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Abstract
We show how to find s-PD-sets of the minimal size s+1 for the %, n,q" 1 — q“_l}

q

MacDonald g-ary codes Cy, ,,(¢) where n > 3 and 1 < u < n — 1. The construction of [6]
1

(n—u)(q—1)

for u small; for v > %] an alternative construction is given that applies up to a bound

that depends on the maximum size of a set of vectors in V,,(F,) with each pair of vectors

distance at least 3 apart.

can be used and gives s-PD-sets for s up to the bound | | — 1, of effective use
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1 Introduction

The MacDonald codes, introduced by MacDonald [12] for binary codes, with the definition

extended to g-ary codes in [2| [I5], are punctured simplex codes, of length q:%fu for any n and

1 <u < n—1. They have parameters q::i’ ,n, g — q“_l] and are 2-weight codes with the
non-zero words of weight ¢" ! — ¢*~! and ¢"~!. Following [2](,1 we denote the codes by Cj, ().

In [6] permutation decoding for the simplex codes was considered and s-PD-sets of the min-
imal size s+ 1 were found for s up to some large bound. Since the efficiency of the decoding de-
pends on the size of the PD-set, those of minimal size as determined by the Gordon-Schénheim
bound (see Result [1f) are the best ones to obtain. The ideas behind the establishment of these
PD-sets for the simplex codes can be applied to the MacDonald codes, and we obtain here
some similar results. The automorphism group used for the permutation decoding is a sub-
group of the general linear group and thus described as n x n matrices. A general construction
of suitable matrices allows us to prove a general theorem:

n—1

Theorem 1. For n > 3 and 1 < w < n — 1, q a prime power, let Cy,(q) denote the
[q:;:‘llu n, g — q“_l} , MacDonald q-code. Then Cy,,,(q) has s-PD-sets of size s + 1
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e for all s such that 1 < s < f,_,(F,) = L%J -1
e forn >4 for all s such that 1 < s < |D|—1 where D is a set of vectors in Vy,(F,) which
is such that any two members of D are distance at least 3 apart.

Such s-PD-sets can be explicitly given in terms of matrices in GL,(Fy).

The construction for the first bound is given in Proposition [2| and Corollary [1} using Re-
sult [3| and for the second in Proposition [3| and Corollary 2 The s-PD-sets are all nested in
the sense that if 1 < r < s then any subset of the set of size r + 1 will correct r errors.

Unlike in the simplex case, these sets from Corollary [I] are too small, and therefore correct
too few errors, if u is large. In that case one uses the second construction (of Proposition ,
and particular examples of these arise from any g-ary code of length u and minimum weight at
least 3: for example, the Hamming codes. Other examples exist by finding sets of s+ 1 vectors
in V4,(F,) such that the distance between any two vectors in the set is at least 3.

We describe our notation and give some background definitions in Section [2| and Section
and prove the results on the s-PD-sets of size s + 1 in Section [4] Included as Section [0] is an
appendix giving some tables showing the best size of s for sets of size s+ 1 using our methods,
fora<n<10,1<wu<n-—1,and ¢ =2,3,4,5. Magma [3| 5] was used for any computations,
and in particular to find the sets in the case where u is large.

2 Background and terminology

The notation for codes is standard and can be found in [I]. The codes here are all linear
codes, and the notation [n, k,d], will be used for a g-ary code C of length n, dimension k,
and minimum weight d, where the weight wt(v) of a vector v is the number of non-zero
coordinate entries. The distance, d(u,v), between two vectors u, v is wt(u—wv), i.e. the number
of coordinate places in which they differ. A generator matrix for an [n,k,d], code C is a
k x n matrix whose rows form a basis for C, and the dual code C* is the orthogonal under
the standard inner product (,), i.e. C*+ = {v € F™ | (v,¢) =0 for all ¢ € C}. A check matrix
for C' is a generator matrix for C*.

