ) = {(m−5

2 , m−1
2 )}. There

are m−1
4 rows for i = 0, 1, . . . , m−5

4 , and the last term in the first row, Bm(0), is (0, m−1
2 ) where

m−1
2 = 2 + 4r and r = m−5

8 . For Bm(1) the last term is (2, m−3
2 ) where m−3

2 = 2 + 3 + 4r for
r = m−5

8 − 1. The last rows decrease by one entry as we descend and the last entries alternate
(0, m−1

2 ), (2, m−3
2 ), (4, m−1

2 ), . . . , (m−5
2 , m−1

2 ).
The count of the number of elements of B∗m follows exactly as in 1(a), and gives (m−1

2 )2. To
check that every < x, y >∈ Sm for x < y is in an element of B∗m follows exactly as in 1(a) since
the set B∗m is given by the same formula, and the arguments as to when m−1

2 is y depends only
on congruence of m modulo 4.

Case (2): m ≡ 3 (mod 4)
Thus here m = 3 + 4k and m−1

2 is odd, and m ≡ 3, 7 (mod 8). Recall that

Bm = {(2i, 2i), (2i, 2i+ 3 + 4r), (2i+ 4 + 4r) | i, r ≥ 0, 2i+ 4 + 4r ≤ m− 1

2
}.

Since m−1
2 is odd, the last row of the array for Bm will have i = m−3

4 and consist of (m−3
2 , m−3

2 )
for either congruence modulo 8.
Subcase 2(a) m ≡ 3 (mod 8).
The last row is Bm(m−3

4 ) = {(m−3
2 , m−3

2 )}. There are m−3
4 + 1 = m+1

4 and m+1
4 terms in Bm(0).

The last term on Bm(0) is not (0, m−1
2 ) since m−1

2 is odd and if m−1
2 = 3 + 4r we would have

r = m−7
8 . For the last term to be (0, m−3

2 ) we would have m−3
2 = 4 + 4r, so r = m−11

8 . The
number of terms in Bm(0) is then 1 + 2(m−11

8 + 1) = m+1
4 as expected. For Bm(1), m−1

2 =
2 + 3 + 4r for r = m−11

8 , so the number of terms in Bm(1) is 1 + 2(m−11
8 ) + 1 = m−3

4 = m+1
4 − 1,

and the number of terms decrease as we descend, with the last entries the rows alternating
(0, m−3

2 ), (2, m−1
2 ), (4, m−3

2 ), . . . , (m−3
2 , m−3

2 ).
To count the number of blocks in B∗m, note first that, apart from the first entry (0, 0), the first

row and first column only produce four blocks each in B∗m, so for these we get 1 + 4.2(m+1
4 − 1) =
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2m − 5. For the remaining elements in each row we get eight blocks each. For the array from
Bm(1) we get m−3

4 − 1, for the next row m−3
4 − 2, and so on for the last row Bm(m−3

4 ) we get
zero. The number in Bm in this count is thus (m−3

4 )2 − 1
2(m−3

4 )(m+1
4 ) = 1

32(m − 3)(m − 7), and
then counting for B∗m gives

2m− 5 +
8

32
(m− 3)(m− 7) = (

m− 1

2
)2,

as expected.
We now show that every < x, y >∈ Sm is in an element of B∗m, using similar arguments as in

the case m ≡ 1 (mod 4). Thus we need only consider x < y ≤ m−1
2 . Note that m−1

2 is odd here.
(i) x, y both even.
So y ≤ m−3

2 . If x = 2i and y = 2i + 4 + 4r ≤ m−3
2 , then < x, y >∈ (2i, 2i + 3 + 4r) ∈ Bm. If

y = 2i + 2 + 4r then < x, y >∈ (2i, 2i + 3 + 4r) which is in Bm as long as 2i + 3 + 4r ≤ m−1
2 .

This is true since if 2i+ 3 + 4r > m−1
2 then 2i+ 2 + 4r > m−3

2 so 2i+ 2 + 4r ≥ m−3
2 + 2 = m+1

2
contradicting our choices.
(ii) x even, y odd.
Then x = 2i, y = 2i + t where t is odd. First suppose y = m−1

2 . Then < x, y >∈ (x, y + 1) =
(x, m+1

2 ) = (x,−m−1
2 ). So if (x, m−1

2 ∈ Bm then < x, y >∈ (x, m−1
2 + 1) = (x,−m−1

2 ) ∈ B∗m, and
if (x, m−1

2 6∈ Bm, then < x, y >∈ (x, m−1
2 − 1) = (x, m−3

2 ) ∈ Bm.
If y < m−1

2 then if y = 2i + 1 + 4r, and r = 0, < x, y >∈ (2i, 2i); if r > 0, then y =
2i + 5 + 4(r − 1) and < x, y >∈ (2i, 2i + 4 + 4(r − 1) ∈ Bm. If y = 2i + 3 + 4r < m−1

2 then
< x, y >∈ (2i, 2i+ 4 + 4r) ∈ Bm since y ≤ m−1

2 − 2 implies y + 1 ≤ m−3
2 .

