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Abstract

We examine binary and ternary codes from adjacency matrices of the Peisert graphs, P⇤(q),
and the generalized Peisert graphs, GP⇤(q), in particular those instances where the code is
LCD and the dual of the code from the graph is the code from the reflexive graph. This occurs
for all the binary codes and for those ternary codes for which q ⌘ 1 (mod 3). We find words
of small weight in the codes, which, in the reflexive case, are likely to be minimum words. In
addition we propose a decoding algorithm that can be feasible for these LCD codes.
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1 Introduction

We examine LCD (linear with complementary dual) [8] codes from adjacency matrices of the
strongly regular Peisert self-complementary graphs P⇤(q) [10], and the strongly regular generalized
Peisert GP⇤(q) [9] graphs, where q = p

2t, t � 1, and p ⌘ 3 (mod 4) is a prime, in the case when
the dual code is the code of the reflexive graph; these graphs have the same parameters as those
of Paley graphs, P (q) [3, p.35], viz. (q, q�1

2 ,

q�5
4 ,

q�1
4 ). We find words of small weight in the binary

and ternary codes of these, and some indications from computations that the square root bound
holds for the codes, as it is shown to hold for those from Paley graphs when q is a prime: see [1,
Chapter 2], for example.

When Massey [8] introduced the terminology for LCD codes, i.e. p-ary linear codes C for
which C \ C

? = {0}, he showed that a specific map, the orthogonal projector map ⇧
C

(see
Section 3 below), is defined for such codes, and that this map is of relevance in decoding as it
specifies how a vector in the ambient space is written uniquely as a sum of two vectors, one in
C and the other in C

?. In [6] we showed that if the code C from the row span of an adjacency
matrix A for a graph has the property that its dual, C?, is the row span of A+ I, where I is the
identity matrix, then the code is LCD and the projector map ⇧

C

is given immediately. We called

⇤
Email:keyj@clemson.edu

†
Email:rodrigues@ukzn.ac.za

‡
This work is based on the research supported by the National Research Foundation of South Africa (Grant

Numbers 95725 and 106071)

1

Graphs and Combinatorics (2019) 35:633–652 https://doi.org/10.1007/s00373-019-02019-0
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such codes reflexive LCD codes, RLCD for short. We showed in [6] that p-ary codes of strongly
regular graphs with parameters those of Paley graphs, are RLCD if q ⌘ 1 (mod p). Massey [8]
also introduced a decoding method for LCD codes that involved a map ' from C

? to C where
for v 2 C

?, '(v) is the word in C closest to C. We show how this can be done for RLCD codes
using a computational method, feasible for a small number of errors.

In this work we examine the binary and ternary RLCD codes from the Peisert and generalized
Peisert graphs, and find words of small weight in the codes.

We summarize our results in the following theorem:

Theorem 1 Let q = p

2t where p ⌘ 3 (mod 4) is a prime, and let � denote either the Peisert
graph, P⇤(q), or the generalized Peisert graph, GP⇤(q). Let K = F

q

, ! a primitive root for K

⇥,
and F = F

p

t. Let C

r

, for r = 2, 3, denote the binary or ternary code, respectively, from an
adjacency matrix for �, and RC

r

that for the reflexive graph R�. Then

1. RC2 = C

?
2 for all q and RC3 = C

?
3 for all q with 3 - q.

2. for r = 2, or r = 3 and 3 - q, C
r

is a [q, 12(q � 1), d]
r

code and RC

r

is a [q, 12(q + 1), d?]
r

code where

(a) for � = P⇤(q) and p

t ⌘ 3 (mod 4), 1
2(p

t + 5)  d  2(pt � 1) with C

r

containing
words of weight 2(pt � 1) with support F⇥ [ !F

⇥, and d

?  p

t with RC

r

containing
words of weight pt with support yF for certain y 2 K; for r = 2 and p

t ⌘ 1 (mod 4),
d  1

4(q � 1) with C

r

containing words of weight 1
4(q � 1) with support h!4i.

(b) for � = GP⇤(q), d  2(pt � 1) with C

r

containing words of weight 2(pt � 1) with
support u1F

⇥ [ u2F
⇥ where u1, u2 are suitable elements of K, and d

?  p

t with RC

r

containing words of weight pt with support yF for certain y 2 K.

3. If P = Aut(P⇤(q)) and GP = Aut(GP⇤(q)), then both P and GP contain the translation
group on K. In addition, P contains automorphisms � : x 7! !

4
x and � : x 7! !x

p, while
GP contains automorphisms � : x 7! !

p

t+1
x and � : x 7! !

(pt�1)/2
x

p

t
.

The paper is organised as follows: Section 2 gives some basic terminology. Section 3 gives
some background on LCD and RLCD codes, along with some of Massey’s [8] original results .
We include here some applications as to how his ideas can be used for decoding in the case of
our binary RLCD codes from graphs, and give an algorithm, following from Lemmas 1,2 in that
section. Section 4 describes the Peisert and generalized Peisert graphs and their automorphisms;
Section 5 finds small words in the binary codes; Section 6 examines the ternary codes. The nature
of the small words is summarised in Tables 1 and 4. A lower bound for the minimum weight of
the codes C

p

(P⇤(q)) for p

t ⌘ 3 (mod 4) is found in Section 7. The proof of the theorem follows
from the lemmas and propositions.

2 Background and terminology

The notation for codes and codes from incidence structures and graphs is as in [1]. For an
incidence structure D = (P,B,J ), with point set P, block set B and incidence J , the code

CF (D) = Cq(D) of D over the finite field F = F
q

is the space spanned by the incidence vectors
of the blocks over F . If Q is any subset of P, then we will denote the incidence vector of Q
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by vQ, and if Q = {x} where x 2 P, then we will write v

x. Thus C
F

(D) =
⌦
v

B |B 2 B↵, and is
a subspace of FP , the full vector space of functions from P to F . For any w 2 F

P and P 2 P,
w(P ) denotes the value of w at P .

All the codes here are linear codes, and the notation [n, k, d]
q

will be used for a q-ary code
C of length n, dimension k, and minimum weight d, where the weight wt(v) of a vector v is the
number of non-zero coordinate entries. Vectors in a code are also called words. For two vectors
u, v the distance d(u, v) between them is wt(u�v). The support, Supp(v), of a vector v is the
set of coordinate positions where the entry in v is non-zero. So |Supp(v)| = wt(v). A generator

matrix for C is a k⇥n matrix made up of a basis for C, and the dual code C? is the orthogonal
under the standard inner product (, ), i.e. C? = {v 2 F

n | (v, c) = 0 for all c 2 C}. The hull,
Hull(C), of a code C is the self-orthogonal code Hull(C) = C \ C

?. A check matrix for C is
a generator matrix for C

?. The all-one vector will be denoted by |, and is the vector with
all entries equal to 1. If we need to specify the length m of the all-one vector, we write |m. A
constant vector is a non-zero vector in which all the non-zero entries are the same. We call two
linear codes isomorphic (or permutation isomorphic) if they can be obtained from one another
by permuting the coordinate positions. An automorphism of a code C is an isomorphism from
C to C. The automorphism group will be denoted by Aut(C), also called the permutation group
of C, and denoted by PAut(C) in [5].

The graphs, � = (V,E) with vertex set V and edge set E, discussed here are undirected with
no loops, apart from the case where all loops are included, in which case the graph is called the
reflexive associate of �, denoted by R�. If x, y 2 V and x and y are adjacent, we write x ⇠ y,
and xy for the edge in E that they define. We can also consider the complementary graph,
� = (V,E) where for x, y 2 V , x 6= y, x ⇠ y in � if and only if x 6⇠ y in �. The set of neighbours

of x 2 V is denoted by N(x), and the valency of x is |N(x)|. � is regular if all the vertices
have the same valency. A graph � = (V,E), neither complete nor null, is strongly regular

graph of type (n, k,�, µ) if it is regular on n = |V | vertices, has valency k, and is such that
any two adjacent vertices are together adjacent to � vertices and any two non-adjacent vertices
are together adjacent to µ vertices. The complement � of the strongly regular graph � is also
strongly regular of type (n, n � k � 1, n � 2k + µ � 2, n � 2k + �). A graph is symmetric if its
automorphism group acts transitively on both vertices and edges.