Following [I Definition 2.2.3], two linear codes over the same field are called equivalent
if each can be obtained from the other by permuting the coordinate positions and multiplying
each coordinate by a non-zero field element. The codes will be said to be isomorphic if a
permutation of the coordinate positions suffices to take one to the other. Generally, an auto-
morphism of a code C' is a code equivalence from C' to C, and the set of all these gives the
automorphism group of the code, written Aut(C') or MAut(C) (following [8, Chapter 7,Sec-
tion 1.3]), since they are given by monomial matrices, and we do not consider here the more
general case that includes field automorphisms, or the Galois groups. If only permutations of
the coordinate positions are allowed then the group of permutation automorphisms is, again
following [8, Chapter 7, Section 1.3], called the permutation automorphism group, written
PAut(C). Any code is isomorphic to a code with generator matrix in so-called standard
form, i.e. the form [}, | A]; a check matrix then is given by [~AT | I,,_1]. The set of the first k
coordinate positions in the standard form is called an information set for the code, and the
set of the last n — k coordinate positions is the corresponding check set.

Permutation decoding was developed by MacWilliams [13] and involves finding a set of
automorphisms of a code called a PD-set. The method is described fully in MacWilliams and
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Sloane [14, Chapter 16, p. 513] and Huffman [8, Section 8]. In [9] and [II] the definition of
PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 1. If C is a t-error-correcting code with information set I and check set C, then
a PD-set for C is a set S of automorphisms of C which is such that every t-set of coordinate
positions is moved by at least one member of S into the check positions C.

For s <t an s-PD-set is a set S of automorphisms of C which is such that every s-set of
coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding is as follows: we have a t-error-correcting [n, k, d]4
code C' with check matrix H in standard form. Thus the generator matrix G = [I;|A] and
H = [~ AT|I,,_4], for some A, and the first k coordinate positions correspond to the information
symbols. Any vector v of length k is encoded as vG. Suppose x is sent and y is received and
at most t errors occur. Let S = {g1,...,gs} be the PD-set. Compute the syndromes H(yg;)”
for i =1,...,s until an ¢ is found such that the weight of this vector is ¢ or less. Compute the
codeword c that has the same information symbols as yg; and decode y as cg;” L

Notice that this algorithm actually uses the PD-set as a sequence. Thus it is expedient to
index the elements of the set S by the set {1,2,...,]S|} so that elements that will correct a
small number of errors occur first. Thus if nested s-PD-sets are found for all 1 < s < ¢ then
we can order S as follows: find an s-PD-set S for each 0 < s < ¢ such that So C S7... C S;
and arrange the PD-set S as a sequence in this order:

S =[S0, (S1 = 50),(S2 —51), ..., (St — Se—1)].

(Usually one takes Sp = {id}.)
There is a bound on the minimum size that a PD-set S may have, due to Gordon [7], from
a formula due to Schonheim [16], and quoted and proved in [§]:

Result 1. If S is a PD-set for a t-error-correcting [n,k,d]q code C, and r =n — k, then

=]

This result can be adapted to s-PD-sets for s < t by replacing ¢ by s in the formula. Note
that since r < n, the innermost term for any s is 2, and since there are s terms in the formula,
it follows that the size of an s-PD-set is at least s+ 1.

We will use the following from [I0, Lemma 7]:

Result 2. Let C be a code with minimum distance d, T an information set, C the corresponding
check set and P = ZUC. Let A be an automorphism group of C, and n the maximum of
|0 NZ|/|O], where O is an A-orbit. If s =min([1] —1,[4F]), then A is an s-PD-set for C.

3 MacDonald codes

The g-ary simplex code Sy, (F,), for any prime-power g, is a ¢g-ary code with generator matrix
having for columns any set of q;:f representatives of the distinct 1-dimensional subspaces of
Vo (Fy), i.e. the points of the projective space PG,_1(F,): see, for example, [I, Section 2.5].
Thus for ¢ > 2 the actual code depends on the representatives chosen, but the codes are of

course all equivalent. It follows that S, (F,) is a [%,n, q" Y, code and all the non-zero
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words have weight ¢"~!: see [I, Section 2.5]. The coordinate positions are labelled by the
projective points PGp_1(F,). The automorphism group is isomorphic to I'L,(q), as shown
in [8, Section 7].