(iii) x odd, y even.
So x = 2i+1, y = 2i+2j = 2i+2+4r or 2i+4+4r. Since x < y ≤ m−1

2 , clearly x < m−1
2 and in fact

x < m−3
2 . If y = 2i+4+4r, then < 2i+1, 2i+4+4r >∈ (2i, 2i+4+4r) ∈ Bm. If y = 2i+2+4r, then

if r = 0, < x, y >=< 2i+1, 2(i+1) >∈ (2(i+1), 2(i+1)) ∈ Bm since 2(i+1) ≤ m−3
2 . If r 6= 0 then

y = 2(i+1)+4+4(r−1) and < 2i+1, 2(i+1)+4+4(r−1) >∈ (2(i+1), 2(i+1)+4+4(r−1) ∈ Bm.
(iv) Both x and y odd.
Here x = 2i + 1, y = 2i + 1 + 2j = 2i + 1 + 2 + 4r (r ≥ 0) or 2i + 1 + 4r (r > 0). If
y = 2i+1+2j = 2i+1+2+4r then < 2i+1, 2i+3+4r >∈ (2i, 2i+3+4r) ∈ Bm. If y = 2i+1+4r =
2(i+1)+3+4(r−1), then < 2i+1, 2(i+1)+3+4(r−1) >∈ (2(i+1), 2(i+1)+3+4(r−1)) ∈ Bm
since 2i+ 2 ≤ m−3

2 .
This completes the proof for m ≡ 3 (mod 8).

Subcase 2(b) m ≡ 7 (mod 8)
The proof here will mostly be as that in 2(a). The last row is again Bm(m−3

4 ) = {(m−3
2 , m−3

2 )},
so again there are m+1

4 rows. The last term in Bm(0) is (0, m−1
2 ) since m−1

2 = 3 + 4r for r = m−7
8 .

The number of terms in Bm(0) is 2(m−7
8 + 1) = m+1

4 . The last term of Bm(2) is (2, m−3
2 ) and

these last entries alternate as before, and the rows decrease in length by 1 as we descend. The
count is thus the same as in (a), and |B∗m| = (m−1

2 )2. Likewise, to check that every < x, y >∈ Sm
for x < y is in an element of B∗m follows exactly as in 2(a) since the set B∗m is given by the same
formula, and the arguments as to when m−1

2 is y depends only on congruence of m modulo 4.
This completes the proof that the code is LCD. For the other code parameters, i.e. the

minimum weights, refer to Lemmas 4 and 6. �

Note: Proposition 2 holds also for m = 3, where the graph is a Hamming graph: see [8, Theo-
rem 1].
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Examples of arrays for Bm:

m = 21 :


0, 2 0, 3 0, 6 0, 7 0, 10
2, 4 2, 5 2, 8 2, 9
4, 6 4, 7 4, 10
6, 8 6, 9
8, 10

 ,m = 23 :



0, 0 0, 3 0, 4 0, 7 0, 8 0, 11
2, 2 2, 5 2, 6 2, 9 2, 10
4, 4 4, 7 4, 8 4, 11
6, 6 6, 9 6, 10
8, 8 8, 11

10, 10

 .

Examples of < x, y >∈ (a, b) ∈ B∗m, x 6= ±y

1. m = 21: < 4, 9 >=< 4, 4 + 5 >=< 4, 4 + 1 + 4 >∈ (4, 4 + 2 + 4) = (4, 10) ∈ B21.

2. m = 21: < 5, 8 >=< 5, 5 + 3 >=< 5, 6 + 2 >∈ (6, 8) ∈ B21.

3. m = 21: < 13, 15 >∼< −13,−15 >=< 8, 6 >∼< 6, 6 + 2 >∈ (6, 6 + 3) = (6, 9) ∈ B21, so
< 13, 15 >∈ (−9,−6) = (12, 15) ∈ B∗21.