An adjacency matrix A = [a
x,y

] for � is a |V |⇥ |V | matrix with rows and columns labelled by
the vertices x, y 2 V , and with a

x,y

= 1 if x ⇠ y in �, and a

x,y

= 0 otherwise. Then RA = A+ I

is an adjacency matrix for R�, and A = J � I�A one for �, where I = I|V | and J is the |V |⇥ |V |
all-ones matrix. The row corresponding to x 2 V in A will be denoted by r

x

, that in RA by s

x

,
and that in A by c

x

. In the following, we may simply identify r

x

and s

x

with the support of the
row, so r

x

= {y | x ⇠ y} and s

x

= {x} [ {y | x ⇠ y}.
The code over a field F of � will be the row span of an adjacency matrix A for �, and written

as C
F

(A), C
F

(�), or C
p

(A), C
p

(�), respectively, if F = F
p

.

3 LCD and RLCD codes

The definition of LCD codes is from [8]:

Definition 1 (Massey[8]) A linear code C over any field is a linear code with complemen-

tary dual (LCD) code if Hull(C) = C \ C

? = {0}.
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If C is an LCD code of length n over a field F , then F

n = C � C

?. Thus the orthogonal

projector map ⇧
C

from F

n to C can be defined as a linear map 1 such that: for v 2 F

n,

v⇧
C

=

⇢
v if v 2 C,

0 if v 2 C

? , (1)

This map is only defined if C (and hence also C

?) is an LCD code. Similarly then ⇧
C

? is defined.
Note that for all v 2 F

n,
v = v⇧

C

+ v⇧
C

? . (2)

We will use [8, Proposition 4]:

Result 1 (Massey) Let C be an LCD code of length n over the field F and let ' be a map
' : C? 7! C such that u 2 C

? maps to one of the closest codewords v to it in C. Then the map
'̃ : Fn 7! C such that

'̃(w) = w⇧
C

+ '(w⇧
C

?)

maps each w 2 F

n to one of it closest neighbours in C. 2

Note: In Result 1, if w 2 C then '̃(w) = w, and if w 2 C

? then '̃(w) = '(w).
The terms we use here for the special LCD codes from graphs are from [6]:

Definition 2 Let � = (V,E) be a graph with adjacency matrix A. Let p be any prime, C = C

p

(A),
RC = C

p

(RA) (for the reflexive graph). If C = RC

? we call C a reflexive LCD code, and write
RLCD for such a code.

Note: 1. As observed in [6], if C is a q-ary code of length n such that C + C

? = Fn

q

then C is
LCD.
2. In [6] we also defined the concept “complementary LCD” code, for short CLCD codes, for
graphs for which C

p

(�) = C

p

(�)? since such codes also give the components in C and C

? of any
word w 2 FV

p

. However, this concept is not of use to us here, so we omit discussion of it.
If � = (V,E) is a graph, A an adjacency matrix for � and p a prime, let C = C

p

(A) and
RC = C

p

(RA) using the notation as defined in Section 2, i.e. RA = A+ I.
For any x 2 V , with r

x

, s

x

as defined in Section 2, we have,

s

x

= v

x + r

x

. (3)

From [6, Proposition 1]

Result 2 Let � = (V,E) be a graph, A an adjacency matrix, R� its associated reflexive graph.
Let p be any prime, C = C

p

(A), and RC = C

p

(RA).
If C = RC

?, then C and RC are LCD codes. Further, if v 2 FV

p

, then

v =
X

x2V
v(x)vx = �

X

x2V
v(x)r

x

+
X

x2V
v(x)s

x

= v⇧
C

+ v⇧
C

? ,

where v⇧
C

= �P
x2V v(x)r

x

and v⇧
C

? =
P

x2V v(x)s
x

. In particular, if p = 2 and if v 2 C,
T = Supp(v) then v =

P
x2T r

x

, and similarly if v 2 C

?, R = Supp(v) then v =
P

x2R s

x

.

1
Note typographical error on p.338, l.-11, in [8]

2
Note typographical error on p.341, l.-7, in [8]
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Thus the map '̃ in Result 1 for an RLCD code from an adjacency matrix A becomes, for
v 2 FV

p

:

'̃(v) = �
X

x2V
v(x)r

x

+ '(
X

x2V
v(x)s

x

),

given the map ' : RC 7! C as described.
For RLCD codes we can define the map ' partially and deduce a decoding algorithm for such

codes, as described below.

Lemma 1 Let C = C2(�) be the RLCD binary code from an adjacency matrix A for the graph
� = (V,E). Suppose C has minimum distance d and t = bd�1

2 c.
1. For J ⇢ V with |J |  t, the word in C closest to

P
x2J sx is

P
x2J rx, distant |J | fromP

x2J sx.

2. For |J |  t the map ' of Result 1 can be uniquely defined by '(
P

x2J sx) =
P

x2J rx.

3. If w =
P

x2J sx where |J |  t and also w =
P

x2K s

x

where |K|  t, then K = J

Proof: For |J |  t, K ✓ V , and J�K the symmetric di↵erence of J and K,

d(
X

x2J
s

x

,

X

x2K
r

x

) = wt(
X

x2J
s

x

+
X

x2K
r

x

) = wt(vJ +
X

x2J�K

r

x

)

= |J |+wt(
X

x2J�K

r

x

)� 2wt(vJ \
X

x2J�K

r

x

)

� |J |+ (2t+ 1)� 2|J | = 2t+ 1� |J | � t+ 1

unless K = J , and the statements (1), (2) above follow.
For (3), suppose

P
x2J sx =

P
x2K s

x

. Then
P

x2J�K

s

x

= 0. Thus vJ�K =
P

x2J�K

r

x

2 C.
However, C has minimum distance d � 2t+1, so we must have |J�K| � 2t+1. This is impossible
since both J and K have size at most t. ⌅

This lemma allows for an algorithm to decode an RLCD code C = C2(�) using the partial
definition of ' for sums of at most t rows s

x

as introduced in Lemma 1(2), provided that it is
assured that no more than t errors can occur in the communication system.

We need first another lemma:

Lemma 2 Let C = C2(�) have minimum distance d and t = bd�1
2 c. If the transmitted word from

C has no more than t errors, it can be correctly decoded.

Proof: Suppose c 2 C is sent and w = v

S = c + v

J is received, where |J |  t. Then w =P
x2S r

x

+
P

x2S s

x

= c+
P

x2J rx+
P

x2J sx, so
P

x2S r

x

= c+
P

x2J rx and
P

x2S s

x

=
P

x2J sx.
By Lemma 1(3) the set J is unique, so if such a set J can be found to satisfy

P
x2S s

x

=
P

x2J sx
then the corrected word '̃(w) =

P
x2S r

x

+'(
P

x2J sx) =
P

x2S r

x

+
P

x2J rx = c, from what we
said above. ⌅

To find the set J that will satisfy this we first compute separately all the sums
P

x2K s

x

for
every subset K ⇢ V of size k where 1  k  t. Let S

k

= {P
x2K s

x

| K ⇢ V, |K| = k}, for
1  k  t.
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Suppose w = v

S is the received word and that s  t errors have occured. Form the sum
v =

P
x2S s

x

. If v = 0 then no errors have occurred. If v 6= 0 then we check the sets S
k

to see
if v 2 S

k

, starting with k = 1 and then increasing k to s. Checking v against a vector involves
n = |V | computations and since |S

k

| = �
n

k

�
the worst case that can occur is that we need to make

n

P
s

k=1

�
n

k

�
computations. This involves O(ns+1) computations. Once a set J is found such that

v =
P

x2J sx, we decode as
P

x2S r

x

+
P

x2J rx = v

S+v

J , which involves at most n computations,
so that the worst case complexity remains at O(ns+1). For corrections up to the maximum for
the code, i.e. s = t, this would be O(nt+1). For a small number of errors s this could be feasible.