The MacDonald codes were introduced by MacDonald [12] for p = 2 and in [15] (see also [2])
for any ¢, and are simplex codes punctured in a particular way. Thus for any number u such
that 1 < u < n—1, if ¢; denotes the i*" basis element of the standard basis for the vector space
Va(Fg) =Fy, let U= (e; | n —u+1<i<mn), ie. all the vectors with the first n — u positions
equal to 0. The qqu_—_ll coordinate positions for the vectors in U are removed to produce a code

of length qz:?u, with coordinate positions labelled by the points of PG,_1(F,) that are not
in the projective space PGy—1(FF4). The code still has dimension n but now it is a two-weight
code, with words of weight ¢" ! and ¢" ' —¢%~!, as can easily be seen. We denote these codes
by Cpu(q), following [2]. If ¢ > 2 then different choices of the representatives of the projective
points (columns of the generator matrix) will produce different codes, but the codes will be
equivalent.

Thus for all g,n,u where 1 <u <n—1, Cy,,(q) is a

n __ ,u
q q M, qnfl o qufl
q—1 q
g-ary code with non-zero codewords of weight ¢"~! or ¢" 1 — ¢*~ 1.
It is clear that if
Inu=1e|1<i<n—ulU{er+e|n—u+1<i<n}={w;|1l<i<n} (2)

then the corresponding projective points will form an information set for C,, ,(q) for any n,u, q,
where we write w; = ¢; for 1 <i<n—u,and w; =e;+e forn—u+1<i<n.

As in [6] we will write our vectors as rows and have an nxn matrix A act on v € V;,(IF,)\{0}
(i.e. (v) € PGp—1(Fy)) as vA. However, if ¢ > 2, it could happen that vA is not the chosen
representative of the projective point (vA). In such cases automorphisms of the code C' are
still produced, but do not correspond to permutations of the code, i.e. they are in MAut(C)
but not in PAut(C'). In this case the action of the n X n matrix A on the code is as described
in [6, Corollary 5|, and involves using a generator matrix G, in standard form, for the code,
and finding a monomial matrix M such that GTA = MG?T. Then the action on the code is
given by ¢ — ¢MT for any codeword ¢, and permutation decoding may still be used. In the
binary case we can always just use the matrix itself.

For simplicity, we will choose the columns of the defining generating matrix to have first
entry 1. In this way any suitable matrix in upper triangular form with 1’s on the diagonal will
directly give a member of PAut(C).

Let My, »(F,) denote the m x n matrices over F,. We take n > 3 to avoid trivial cases or
codes that would not be used for permutation decoding.

Proposition 1. Let n > 3, q a prime power, 1 <u <n—1, C, (q) the MacDonald code,

K = {[%%] | A€ GLy w(Fy), B € GLy(F,),C € My_yu(Fy)},

and
H={M|MeG,B=1,}.
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Then K preserves Cy.,(q), and H acts transitively on the coordinate positions of Cy, ,(q).
Furthermore, H is an s-PD-set for Cy, ,(q), for any information set, where

n U n—1 u—1 _ 1

. q —4q q —q
s mm((n(q—l)w oL 5 1)
Proof: Clearly any such matrix will map a vector of the form (0,...,0,an—y+1,-..,a,) to one

of the same form so the vectors corresponding to the coordinate positions are preserved. To
show the group H is transitive on the coordinate positions we can show that e; can map to
any vector v from the coordinate set by taking a matrix with v as the first row. Thus any
member of the coordinate set can be mapped to any other by some automorphism of the code
induced by a member of H.

To show that H is an s-PD-set as stated, use Result [2| H

Note: The permutation group PAut(C), ,(¢)) may not be transitive for ¢ > 2.
1 c

0 In—l
group H will be a s-PD-set for C,, ,—1(¢) for n > 3, where s = [%] —-1= [%] -1,

|.