4. m = 19: < 7, 5 >∼< 5, 7 >=< 4 + 1, 4 + 3 >∈ (4, 7) ∈ B19, so < 7, 5 >∈ (7, 4) ∈ B∗19.

5. m = 19: < 11, 16 >∼< 8, 3 >∼< 3, 8 >=< 3, 3 + 1 + 4 >∈ (4, 8) ∈ B19, so < 11, 16 >∈
(−8,−4) = (11, 15) ∈ B∗19.

We can use Result 2 to get the orthogonal projector map for the code D = C2(Qm2 )⊥ for m
odd.

Corollary 3 For m ≥ 5 odd, let G be the generator matrix for D = C2(Qm2 )⊥ with rows given by
the vectors u0, . . . , um−1, v0, . . . , vm−2 and columns in the natural order < 0, 0 >,< 0, 1 >, . . . , <
m− 1,m− 1 >. Then if Jr,t denotes the all-one matrix of size r × t over F2, then

M = GGT =

[
Im Jm,m−1

Jm−1,m Im−1

]
, and M−1 =

[
Im Jm,m−1

Jm−1,m Im−1 + Jm−1.m−1

]
.

Furthermore, vΠD = vGTM−1G for any v ∈ Fm2

2 .

Proof: The proof follows immediately, since the distinct ui meet in no points, and likewise the
distinct vi, while each ui meets each vj exactly once, The inverse is simple to check. �

Lemma 7 If Γi for i = 1, 2 are bipartite graphs, then so is Γ1�Γ2, and hence also Γ�,n
i if all the

Γi are bipartite.

Proof: Let V1, V2 be the partition of vertices for Γ1, and W1,W2 that for Γ2. Then it is easy to
see that bipartite sets for Γ1�Γ2 are

V1 ×W1 ∪ V2 ×W2, and V1 ×W2 ∪ V2 ×W1.

This extends obviously to the product of any number of bipartite graphs. �

Corollary 4 If m is even then Qmn is bipartite.

Proof: This is clear since Qm1 is clearly bipartite with the two classes of vertices being the even
numbers and the odd numbers. �

Note: That for m even, Qmn is bipartite is also mentioned in [2].
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4 Permutation decoding for C2(Q
m
2 )⊥ for m odd

We will show that s-PD-sets of smallest size s+ 1 can be found for the codes C2(Qm2 )⊥ for m ≥ 5
odd.

Lemma 8 For Γ = Qm2 where m ≥ 5 is odd, R = {0, ..,m− 1}, the set

I = {< 0, i >| i ∈ R} ∪ {< 1, i >| i ∈ R \ {m− 1}} (8)

is an information set for C2(Γ)⊥.

Proof: Use the notation of Proposition 1. Consider the words that generate the code D = C2(Γ)⊥,
viz. u0, . . . , um−1, v0, . . . , vm−1, and write them as rows of a 2m ×m2 generating matrix for D,
but with the rows in the order u0, um−1, um−2, . . . , u1, v0, vm−1, vm−2, . . . , v1, and columns in the
natural order (0, 0), (0, 1), . . . , (m − 1,m − 1). We consider only the first 2m columns, from
(0, 0) to (1,m − 1) as we know D has dimension 2m − 1. Then the non-zero entries in these
columns are: u0 3< 0, 0) >,< 1, 1 >; um−1 3< 0, 1 >,< 1, 2 >; um−2 3< 0, 2 >,< 1, 3 >;
. . .; u1 3< 0,m − 1 >,< 1, 0 >; v0 3< 0, 0 >,< 1,m − 1 >; vm−1 3< 0, 1 >,< 1, 2 >; . . .;
v1 3< 0,m− 1 >,< 1,m− 2 >.

Now use the first m rows, which have leading entries < 0, 0 >, . . . , < 0,m− 1 > to remove the
similar leading entries in the second set ofm rows, with the new ordered rows u0, um−1, . . . , u1, v

∗
0 =

v0 + u0, v
∗
m−1 = vm−1 + um−1, . . . , v

∗
1 = v1 + u1.

Consider now the lower m rows starting with v∗0, and columns starting at < 1, 0 >, we
have v∗0 3< 1, 1 >,< 1,m − 1 >; v∗m−1 3< 1, 0 >,< 1, 2 >; v∗m−2 3< 1, 1 >,< 1, 3 >; . . .;
v∗1 3< 1,m−2 >,< 1, 0 >. Reorder these rows as v∗m−1, v

∗
m−2, . . . , v

∗
1, v0∗. Now replace the row of

v∗1 by v∗1∗ = v∗1 +v∗m−3 +v∗m−1 3< 1,m−3 >,< 1,m−2 >, and v∗0 by v∗0∗ = v∗0 +v∗m−4 +v∗m−2 3<
1,m − 3 >,< 1,m − 2 >. In the first 2m − 1 columns the last three new rows corresponding to
v∗2, v

∗
1∗, v∗0∗ have rank 2.