Note: If the system allows more errors, then this method will not necessarily correct the received
vector since one can have

P
x2J sx =

P
x2K s

x

where |J | > t and |K|  t. Since the set K will be
unique, from what we showed above, the received word will be decoded incorrectly and the error
will not be detected. However, if d is even, as in the graphs we study here, d = 2t+2 then if t+1
errors occur, the fact that there are errors will be detected, since if

P
x2J sx =

P
x2K s

x

where
|J | = t+ 1 and |K|  t, then |J�K|  2t+ 1 and thus vJ�k cannot be a codeword. Thus in this
case the set K will not be found, which will show that more than t errors have occurred.

Example: The binary code C from the graph P⇤(72) has parameters [49, 24, 10]2 and thus will
correct up to four errors, and, from what we said above, it will be able to detect five errors. With
Magma the code was constructed, and the four sets of vectors S

k

for k = 1, 2, 3, 4 constructed
and stored. A random vector c from C was chosen, and then a random subset T of size k  4
from the set of labelled vertices {1, . . . , 49} was taken. The word c + v

T was then considered to
be the received vector, and its support S obtained. The vector v =

P
x2S s

x

was formed and
Magma then searched through the sets S

k

for k = 1, 2, 3, 4 to find v. When the vector was found
the decoding as explained above correctly gave the original vector c 2 C. When five errors were
introduced and the set S5 also examined, no vector was found, so decoding was not achieved, and
thus we deduced that more than four errors had occurred.

The following two links give the Magma routine and the results of a run for P⇤(72).
http://cecas.clemson.edu/~keyj/Key/PeisertDecode49.m

http://cecas.clemson.edu/~keyj/Key/run49.txt

4 The graphs

The Peisert graphs P⇤(q) are defined in [10]:

Definition 3 Let q = p

2t where p is prime and p ⌘ 3 (mod 4). If ! is a primitive root of F
q

, let

M = h!4i [ !h!4i = {!j | j ⌘ 0, 1 (mod 4)}. (4)

The graph P⇤(q) = (V,E), where V = F
q

, has adjacency defined by x ⇠ y if and only if (x� y) 2
M .

It follows that q ⌘ 1 (mod 8), F⇥
p

⇢ M , and it is shown in [10] that P⇤(q) is a self-complementary

symmetric graph, strongly regular with parameters (q, q�1
2 ,

q�5
4 ,

q�1
4 ).

As mentioned in Section 2, we will write r
x

= {x+y | y 2 M} and s

x

= {x}[{x+y | y 2 M}.
Peisert [10] determines the automorphism group of P⇤(q) and we summarise his results from

Theorem 3.1 and Lemma 4.1 in [10] as follows:
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Result 3 If � = P⇤(q) where q = p

2t, p is prime, p ⌘ 3 (mod 4),and ! is a primitive root of
F
q

, then, apart from q = 32, 72, 92 (where there are further automorphisms), A = Aut(P⇤(q)) has
order qt(q� 1)/2 and is generated by the translations T and the automorphisms � : x 7! !

4
x and

� : x 7! !x

p. In addition, if pt ⌘ 1 (mod 4) then the involution x 7! x

p

t
is also in Aut(P⇤(q)).

Further, A is a rank-3 primitive permutation group with the two orbits of A
a

, where a 2 F
q

,
consisting of those elements adjacent to a as one orbit, and those not adjacent to a as the other.

The automorphisms � and � of P⇤(q) have order q�1
4 and 2t(p � 1), respectively. Further,

�

2t = �

q�1
4(p�1) and |h�, �i| = t(q�1)

2 .
Generalized Peisert graphs GP⇤(q) that give strongly regular graphs with the same parameters

are defined in [9]:

Definition 4 Let q = p

2t where p is an odd prime, and let n = p

t + 1. If ! is a primitive root of
F
q

, let

c
M = {!i+kn | k 2 Z, 0  i  n

2
� 1} =

[̇
0in

2�1
!

i

F

⇥
, (5)

where F = F
p

t , so F

⇥ = h!ni. The graph GP⇤(q) = (V,E), where V = F
q

, has adjacency defined

by x ⇠ y if and only if (x� y) 2 c
M .

As for the Peisert graphs, it follows that q ⌘ 1 (mod 8), F⇥
p

⇢ c
M , and it is shown in [9] that

GP⇤(q) is strongly regular with parameters (q, q�1
2 ,

q�5
4 ,

q�1
4 ).

So here, r
x

= {x+ y | y 2 c
M} and s

x

= {x} [ {x+ y | y 2 c
M}.

From [3, (2.18)Theorem], for example, we have the eigenvalues and multiplicities for these
strongly regular graphs, where the �

i

are the eigenvalues for an adjacency matrix A and �

⇤
i

those
for A+ I:

• �0 =
1
2(q � 1), �⇤

0 =
1
2(q + 1), m0 = 1;

• �1 =
1
2(�1 + p

t), �⇤
1 =

1
2(1 + p

t), m1 =
1
2(q � 1);

• �2 =
1
2(�1� p

t), �⇤
2 =

1
2(1� p

t), m2 =
1
2(q � 1).

Lemma 3 Let � = GP⇤(q), where q = p

2t, n = p

t + 1. Then Aut(�) contains the subgroup G of
A�L1(q) generated by the translations T , the automorphisms � : x 7! !

n

x and � : x 7! !

n/2�1
x

p

t

and of order 2q(pt � 1).

Proof: Clearly G contains T of order q, and � 2 G0, of order (pt�1). It is easy to verify that � is
in Aut(�), and � 2 G0. Now note that �2 = �

n/2�1, and that |�| = 4. Thus |h�, �i| = 4(n�2)/2 =
2(pt � 1), and |G| = 2q(pt � 1). ⌅
Note: Computations with Magma [4, 2] indicate that for q � 132, G = Aut(�). For smaller q,
other automorphisms can be found: for q = 112, the map ⌧ : x 7! !

10
x

11 is an involution and
is not in h�, �i. The full automorphism group is not given in [9], but it is proved there in [9,
Lemma 5.3.5] that GP⇤(q) is self-complementary. It does not seem to be symmetric for q � 34

as computations with Magma indicate. It is thus likewise, from [10, Lemma 4.1], not rank-3 for
q � 34.
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5 The codes from the graphs

In [6, Corollary 2,(3)] the following is shown for the Paley graphs and follows for any graphs with
the same parameters, and hence for the Peisert and generalized Peisert graphs:

Result 4 If � = P (q), the Paley graph with parameters (q, 12(q � 1), 14(q � 5), 14(q � 1)), where
q ⌘ 1 (mod 4), then for any prime p, C

p

(�) is RLCD of dimension 1
2(q � 1) for p = 2 and

q ⌘ 1 (mod 8), or for p odd and q ⌘ 1 (mod p).

Since q ⌘ 1 (mod 8) for the Peisert and the generalized Peisert graphs, the binary codes are
always RLCD. Ternary codes will be RLCD if q ⌘ 1 (mod 3). We will deal with the binary
codes in this section and discuss the ternary codes when they are RLCD in the next.

For the Peisert graph, as in [11], let us write C0 = h!4i and C1 = !h!4i and so

M = C0 [ C1 = h!4i [ !h!4i. (6)

In the following we use notation for codewords as in [1, Definition 1.2.5], described in Section 2,
and in particular we write v

S for the word in the space F

⌦ with support S ✓ ⌦.
The following proposition shows that the word v

C0 is in C2(P⇤(q)) when p

t ⌘ 1 (mod 4).

Proposition 1 Let � = P⇤(q), where q = p

2t, p is prime, p ⌘ 3 (mod 4), and so q ⌘ 1 (mod 8).
Let A be an adjacency matrix for � and r

x

the row corresponding to x 2 F
q

. Over F2, let
u =

P
x2C0

r

x

. Then for x 2 C0, u(x) = 1. In addition, u(0) = 0 and for all k,m, u(!4k+1) = 0,

and u(!4k+2) = u(!4m+3).
If pt ⌘ 1 (mod 4), then u(!4k+2) = u(!4m+3) = 0 for all k,m, so Supp(u) = C0, and thus

C2(P⇤(q)) has words of weight q�1
4 for p

t ⌘ 1 (mod 4).