Example 1. Foru=n—-1, H = {[ ] | ¢ € Vu1(Fy)}. Thus |H| = ¢" ! and the

. . . n—1_ , n—2__
since this is smaller than, or equal to, L%

4 s-PD-sets of size s+ 1

We can use the results of [6] to obtain s-PD-sets of size s + 1 for the MacDonald codes using
automorphisms from the matrix group GL,(F,) acting on the coordinate positions. Recall
that we noted after giving Result [1| (the Gordon-Schénheim bound) that for correcting s errors
the PD-set must have size at least s + 1.

We consider the binary case, since the ideas can be extended to the g-ary case as well, as
in [6]. The coordinate positions for Cy, ,(2) are the vectors from V,,(F2) \ U, where U = (e; |
n—u+1<i<mn). The information set is Z, , as given in Equation .

Proposition 2. Forn > 3,1 < u < n — 1, let Cyu(2) be the [2" — 2%, n, 271 — 2u=l],
MacDonald code with information set I, and check set Cy, 4. For fixed k > 1, let

N;| 0

l%:”L:[o I
u

}ogigm

where N; € GLy,—(F2), be a set of k + 1 matrices in GLy(F3) such that no two matrices N{l
and Nj_1 fori # j have a row in common. Then Py is a k-PD-set of k+1 elements for C, ,(2)
with information set Ly, ,. Furthermore, any subset of Py of size s +1 where 1 < s < k is an

s-PD-set for Cy, ,(2).

.
Conversely, if Ry, = {L; = il
0 |1,

] |0 <i<k}CK isak-PD-set for Cy,,(2) then no
two matrices H;l and H;l fm“_i % § have a row in common.

Tl
Proof: Note first that M, ' = N6 IO ] Suppose P, = {M; | 0 < i < k} as shown, and no

two matrices Ni—1 and Nj_1 for i # j have a row in common. Let T'= {vy,...,v;} be a set of k
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distinct vectors in V;,(F2) \ U. Suppose that we cannot map 7" into Cy, ,, by any element of Pj.
Then for each 7 such that 0 < ¢ < k, there is a v; € T', for 1 < j < k, such that v; M; € Z,, ,,.
Since there are k£ + 1 values of 7 but only k£ of j we must have v; M; and v; M, for some j, and
l # i, both in Z,,,,. Suppose v;M; = w, and v;M; = wy; then v; = wTMZ-_1 = thl_l. There
are three cases to consider:
Case (1): r,t < n —u. Then w, = e, and w; = e, so the rtt row of ]\J,L._1 is the t*" row of
M fl, contradicting our assumption.
Case (2): r <n—wu, t >n—wu. Then w, = e, and w; = e; + ;. Thus w,«ZMi_1 is the 7" row of
M[l, which has the last u digits equal to 0, and thfl = (e1 + et)Mfl, i.e. the sum of the
first row of M, l_l and the " row, and this does not have 0’s in the last u digits.
Case (3): r >n —wu, t >n —u. Then w, = e; + ¢, and w; = €1 + €;. Thus wTM;1 is the sum
of the first and 7" rows of Mi_l, and thl_l is the sum of the first and t** rows of Ml_l. This
is again a contradiction, since the first rows of ]\4;]L and Ml_l are different.

Clearly the above argument works for any s with 1 < s < k.

The proof of the remaining statement is virtually the same as that given in [6l Proposi-
tion 1]. W

The proof of the proposition extends easily to Cy, ,(¢) for any ¢, noting that we take the
rows of the matrices N;l to be normalized and the action of the matrix on the code might not
be a permutation automorphism, as described in Section

The construction of sets of matrices as required here is discussed in [6] and the reader is
referred to that paper and references there to see how this can be achieved. In particular, the
number

) = | =5 | -1 )
T (g -1)
for n > 1, was introduced, it being the maximum value of s for which an s-PD-set of size s+ 1
for the simplex codes can exist: see [6, Lemma 2]. This also allows for construction of the
matrices N; with the properties required in Proposition [2} a specific construction is given in [6),
Lemma 5]:

Result 3. Forn > 2, ¢ > 2 a prime power, let K = Fyn and let ¢ be a primitive element of
K*. For 0 <i< f(F,), if Bi = {7t |0<j<n—1}, then {B; | 0 <i < f,(Fy)} is a set
of fn(Fq) + 1 mutually disjoint bases for Vi, (Fy).