Thus I is an information set of D. �

Recall that for Γ = Qm2 , Aut(Γ) ⊇< T,Q >, where T is the translation group of order m2

and Q has order 8 and is the quaternion group of this order. This group is generated by the
translations τ<a,b>, µ0, µ1, σ where < x, y >σ=< y, x >. Then τµ0<a,b> = τ<−a,b>. It is clear that
T� < T,Q >= TQ.

Proposition 3 Let Γ = Qm2 where m ≥ 5 is odd, R = {0, ..,m− 1}. Then for s < m−1
2 , the set

of automorphisms
S = {τ<2i,0> | 0 ≤ i ≤ s} (9)

is an s-PD-set of minimal size s + 1 for the code C2(Γ)⊥ with information set I as given in
Equation (8).

The group T = {τX | X ∈ R2} is a PD-set for full error correction.

Proof: By Proposition 2, C = C2(Γ)⊥ is an [m2, 2m− 1,m]2 code for m odd. Thus the code can
correct t = m−1

2 errors. It is quite straightforward to show that the bound G(t) in Equation 4

is m+3
2 = m−1

2 + 2 = t + 2. Result 4 tells us that if G(s) = s + 1 then s ≤ b m2

2m−1c − 1 which is
m−3

2 = m−1
2 − 1 = t − 1 here. Thus we take s ≤ m−3

2 and show that the set S of Equation 9 of
size s+ 1 will correct s errors for m ≥ 2s+ 3.
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If all the s errors are in I then any non-identity element of S will take them all into C, and if
all the s errors are in C then the identity τ<0,0> will keep all the errors in C. Since any number of
errors in I can be corrected by any non-identity element of S, we assume there are s − 1 errors
in C and one in I. If we prove our result for such a set it will follow for any smaller number.

Suppose the errors in C occur at er =< ir, jr > for 1 ≤ r ≤ s− 1, with e0 ∈ I the error in I.
So 2 ≤ ir ≤ m − 1 for 1 ≤ r ≤ s − 1. Since τ<2i,0> = (τ<2,0>)i, we see that the set of images of
ir under the elements of S are all distinct and all have the same parity until m − 2 or m − 1 is
reached, (for odd or even respectively), after which 0 or 1 occurs and the parity changes. Thus
any set of s images ir + 2i, for 1 ≤ i ≤ s can contain 0 or 1 only once, and never both, since
s ≤ m−3

2 . There are s − 1 points er, so considering the s sets of images of these points under
non-identity elements of S, i.e. {eτ<2i,0>

r | 1 ≤ r ≤ s− 1} for 1 ≤ i ≤ s, there must be a value of i
such that neither 0 nor 1 is in that image, i.e. the points are all in C. This τ<2i,0> will move the
full set of s error positions to C.

Thus S is an s-PD-set for s ≤ m−3
2 of s+ 1 elements.

For the last part of the statement we use Result 5. The group T is transitive on vertices, and
d m2

2m−1e is easily seen to be m+1
2 , and thus the value of s in that result is t = m−1

2 , so T , of size

m2 will provide full error correction. �

Note: 1. To use the maximal error-correction capacity of the code, t, G(t) = m−1
2 + 2 = t + 2

as mentioned above. Computationally with Magma we found that for m = 5, where t = 2, and
G(t) = 4, 2-PD-sets of size 6 were found; for m = 7 where t = 3 and G(t) = 5, 3-PD-sets of size
10 were found; for m = 9, where t = 4 and G(t) = 6, 4-PD-sets of size 9 were found.
2. For m = 5, exhaustive searching with Magma yielded a 2-PD-set of size 5 to correct two errors,
the error-correction capability of the code. The set obtained was

{Id, τ<1,3>, τ<2,3>, τ<3,0>, µ0τ<2,3>}.

5 Magma observations for other n, and for m even

1. For n = 2 and m even we have not been able to obtain the basic parameters of C2(Qm2 )
as in the case of m odd but computations with Magma yielded that C2(Qm2 ), for m even,
4 ≤ m ≤ 16, is a [m2,m(m− 2), 4]2 code. The minimum weight of the dual was determined
in Lemma 6. The codes are not LCD.