Proof: Let x 2 C0. Then x 2 r

y

for y 2 C0, i.e. x 2 N(y), if x = y + z where z 2 M .
So suppose x 2 r

y

, i.e. x = y + z, where x, y 2 C0 and z 2 M . Then xy

�1
x = x+ xy

�1
z, i.e.

x = x

2
y

�1 � xy

�1
z, and x

2
y

�1 2 C0, �xy

�1
z 2 M , so x 2 r

x

2
y

�1 .
Now y and x

2
y

�1 are distinct unless y

2 = x

2, i.e. y = ±x. Clearly y 6= x, but we can have
y = �x since x = �x+ 2x where �x 2 C0 and 2x 2 M . This follows since F⇥

p

⇢ C0, due to the

fact that F⇥
p

= h!(q�1)/(p�1)i, and with q ⌘ 1 (mod 8) and p ⌘ 3 (mod 4), we have 4 | q�1
p�1 .

Thus r

y

(x) = 1 implies that r

x

2
y

�1(x) = 1, in pairs, apart from r�x

(x) = 1. Thus u(x) = 1
for x 2 C0.

Note that 0 2 r

y

for y 2 C0 and thus u(0) = |C0| ⌘ 0 (mod 2).
Now let x = !

1+4k = y+ z where y 2 C0 and z 2 M . If z 2 C0 then clearly r

y

(x) = r

z

(x) = 1,
so the two entries cancel in the sum u.

So suppose z = !v where v 2 C0. Then x = y + !v = !

1+4k, so xv

�1
!

4k = yv

�1
!

4k + !

1+4k,
so x = �yv

�1
!

4k + !v

�1
!

8k. Thus x 2 N(�yv

�1
!

4k). If �yv

�1
!

4k = y then v = �!

4k, so
x = w

1+4k = y � !

1+4k, so y = 2!1+4k, which is not possible since y 2 C0. Thus the entries in u

at y and �yv

�1
!

4k cancel out, and u(!1+4k) = 0.
Now let x = !

2 and suppose x 2 r

y

where y 2 C0. Thus x = y + z for some z 2 M . If
z = !

4j 2 C0 then with y = !

4i, x = !

4i+!

4j , we have x 2 r

z

and since we cannot have y = z the
entry in r

y

cancels with that in r

z

. Thus we may suppose that x = !

2 = !

4i+!

1+4j . Then !

2p =
!

4ip + !

(1+4j)p. Multiplying both sides of this by !

�(2p�3) gives !3 = !

4ip�2p+3 + !

(1+4j)p�2p+3.
Using the fact that p ⌘ 3 (mod 4), we have 4ip � 2p + 3 ⌘ 1 (mod 4), and (1 + 4j)p � 2p +
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3 ⌘ 0 (mod 4), thus showing that for !2 2 r

!

4i there corresponds a row r

z

for some z 2 C0, with
!

3 2 r

z

. Similarly, for !

3 = !

4i + !

1+4j we have !

3p = !

4ip + !

(1+4j)p, and multiplying both
sides by !

�(3p�2) gives !

2 = !

4ip�3p+2 + !

(1+4j)p�3p+2. Since 4ip � 3p + 2 = 1 + 4 ⌘ 1 (mod 4)
and (1 + 4j)p � 3p + 2 ⌘ 0 (mod 4) we have !

3 in a row r

x

for x 2 C0 giving a corresponding
!

2 in a row r

y

for y 2 C0, we have the entries in u occurring in pairs, and thus we must have
u(!2) = u(!3). Since u(x!4k) = u(x) for any x, this completes the assertion.

For the final assertion, suppose !3 = !

4i+!

1+4j , i.e. w3 2 r

w

4i . Then !

3pt = !

4ipt +!

p

t(1+4j).
Multiply both sides by w

�(3pt�3) gives w

3 = w

4ipt�3(pt�1) + w

p

t+4jpt�3(pt�1). If pt ⌘ 1 (mod 4),
this gives 4ipt � 3(pt � 1) ⌘ 0 (mod 4) and 1 + 4jpt � 3(pt � 1) ⌘ 1 (mod 4). Thus if z =
w

4ipt�3(pt�1), then w

3 2 r

z

. If z = w

4i then w

4ipt�3(pt�1) = w

4i, so (w4i�3)p
t�1 = 1, so that

w

4i�3 2 F
p

t and hence (pt + 1) | (4i � 3). This is impossible, so the rows in which w

3 occurs,
occur in pairs, and thus u(w3) = 0, and hence u(!4k+2) = u(!4m+3) = 0 from the first part. ⌅
Note: 1. Computation with Magma indicates that vC0 62 C2(P⇤(q)) for pt ⌘ 3 (mod 4) in general.

2. For the graph P⇤(q) where q = p

2t with ! a primitive element for F⇥
q

, since F⇥
p

= h! q�1
p�1 i, it

follows that F⇥
p

⇢ C0. If pt ⌘ 3 (mod 4) then also F⇥
p

t ⇢ C0.

In the following proposition we construct words of weight 2(pt � 1) = 2(
p
q � 1) in C2(P⇤(q))

when p

t ⌘ 3 (mod 4).

Proposition 2 Let � = P⇤(q), where q = p

2t, p is prime, p ⌘ 3 (mod 4), and suppose that
p

t ⌘ 3 (mod 4). Let A be an adjacency matrix for � and r

x

the row corresponding to x 2 F
q

, and
let C be the binary code of �. Let K = F

q

, F = F
p

t .
Then the word w with support S = F

⇥ [ !F

⇥ of weight 2(pt � 1) is in C, and

w = v

S =
X

x2F⇥[!F⇥

r

x

.

Proof: We first remark that if we can show that w = v

S is in C then it will necessarily be the
sum of the rows shown, by Result 2 since C is RLCD by Result 4.

We consider the field K = F
q

as a quadratic extension of the field F = F
p

t . The elements of

K can be written as a!+ b, where a, b 2 F . Since F⇥ = h!p

t+1i, and p

t ⌘ 3 (mod 4), let us write

m = p

t+1
4 , and note that F⇥ ⇢ C0. Then

C0 = F

⇥ [
[̇m�1

i=1
F

⇥(a
i

! + b

i

), C1 = !C0 = !F

⇥ [
[̇m�1

i=1
F

⇥(c
i

! + d

i

),

and

C2 = !

2
C0 =

[̇m

i=1
F

⇥(e
i

! + f

i

), C3 = !

3
C0 =

[̇m

i=1
F

⇥(g
i

! + h

i

),

where a

i

, b

i

, c

i

, d

i

, e

i

, f

i

, g

i

, h

i

2 F

⇥, and each of the C

i

are partitioned into m disjoint sets of size
p

t � 1, consisting of all the multiples of an element of C
i

by elements of F⇥.
We show that w =

P
x2F⇥[!F⇥ r

x

has support S as asserted. We look at the value of w(u)
for each u 2 K. Recall that u 2 r

x

(i.e. u 2 N(x)) if and only if u = x+ y where y 2 M . Clearly
0 2 N(x) for all x 2 S, so w(0) = 2(pt � 1) = 0. We consider the non-zero cases.
(i) u = a 2 F

⇥.
Then a = b+ (a� b), so a 2 r

b

for b 6= a, and occurs pt � 2 times.
If a 2 r

b!

then a = b! + y where y 2 M . Clearly y cannot be in F

⇥ nor in !F

⇥.
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If y = ↵(c! + d) 2 C0, then a = b! + ↵(c! + d) for a = ↵d and b = �↵c = �ac/d. So
a 2 r�(ac/d)! for each of the m� 1 distinct elements c! + d in C0.

Now suppose y = ↵(e! + f) 2 C1. Then similarly we obtain a 2 r�(ae/f)! for each of the
m� 1 distinct elements e! + f in C1.