For our purposes we need matrices of size (n — u), but the same construction holds. Each
matrix N;l has for its rows the field elements of a basis B; expressed as vectors in V,,_,(FF,),
and normalized. Thus we have:

Corollary 1. Forn >3 and 1 <u <n —1, q a prime power, the MacDonald code Cy,,,(q)

has s-PD-sets of size s+ 1 for all s such that 1 < s < f,_(Fy) = {%J —1.
Example 2. If ¢ = 3 and n — u = 3 we have f3(F3) = 3, and we use Result [3| to construct,
with the computational help of Magma [3|, ], four normalized matrices, I3 = Ny 1 and NZ»_1
N;| 0O
0 | I
Ch.n—3(3), with the usual information set.

Thus we took Fo7 with primitive polynomial 23+2x+1, primitive root ¢, and By = {1, ¢, ¢?},
B1 = 3By, By = (°By, B3 = (°By. Expressing these as vectors in V3(F3) and normalising

for 1 < ¢ < 3, such that {[ } | 0 < ¢ < 3} forms a 3-PD-set of minimal size 4 for
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gives the matrices:

1 20 111 1 2 2
LN'=|012|,Nyt'=|112|,N*'=|110]/,
1 21 1 01 011

with inverses
01 1 1 21 1 01
Is; Niy=12 1 1| ,No=|10 2 |,N3=1]2 1 2
2 01 2 1 0 1 2 2

These matrices may now be used for decoding Cy, ,—3(3) for any n > 4, recalling of course
that simple matrix multiplication will not give the automorphism here, so that the correspond-
ing monomial matrices as described in Section [3] will need to be constructed to complete the
decoding. W

If n—w is small it is not possible to find suitable matrices IV;, and in particular if u =n—1,
or n — 2, unless the field is large in the latter case. A different approach is needed here.

Proposition 3. Forn >4, 3 <u <n—1, q any prime, let Cy, ,(q) be the [qZ:‘fu,n, ¢t —

q“fl]q q-ary MacDonald code with information set I, and check set Cy . For fivzed k > 1,
let
In—u Bz .
= e <1 <
P, ={M; { 0 Iu]|0_z_k}

where B; € My_y(Fy), with rows r;; for 1 <1 <n —wu, such that for any i # j:
wt(ri1 — rjm) > 2 for all l,m and wt(r;1 —rj1) > 3.

Then Py, is a k-PD-set of k+1 elements for Cy, ,(q) with information set L, ,,. Furthermore,
any subset of Py, of size s+ 1 where 1 < s < k is an s-PD-set for Cp,(q).

. . .. _ I, | —B;
Proof: We proceed in the same way as in Propos1t10n Note first that M; ' = [ n ¢ ]

0 I,
for 0 < i < k so the same set of conditions apply to the rows of —B;. Let T' = {v1,..., v}
be a set of k distinct vectors in V,,(F,) \ U. Suppose that we cannot map 7' into C,, by
any element of P;. Then for each ¢ such that 0 < i < k, there is a v; € T, for 1 < j <k,
such that v;M; € I, ,. Since there are k + 1 values of 7 but only k of j we must have v;M;
and v;M;, for some j, and ¢ # [, both in Z,,. Suppose v;M; = w, and v;M; = wy; then
v; = wTMi_1 = thl_l. There are three cases to consider:
Case (1): r,t <n —u. Then w, = e,, wy = ¢;. Since the r*" and
distinct, this is not possible.
Case (2): r<nmn—wuandt>n—u. Sow, =e; and wy = e; + e;. Thus wTMZ-_l = thl_l
becomes the r" row of M[l equal to the sum of the first and " rows of Mfl, which implies
that r;, — 71 has weight 1, which is not possible.
Case (3): 7,t > n —u. Then we have (e; + eT)M;1 = (e1 + et)Mfl, and thus 751 — 71 is a
vector of weight at most 2, again not possible.