2. For m ≥ 5 odd, Hull(C) = {0} for n = 3 and 5 ≤ m ≤ 9 odd, and also for n = 4, m = 5, 7.

3. • Indications from Magma suggest that the rows rX of an adjacency matrix A for Qm2
where m ≥ 5 is odd for X in the check set of C2(Qm2 )⊥ corresponding to I in Equa-
tion (8), i.e. for

X ∈ C = {< 1,m− 1 >,< 2, 0 >,< 2, 1 >, . . . , < m− 1,m− 1 >},

form a basis for C2(Qm2 ).

• For an alternative basis set of rows of an adjacency matrix A2,m for m odd we have
the following conjecture

Conjecture 1 Let Γ = Qm2 = (V,E) and R = {0, 1, . . . ,m − 1} where m ≥ 5 is
odd. Suppose that the elements of R are ordered naturally and the vertices of V =
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R × R likewise. Suppose the adjacency matrix A2,m for Γ has the form as shown in
Equation (1), with the column blocks labelled Ci for 0 ≤ i ≤ m− 1, and the row blocks
as Ri for 0 ≤ i ≤ m− 1, and A1,m, the adjacency matrix for Qm1 , on the diagonal. Let
S be the set of size (m− 1)2 of rows of A2,m consisting of

– the first (m− 1) rows of the first (m− 2) row blocks Ri, i.e. 0 ≤ i ≤ m− 3;

– the first m−1
2 rows of the last two row blocks Ri for i = m− 2,m− 1.

Then S is a linearly independent set.

Notice first that it is clear that the first m − 1 rows of A1,m are linearly independent
and so the first m − 2 row blocks have dimension m − 1 each, and the last two have
dimension m−1

2 each.

Evidence for this conjecture is that we can prove it by hand for m = 5, 7 and Magma
verifies it for all the odd m tried, i.e. up to m = 17. Labelling the rows in Ri as ri,j
for j = 0, . . . ,m− 1, proof by hand involved considering a word w:

w =
m−1∑
i=0

di∑
j=0

αi,jri,j = 0,

where the αi,j ∈ F2 and di = m−2 for 0 ≤ i ≤ m−3, and di = m−3
2 for i = m−2,m−1.

Then using the fact that w(< i, j >) = 0 for 0 ≤ i, j ≤ m − 1, and noting that any
< i, j > has a non-zero entry in at most four rows, the coefficients can be shown to be
zero.

In fact, for the column blocks Cj for 0 ≤ j ≤ m− 1, vertices < j, i > for 0 ≤ i ≤ m− 1,
the number k of non-zero entries the the column for < i, j >:

– C0: < 0, 0 >, k = 3; < 0, i >, i ∈ [1, m−3
2 ], k = 4; < 0, i >, i ∈ [m−1

2 ,m− 3], k = 3;
< 0, i >, i ∈ [m− 2,m− 1], k = 2;

– Cj , j ∈ [1,m − 4]: < j, 0 >, k = 3; < j, i >, i ∈ [1,m − 3], k = 4; < j,m − 2 >,
k = 3; < j,m− 1 >, k = 2;

– Cm−3: < m − 3, 0 >, k = 3; < m − 3, i >, i ∈ [1, m−3
2 ], k = 4; < m − 3, i >, i ∈

[m−1
2 ,m− 3], k = 3; < m− 3, i >, i ∈ [m− 2,m− 1], k = 2;

– Cj , j = m − 2,m − 1: < j, 0 >, k = 3; < j, i >, i ∈ [1, m−5
2 ], k = 4; < j, m−3

2 >,
k = 3; < j, m−1

2 >, k = 2; < j, i >, i ∈ [m+1
2 ,m− 1], k = 1.

For example, it follows immediately from the entries in the relevant column, working
successively: < m − 1,m − 1 >⇒ αm−1,0 = 0; < m − 2,m − 1 >⇒ αm−2,0 = 0;
< m− 1,m− 2 >⇒ α0,m−2 = 0; < m− 2,m− 2 >⇒ αm−3,m−2 = 0; for 0 ≤ i ≤ m− 3,
< i,m − 1 >⇒ αi,0 = αi,m−2, ⇒ α0,0 = αm−3,0 = 0; < m − 1,m − 3 >⇒ α0,m−3 = 0;
< m− 1, 0 >⇒ αm−1,1 = 0; < m− 2,m− 3 >⇒ αm−3,m−3 = 0.
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