Thus the 2(m� 1) entries cancel, and w(a) = 1 for all a 2 F

⇥.
(ii) u = a! 2 !F

⇥.
Then u = a! = b! + (a� b)!, so a! 2 r

b!

for each b 6= a, and occurs pt � 2 times.
If u = a! 2 r

b

then a! = b+y where y 2 M . So if y = ↵(c!+d) 2 C0 then a! = b+↵(c!+d),
and a = ↵c, b = �↵d. Thus b = �ad/c, and a! 2 r�ad/c

, and this is for each of them�1 partitions
in C0. Similarly if y = ↵(e! + f) 2 C1 we have a! 2 r�af/e

, for each of the m � 1 partitions in
C1. Hence they cancel. Thus w(a!) = 1 for all a 2 F

⇥.
(iii) u = a! + b 2 C0 \ F⇥, a, b 2 F

⇥.
If u 2 r

c

where c 2 F⇥, then u = a! + b = c + y where y 2 M . Clearly we cannot have y 2 F

⇥.
If y = d!, then a! + b = c+ d!, so d = a and c = b, i.e. u 2 r

b

, and u 2 r

a!

.
If y = ↵(d! + e) 2 C0, but not a scalar multiple of u, then a! + b = c+ ↵(d! + e) so a = ↵d

and b = c + ↵e = c + ae/d, so c = b � ae/d and u 2 r

c

for each such y 2 C0. Clearly if d! + e

is not a scalar multiple of d1! + e1, then e/d 6= e1/d1, so the m� 2 rows are di↵erent. Including
also the row r

b

, gives m� 1 rows.
Similarly if y = ↵(f!+g) 2 C1 we obtain u 2 r

c

for c = b�ag/f , and we have m�1 of these.
Thus these 2(m� 1) entries cancel for the rows r

c

for c 2 F

⇥.
Now consider u 2 r

c!

. Then u = c! + y where y 2 M . The case y = d 2 F

⇥ occurs for
u = a! + b = c! + d, i.e. c = a and d = b, so u 2 r

a!

, as already noted above.
If y = ↵(d!+ e) 2 C0, but not a scalar multiple of u, then a!+ b = c!+↵(d!+ e), so b = ↵e,

a = c+ ↵d, and so c = a� bd/e. Thus u 2 r

c!

for these m� 2 elements of C0, and together with
r

a!

, gives m� 1 rows in this set.
Similarly if y = ↵(f! + g) 2 C1 we obtain u 2 r

c!

for c = b � ag/f , and we have m � 1 of
these. Thus these 2(m� 1) entries cancel for the rows r

c!

for c 2 F

⇥.
Thus w(a! + b) = 0 for a! + b 2 C0 \ F⇥.

(iv) u = a! + b 2 C1 \ !F⇥, a, b 2 F

⇥.
Again clearly u 2 r

b

, r

a!

.
For other rows r

c

, if u = a! + b = c + y for y 2 M , for y = ↵(d! + e) 2 C0 we get m � 1
solutions arguing as in (iii) above, and for y = ↵(d!+ e) 2 C1, but not a scalar multiple of u, we
get m� 2 solutions. Including also r

b

then gives 2(m� 1) solutions as in (iii).
For other rows r

c!

, consider cases in the same way, and again we get 2(m� 1) solutions, and
thus w(a! + b) = 0 for a! + b 2 C1 \ !F⇥.
(v) u = a! + b 2 !

2
M , a, b 2 F

⇥.
First, clearly, u 2 r

b

, r

a!

. Then it follows precisely as in the preceding cases that u 2 r

c

for each
of the 2(m� 1) members of M excluding F

⇥ [!F

⇥. This gives 1+2(m� 1) rows. However if we
now count in the same way the rows r

c!

containing u, we get another 1 + 2(m � 1) rows. Thus
they cancel out and w(u) = 0 as required. ⌅
Note: In this and the following propositions, to show that v

S 2 RC,C, one could have shown
directly that (r

x

, v

S) ⌘ 0 (mod 2) (respectively (s
x

, v

S) ⌘ 0 (mod 2)) for all x 2 K. However, this
requires the cases as we have considered above, so does not apparently provide any simplification
of the proof.
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Next we construct words of weight 2(pt � 1) in C2(GP⇤(q)) for p

t ⌘ 1, 3 (mod 4) and words
of weight pt in RC2(GP⇤(q)) for pt ⌘ 1 (mod 4).

Proposition 3 Let � = GP⇤(q), where q = p

2t, p is prime. Let c
M be as in Equation (5),

n = p

t + 1. Let A be an adjacency matrix for � and r

x

, s

x

the row corresponding to x 2 F
q

in A

and A+ I, respectively. Let C be the binary code of � and RC that of the reflexive graph R�. Let
K = F

q

, F = F
p

t .

1. If pt ⌘ 3 (mod 4), the word w with support S = F

⇥ [ !F

⇥ of weight 2(pt � 1) is in C and

w = v

S =
X

x2F⇥[!F⇥

r

x

.

2. If pt ⌘ 1 (mod 4), u1, u2 62 c
M , u1 6= u2, then the word w with support S = u1F

⇥ [ u2F
⇥ of

weight 2(pt � 1) is in C and

w = v

S =
X

x2u1F
⇥[u2F

⇥

r

x

.

3. If pt ⌘ 1 (mod 4), then the word w with support F and weight pt is in RC = C

? and

w = v

F =
X

x2F
s

x

.

Proof: As remarked in the proof of Proposition 2 if we can show that w = v

S is in C, respectively
v

F in RC, then it will necessarily be the sum of the rows shown, by Result 2 since C is RLCD

by Result 4.
As in Proposition 2 we consider the field K = F

q

as a quadratic extension of the field F = F
p

t ,

so that the elements of K can be written as a! + b, where a, b 2 F . Since F

⇥ = h!p

t+1i, the
defining set c

M for � can be written

c
M =

[̇
0in

2�1
!

i

F

⇥ = F

⇥ [ !F

⇥ [
[̇m

i=1
F

⇥(a
i

! + b

i

), (7)

where m = n

2 � 2 = p

t+1
2 � 2 = p

t�3
2 , and the a

i

, b

i

2 F

⇥ are non-zero.
(1) We first take the case p

t ⌘ 3 (mod 4) and show that w =
P

x2F⇥[!F⇥ r

x

is v

S , where S =
{a | a 2 F

⇥} [ {!a | a 2 F

⇥}. We look at the value of w(u) for each u 2 K. Recall that

u 2 r

x

(i.e. u 2 N(x)) if and only if u = x + y where y 2 c
M . Clearly 0 2 N(x) for all x 2 S, so

w(0) = 2(pt � 1) = 0. We consider the non-zero cases.
(i) u = a 2 F

⇥.

If u 2 r

b

then a = b + y where y 2 c
M . Clearly y = a � b will satisfy this and that u 2 r

b

for all
b 2 F

⇥ \ {a}, so it occurs in p

t � 2 ⌘ 1 (mod 2) rows r
b

.

If u 2 r

b!

then a = b! + y for y 2 c
M . Clearly y 62 F

⇥ [ !F

⇥. If y = ↵(a
i

! + b

i

), then
a = b! + ↵(a

i

! + b

i

), so a = ↵b

i

and b! = �↵a

i

, so b = �aa

i

/b

i

will have a 2 r

b!

, and this will

occur for each of the n

2 � 2 partitions, giving an extra n

2 � 2 = p

t�3
2 ⌘ 0 (mod 2) non-zero entries.

Thus from the first pt � 2 rows we get w(a) = 1.
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(ii) u = a!, a 2 F

⇥.

If u 2 r

b

, then a! = b + y for some y 2 c
M . Clearly y 62 F

⇥ [ !F

⇥. If a! = b + ↵(a
i

! + b

i

)
then b = �ab

i

/a

i

, and we get a solution for each of the n

2 � 2 values of i which again gives zero
contribution to the value of w(u).

For u 2 r

b!

, we have u = a! = b! + (a � b)!, so u 2 r

b!

for all b 6= a, and thus for p

t � 2
values, giving w(a!) = 1.

(iii) u = ↵(a
i

! + b

i

) 2 c
M \ (F⇥ [ !F

⇥), ↵ 2 F

⇥.
Clearly u 2 r

↵bi and u 2 r

↵ai!.

If u 2 r

a

, then ↵(a
i

! + b

i

) = a + y for some y 2 c
M . Clearly y 62 F

⇥. If y = c! then
↵(a

i

! + b

i

) = a + c! giving c = ↵a

i

, a = ↵b

i

, already noted. If y = �(a
j

! + b

j

) then a =

↵(b
i

�a

i

b

j

/a

j

). The number of such choices in n

2 �3 = p

t�1
2 ⌘ 1 (mod 2), but including r

↵bi gives
0.

If u 2 r

a!

, then we have u 2 r

↵ai! mentioned above. If ↵(a
i

! + b

i

) = a! + y for some y 2 c
M

where y = �(a
j

! + b

j

), then ↵a

i

= a + �a

j

and ↵b

i

= �b

j

, giving a = ↵(a
i

� a

j

b

i

/b

j

). A count
similar to the above gives an odd number, but again including r

↵ai! gives w(u) = 0.

(iv) u = a! + b 2 K

⇥ \ c
M , a, b 2 F

⇥.
Clearly u 2 r

a!

, r

b

.
If u 2 r

c

then u = a!+b = c+y for some y 2 c
M . So y = ↵(a

i

!+b

i

), and a = ↵a

i

, b = c+↵b

i

.
Thus c = b � ab

i

/a

i

. The number of such choices for c is n

2 � 2 ⌘ 0 (mod 2), so an odd number
including r

b

.
If u 2 r

c!

, u = a!+ b = c!+ y for some y 2 c
M . So y = ↵(a

i

!+ b

i

), and a = c+↵a

i

, b = ↵b

i

.
Thus c = a � ba

i

/b

i

and the number of choices for c is n

2 � 2 ⌘ 0 (mod 2), so an odd number
including r

a!

. Combined these give an even number and thus w(u) = 0.
This completes the first assertion of the proposition. For the second part, the arguments are

similar but there are some di↵erences.
(2) Now take pt ⌘ 1 (mod 4), and show that w =

P
x2u1F

⇥[u2F
⇥ r

x

is vS . We look at the value of
w(u) for each u 2 K. First notice that w(0) = 0 since 0 62 u1F

⇥
, u2F

⇥. Suppose u1 = c1! + d1,
u2 = c2! + d2.
(i) u = au1 or u = au2, a 2 F

⇥.

If u = au1 2 r

cu1 then a(c1! + d1) = c(c1! + d1) + y for y 2 c
M , where c 6= a. Clearly y 6= d, d!

for d 2 F . Suppose y = d(a
i

! + b

i

), d 2 F

⇥. Then ac1 = cc1 + da

i

and ad1 = cd1 + db

i

, and

(a� c)c1 = da

i

, (a� c)d1 = db

i

, so c1/d1 = a

i

/b

i

which is impossible since u1 62 c
M . So u1 62 r

cu1

for any c 2 F

⇥.
If u 2 r

cu2 then a(c1! + d1) = c(c2! + d2) + y for y 2 c
M . If y = d 2 F

⇥ then a(c1! + d1) =
c(c2! + d2) + d, so ac1 = cc2, ad1 = cd2 + d, and c = ac1/c2, d = ad1 � cd2 will give a solution.
Similarly y = d! for d 2 F

⇥ gives a(c1!+ d1) = c(c2!+ d2) + d!, so ac1 = cc2 + d, ad1 = cd2, so
c = ad1/d2 with d = ac1 � cc2 will give a solution.

If y = d(a
i

!+b

i

) where d 2 F

⇥, then a(c1!+d1) = c(c2!+d2)+d(a
i

!+b

i

), and ac1 = cc2+da

i

,

ad1 = cd2 + db

i

. Solving gives c = a(d1ai�c1bi)
d2ai�c2bi

. Thus there are n

2 = p

t+1
2 ⌘ 1 (mod 2) solutions so

w(au1) = 1 for all a 2 F

⇥. Likewise w(au2) = 1 for all a 2 F

⇥.
(ii) u = a 2 F

⇥.

If u 2 r

cu1 then a = c(c1! + d1) + y for y 2 c
M . Clearly y 62 F

⇥. If y = d! then a = cd1 and
cc1 + d = 0. Thus c = a/d1 gives a solution, and a = a

d1
(c1! + d1)� ac1

d1
!.

If y = d(a
i

!+ b

i

), then a = c(c1!+ d1)+ d(a
i

!+ b

i

), so a = cd1+ db

i

and cc1+ da

i

= 0. This
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has the solution c = aai
d1ai�c1bi

for each of the values of i. This gives n

2 � 1 ⌘ 0 (mod 2) entries.
The same holds for the second set of rows r

cu2 , and thus w(a) = 0.
(iii) u = a! 2 !F

⇥.

If u 2 r

cu1 then a! = c(c1!+d1)+y for y 2 c
M . Clearly y 62 !F

⇥. If y = d then a! = c(c1!+d1)+d

so a = cc1 and cd1 + d = 0, giving the solution c = a/c1.
If y = d(a

i

! + b

i

), then a! = c(c1! + d1) + d(a
i

! + b

i

), so a = cc1 + da

i

and cd1 + db

i

= 0,
giving the solution c = abi

c1bi�d1ai
. This gives n

2 � 1 ⌘ 0 (mod 2) entries. The same holds for the
second set of rows r

cu2 , and thus w(a!) = 0.

(iv) u = a(a
i

! + b

i

) 2 c
M , a 2 F

⇥.

If u 2 r

cu1 then a(a
i

!+b

i

) = c(c1!+d1)+y for y 2 c
M . If y = d then aa

i

= cc1 and ab

i

= cd1+d,
so c = aa

i

/c1 gives a solution. If y = d! then aa

i

= cc1 + d and ab

i

= cd1, giving c = ab

i

/d1 as a
solution.

If y = d(a
j

! + b

j

) then a(a
i

! + b

i

) = c(c1! + d1) + d(a
j

! + b

j

) so clearly j 6= i. This gives a
solution for c for each j 6= i, and thus we have n

2 � 1 ⌘ 0 (mod 2) for the entry from the first set
of rows. We have the same argument for the second set of rows, so w(u) = 0.

(v) u = a! + b 62 c
M, 6= u1F

⇥
, u2F

⇥.

If u 2 r

cu1 then a! + b = c(c1! + d1) + y for y 2 c
M . If y = d then a = cc1 and b = cd1 + d,

so c = a/c1 and d = b � ad1/c1. If y = d! then c = b/d1 will give a solution. Similarly if
y = d(a

j

!+ b

j

) then a!+ b = c(c1!+d1)+d(a
j

!+ b

j

) will give a solution from a = cc1+da

j

and

b = cd1 + db

j

, i.e. c = baj�abj

d1aj�c1bj
. Thus there are n

2 ⌘ 1 (mod 2) solutions, but the same number

from the second set of rows r
cu2 , and hence w(u) = 0. This completes the proof of (2).

(3) Now take p

t ⌘ 1 (mod 4), and show that w =
P

x2F s

x

is v

F . We look at the value of w(u)
for each u 2 K. Since 0 2 s

x

for all x 2 F , we have w(0) = p

t ⌘ 1 (mod 2).
(i) u = a 2 F

⇥.
Here a 2 s

a

, and a 2 s

b

for all b 6= a 2 F

⇥, so it occurs pt � 1 ⌘ 0 (mod 2) times, and w(a) = 1
for all a 2 F .
(ii) u = a!, a 2 F

⇥.

As in the previous case for C, we have a! 2 s

b

for n

2�2 values of b, and thus occurs p

t�3
2 ⌘ 0 (mod 2)

times. Since also a! 2 s0, we have w(a!) = 0.

(iii) u = ↵(a
i

! + b

i

) 2 c
M \ (F⇥ [ !F

⇥), ↵ 2 F

⇥.
Clearly u 2 s

↵bi and u 2 s0.

If u 2 s

a

, then ↵(a
i

! + b

i

) = a + y for some y 2 c
M . Clearly y 62 F

⇥. If y = c! then
↵(a

i

! + b

i

) = a + c! giving c = ↵a

i

, a = ↵b

i

, already noted. If y = �(a
j

! + b

j

) then a =

↵(b
i

� a

i

b

j

/a

j

). The number of such choices is n

2 � 3 = p

t�5
2 ⌘ 0 (mod 2), and including s

↵ai and
s0 gives ⌘ 0 (mod 2), so w(u) = 0.

(iv) u = a! + b 2 K

⇥ \ c
M .

Clearly u 2 s

b

and u 62 s0. Also a, b 6= 0.
If u 2 s

c

then u = a!+b = c+y for some y 2 c
M . So y = ↵(a

i

!+b

i

), and a = ↵a

i

, b = c+↵b

i

.

Thus c = b � ab

i

/a

i

. The number of such choices for c is n

2 � 2 ⌘ n

2 = p

t+1
2 ⌘ 1 (mod 2), so

⌘ 0 (mod 2) including s

b

. Thus w(u) = 0.
This completes the proof of the proposition.⌅
In the following proposition we construct words of weight pt for pt ⌘ 3 (mod 4), in RC2(P⇤(q))

and of the same form in RC2(GP⇤(q)).
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Proposition 4 Let � = P⇤(q) or GP⇤(q), where q = p

2t, p is prime, p ⌘ 3 (mod 4) for �, and
suppose that pt ⌘ 3 (mod 4). Let A be an adjacency matrix for � and r

x

, s

x

the row corresponding
to x 2 F

q

in A and A+ I, respectively. Let C be the binary code of � and RC that of the reflexive

graph R�. Let M and c
M be as defined above for the two types of graph. Let F = F

p

t , K = F
q

.

Then the word with support yF , where y 62 M,

c
M , respectively, is in RC.

Proof: We will consider the two graphs simultaneously. The proof follows in a similar manner to
the previous propositions.

Without loss of generality we may assume that ! + b 62 M,

c
M respectively for some b 2 F

⇥,
since M,

c
M are closed under multiplication by F

⇥ for pt ⌘ 3 (mod 4) for M , and for all odd p for
c
M . We show, as before, that w =

P
x2(!+b)F s

x

has support (!+ b)F . We determine the value of

w(u) for each u 2 K, considering the various cases for u. As in the earlier propositions, m = p

t+1
4

for P⇤(q) and n = p

t + 1, with m = p

t�3
2 , for GP⇤(q). Both M and c

M are expressed as disjoint

unions of p

t+1
2 sets of size (pt � 1).

(i) u = c(! + b), where c 2 F .
For u = 0, u 2 s0 but not in s

c(!+b) for any c 6= 0. Likewise, c(!+b) 2 s

c(!+b) but not in s

d

(!+b)

for d 6= c, since clearly (c� d)(! + b) 62 M,

c
M . Thus w(u) = 1 for u 2 (! + b)F .

(ii) u = a 2 F

⇥.

Clearly u 2 s0. If u 2 s

c(!+b), then a = c(! + b) + y for y 2 M,

c
M respectively. Clearly y 62 F

⇥,
but a 2 s

a
b (!+b) taking y = �a

b

!. If y = ↵(a
i

! + b

i

) then a = cb + ↵b

i

and c = �↵a

i

, so
c = aa

i

/(ba
i

� b

i

). The number of such possibilities is thus 2 + 2(m� 1) ⌘ 0 (mod 2) for M and

2 + n

2 � 2 = p

t+1
2 ⌘ 0 (mod 2) for c

M since p

t ⌘ 3 (mod 4). Thus w(a) = 0 for u = a 2 F

⇥.
(iii) u = a!, a 2 F

⇥.

Clearly u 2 s0. If u 2 s

c(!+b), then a! = c(! + b) + y for y 2 M,

c
M respectively. So a! 2

s

a(!+b) taking y = �ab. If a! = c(! + b) + ↵(a
i

! + b

i

) then a = c + ↵a

i

and cb = �↵b

i

, so
c = ab

i

/(b
i

� a

i

b). Thus the number of occurrences is again 2 + 2(m� 1) ⌘ 0 (mod 2) for M and

2 + n

2 � 2 = p

t+1
2 ⌘ 0 (mod 2) for c

M . Thus w(a!) = 0.

(iv) u = ↵(a
i

! + b

i

) 2 M,

c
M , respectively, ↵ 2 F

⇥.

Clearly u 2 s0. If u 2 s

c(!+b), then ↵(a
i

! + b

i

) = c(! + b) + y for y 2 M,

c
M respectively.

If y = d 2 F

⇥, then ↵a

i

= c and ↵b

i

= cb + d. Thus d = ↵(b
i

� a

i

b) and u 2 s

↵ai(!+b). If
y = d! then ↵a

i

= c+ d and ↵b

i

= cb. Thus c = ↵b

i

/b and d = ↵(a
i

� b

i

/b), and u 2 s

↵

bi
b (!+b)

.

If y = �(a
j

! + b

j

), where j 6= i, then ↵a

i

= c+ �a

j

and ↵b

i

= cb+ �b

j

. Thus c = ↵

aibj�ajbi

bj�ajb

and u 2 s

c(!+b) for this value of c.
This gives 3+(m�1)+(m�2) = 2m ⌘ 0 (mod 2) rows for M and 3+ n

2 �3 = n

2 ⌘ 0 (mod 2)

for c
M , so w(u) = 0.

(v) u = a! + d 62 M,

c
M respectively.

Here u 62 s0. If u 2 s

c(!+b), then a! + d = c(! + b) + y for y 2 M,

c
M respectively.

Clearly u 2 s

a(w+b) and s d
b (!+b). Thus take y = ↵(a

i

! + b

i

). Then a! + d = c(! + b) +

↵(a
i

! + b

i

), so a = c+ ↵a

i

and d = cb+ ↵b

i

. Thus c = aid�abi
bai�bi

. The number of solutions is then

2 + 2(m� 1) ⌘ 0 (mod 2) for M , and 2 + n

2 � 2 = n

2 ⌘ 0 (mod 2) for c
M .

This completes the proof.⌅
We summarise our findings from the propositions on small words in the binary codes in the
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following table. In the table u1, u2, y are elements of F
q

that are not in M,

c
M , as required in the

propositions. The field F = F
p

t = Fp
q

, so the words of the form F

⇥[!F

⇥ have weight 2(
p
q�1),

those of the form yF have weight
p
q and for p

t ⌘ 1 (mod 4) those of the form C0 have weight
q�1
4 . Note that only for the case RC2(P⇤(p2t)) where p

t ⌘ 1 (mod 4) have we not been able to
find a small word, although we did find some computationally with Magma for pt = 9, in which
the minimum weight is pt, as it is in all the other cases. The next case is pt = 49 which is harder
to work with computationally.

q = p

2t cong. mod. 4 C2(P⇤(q)) RC2(P⇤(q)) C2(GP⇤(q)) RC2(GP⇤(q))

p

t 3 F

⇥ [ !F

⇥
yF F

⇥ [ !F

⇥
yF

p

t 1 C0 ? u1F
⇥ [ u2F

⇥
F

Table 1: Supports of words of small weight in binary codes for P⇤(q) and GP⇤(q)

We examined with Magma those codes from Peisert and generalized Peisert graphs that are
RLCD and attach tables below for the binary codes. In the cases where p-ary codes for some odd
p give RLCD codes, for those small cases for which the minimum weights could be determined
easily with Magma, there were no di↵erences from the binary codes. All the other items remain
the same over these fields.

The columns of the tables show the value of q, the strongly regular graph parameters, the
order of the automorphism group, the dimension of C2, the dimension of RC2, the minimum
weight of C2, and the minimum weight of RC2. It is clear from the parameters that, for any
prime p for which the codes are RLCD, dim(C

p

(�)) = dim(RC

p

(�))�1 = 1
2(q�1), since in order

to be RLCD we need p|12(q � 1), so the null space, RC

p

(�), has the larger dimension.

q � |Aut(�)| dim(C) dim(RC) MW (C) MW (RC)

32 (9, 4, 1, 2) 2332 4 5 4(4) 3(3)
72 (49, 24, 11, 12) 233272 24 25 10(12) 7(10)
34 (81, 40, 19, 20) 253551 40 41 12(16) 9(14)
112 (121, 60, 29, 30) 223151112 60 61 18(20) 11(20)
192 (361, 180, 89, 90) 223251192 180 181 � 12, 36  19
232 (529, 264, 131, 132) 2331111232 264 265 � 14, 44  23
36 (729, 364, 181, 182) 223771131 364 365 � 16, 52  27
312 (961, 480, 239, 240) 253151312 480 481 � 18, 60  31

Table 2: Peisert graphs P⇤(q) codes over F2

In Tables 2, 3 we include the upper bounds for the minimum weight that follow from the propo-
sitions. In parentheses behind the minimum weights that we have determined are the values of the
best known minimum weights for codes of the those parameters, as given in http://www.codetables.de.
For ternary codes (see Section 6), there are known codes with better minimum weight in all the
computed cases, from the same web database.
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q � |Aut(�)| dim(C) dim(RC) MW (C) MW (RC)

32 (9, 4, 1, 2) 2332 4 5 4(4) 3(3)
52 (25, 12, 5, 6) 233152 12 13 6(8) 5(6)
72 (49, 24, 11, 12) 233272 24 25 10(12) 7(10)
34 (81, 40, 19, 20) 2734 40 41 10(16) 9(14)
112 (121, 60, 29, 30) 2351112 60 61 16(20) 11(20)
132 (169, 84, 41, 42) 2331132 84 85 20(24) 13(24)
172 (289, 144, 71, 72) 25172 144 145  32  17
192 (361, 180, 89, 90) 2232192 180 181  36  19
232 (529, 264, 131, 132) 22111231 264 265  44  23
54 (625, 312, 155, 156) 243154 312 313  48  25
36 (729, 364, 181, 182) 223613 364 365  52  27

Table 3: Generalized Peisert graphs GP⇤(q) codes over F2

6 Ternary codes

By Result 4, p-ary codes from adjacency matrices of strongly regular graphs with parameters
those of the Paley graphs will be RLCD if q ⌘ 1 (mod p). For the ternary codes, if q = p

2t, then
if pt ⌘ 1, 2 (mod 3) we will have q = p

2t ⌘ 1 (mod 3). Thus all of the graphs for which p

t 6= 3r

as considered before will have RLCD codes over F3.
Apart from Proposition 1, all the proofs of the propositions that give us small words in

the binary codes from P⇤(q) and GP⇤(q), as summarized in Table 1, go through with minor
modification for the ternary codes. We show the words in Table 4. In the table u1, u2, y are
elements of F

q

that are not in M,

c
M , as required in the propositions for the binary case. The

field F = F
p

t = Fp
q

, so the words of the form F

⇥ [ !F

⇥ have weight 2(
p
q � 1) and those of the

form yF have weight
p
q. Also note that for the Peisert graphs we will still need p

t ⌘ 3 (mod 4)
for the codes, as we have not settled the reflexive case for the binary codes when p

t ⌘ 1 (mod 4),
and the proof of Proposition 1 for the non-reflexive case does not go through directly to the
ternary case; indeed, by computation we find that the word v

C0 is not in C for small values of
p

t ⌘ 1 (mod 3). Thus for the Peisert case we need t odd. Again, of course, clearly if w = v

S1�v

S2

where S1 = u1F
⇥ and S2 = u2F

⇥ then wt(w) = 2(pt � 1) and if w = v

yF then wt(w) = p

t. In
the table the support S1 � S2 implies the vector vS1 � v

S2 .

q = p

2t cong. mod. 3 C3(P⇤(q)) RC3(P⇤(q)) C3(GP⇤(q)) RC3(GP⇤(q))

p

t 1 u1F
⇥ � u2F

⇥
F u1F

⇥ � u2F
⇥

F

p

t 2 F

⇥ � !F

⇥
yF F

⇥ � !F

⇥
yF

Table 4: Supports of words of small weight in ternary codes for P⇤(q) (t odd) and GP⇤(q)
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7 Lower bound for minimum weight

Using the fact that for pt ⌘ 3 (mod 4), RC

r

(P⇤(q)) for r = 2, 3 contains words with support uF
where F = F

p

t , and u 2 F
q

, we can get a lower bound on the minimum weight of C
r

(P⇤(q)) for
r = 2, 3.

First note a small lemma:

Lemma 4 For K = F
q

where q = p

2t and E any subfield of K, then if u1, u2 2 K are distinct,
u1E \ u2E = {0} or u1E = u2E. Likewise, v1 + u1E and v2 + u2E, for v1, v2 2 K, meet in 0, 1
or |E| elements.

This holds in particular for E = F = F
p

t.

Proof: Suppose x 2 u1E \ u2E. Then x = u1a = u2b where a, b 2 E. Thus u1 = u2b/a, so that
for any c 2 E, u1c = u2cb/a, and so u1E = u2E.

Suppose x, y 2 (v1 + u1E)\ (v2 + u2E). Then x = v1 + u1a1 = v2 + u2a2 and y = v1 + u1b1 =
v2+u2b2, where a1, a2, b1, b2 2 E, so x�y = u1(a1� b1) = u2(a2� b2), and u1 = cu2 where c 2 E.
Thus u1E = u2E and v1 = v2. ⌅

Proposition 5 Let � = P⇤(q), where q = p

2t, p is prime, p ⌘ 3 (mod 4), and suppose that

p

t ⌘ 3 (mod 4). If d is the minimum weight of C
r

(�) where r = 2, 3, then p

t+5
2  d  2(pt� 1) <

q�1
2 .

Proof: Let w 2 C

r

(�) and suppose S = Supp(w), |S| = s. Without loss of generality suppose
that 0 2 S. The word with support uF , where F = F

p

t is in RC

r

(�) for appropriate choice of
u as determined by the earlier propositions. If G = Aut(�) then the stabilizer G0 of 0 has two
orbits, both of length q�1

2 , one being the elements of F⇥
q

that are adjacent to 0, i.e. M , and the
other those that are not, i.e. !2

M . Since � : uF 7! !

4
uF , and � : uF 7! !u

p

F , the sets uF will
be mapped onto sets of the same form, within one or the other orbit. Since G0 is transitive on
elements in each orbit, and the sets of this form do not intersect, the number of sets of the form
(uF )� for � 2 G0, in an orbit will be q�1

2(pt�1) =
p

t+1
2 . Each of these must meet the set S again at

least once, and since these sets do not intersect we must have at least p

t+1
2 +1 elements (including

0) in S. Thus s � p

t+1
2 + 1 = p

t+3
2 .

Now suppose s = p

t+3
2 . The s� 1 sets uF � can be written as u�i

F = u

i

F for i = 1, . . . , s� 1.

Thus if s = p

t+3
2 then we can assume S = {0, u1, . . . , us�1}. For any x 2 S, x+u

k

F is an image of
uF under G and thus is the support of a word in RC

r

(�)? that contains x. It must thus meet S
again and since there are s such sets and s�1 available points (other than x) we must have every
point of S \ {x} on one of these sets. Taking x = u

i

then for every j 6= i there is a k 6= i, j such
that u

j

2 u

i

+ u

k

F . Since u

j

2 u

i

+ u

k

F implies u

i

2 u

j

+ u

k

F , the points of S are partitioned
into pairs {u

i

, u

j

} according as u
j

2 u

i

+u

k

F , with 0 2 u

k

+u

k

F , paired with u

k

. The set S thus

forms a complete graph on s = p

t+3
2 points that has a parallelism for each k. However, p

t+3
2 is

odd, so the complete graph on S cannot have a parallelism. Thus |S| > p

t+3
2 , i.e. |S| � p

t+5
2 . ⌅

Note: 1. Since clearly | 2 RC

r

(�) for both r = 2 or 3, we cannot have the weight of a constant

vector in C

r

(�) not divisible by 2, respectively 3. As already noted p

t+3
2 is odd, and also it is not

divisible by 3 since p

t 6⌘ 0 (mod 3), so it follows from this that |S| � p

t+5
2 .
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2. This bound for the minimum weight of C will apply to the binary codes from the Paley graph
P (q) where q is the square of a prime power, since if F = Fp

q

then v

aF 2 C

? = RC, for some a,
according to [7].
3. The same argument cannot be used for GP⇤(q) for q � 34 as its automorphism group is not,
according to computation, rank-3, as noted at the end of Section 4 above.

The preceding lemmas and propositions give the proof of Theorem 1 stated in Section 1.
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