The last statement follows as before. l

t* rows of B; and B; are
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Note: (1) Since wt(r;1 —rj1) > 3 for i # j, we can, without loss of generality, take B; to be
the (n —u) X u matrix all of whose rows are ;1. We can thus search for k+1 vectors in V,,(F,)
such that any two are distance at least 3 apart.
(2) If w = 2 we must use the method of Proposition [2| This will yield some sets as long as
n > 3. For n = 3 and u = 2 the g-ary code is a [¢%,3,¢* — qlq code and other methods could
be employed.
(3) Since the matrices in this construction are all upper triangular, with 1’s on the diagonal,
they are in the permutation group of the code so the action on the coordinate positions is by
direct multiplication.

Using the matrices B; as defined in the first note above, we have:

Corollary 2. Letn > 4,3 <u<n-—1, any q. Let D be a set of vectors in V,,(F,) which is
such that any two members of D are distance at least 3 apart. Then the |D| matrices B;, for
1 < i < |D|, where B; is an (n — u) x u matriz with all rows the i'" vector from D, will give
a set of |D| automorphisms of Cy, ,(q) that form a (|D| — 1)-PD-set using the information set
T

Note: A subspace of minimum weight at least 3 could serve as the set D. Methods for
constructing codes with a prescribed minimum distance are given in [4] for the binary case,
and [I7] for the ¢ > 2 case.

Example 3. For the code Cg 5(3), a [243, 6, 162]3 code, the construction of Propositionyields
the following nine matrices (using Magma) giving automorphisms of Cs 5(3) that correct eight
errors, using the information set Zg 5.

sz{[é 105]|C€<(1’1’1’0’0)’(2’1’0’1’0»}

5 Conclusion

We include an appendix showing the best values for s for an s-PD-set of size s + 1 that we
have obtained for these MacDonald codes from these two constructions for some small set of
values for n and ¢ and 1 < u < n — 1. It can be seen that the second construction gives the
better result when u is greater than | % |. It should be emphasised that we have used a specific
information set, Z,, ,,, and that other information sets might yield better results. Of course the

set from Proposition (1| is independent of the information set but is rather large.

6 Appendix

In the tables to follow: for C,, ,,(¢), ¢ is a prime power, n, u as before, £ is the length of the code,
maw is the minimum weight, ¢ is the error correcting capability, gb is the Gordon-Schénheim
bound for the size of the PD-set for full error correction, s; = f,,—, (for the first construction),
so the computationally found value of s for the second construction when v > 3. Thus the size
of the set is s1 + 1, s5 + 1, respectively.
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Table 1: s-PD-sets of size s 4 1 for C}, ,,(q)

qg|ln |ul/ mw |t gb S$1 | S9

214 | 1|14 7 3 5 1 10
4 12|12 6 2 3 0 |0
4 1318 4 1 2 0 |1
5 | 1130 15 7 1 (2 |0
5 | 2|28 14 6 9 1 10
5 | 3|24 12 5 8 0 |1
5 | 4116 8 3 5 0 |1
6 |1]62 31 15 |25 |5 |0
6 | 2|60 30 14 (22 |2 |0
6 | 3|56 28 13 | 21 1 |1
6 |4 |48 24 11 18 |0 |1
6 |5 |32 16 7 13 10 |3
7 | 1]126 |63 31 |59 |9 |0
7 121124 | 62 30 |55 |5 |0
7 | 3]120 |60 29 |53 |2 |1
7 |4 112 | 56 27 |48 |1 1
7 | 51|96 48 23 |41 |0 |3
7 | 6|64 32 15 |29 [0 |7
8 |1 ]254 | 127 |63 | 136 |17 |0
8 2252 126 |62 |[132]9 |0
8 [31]248 | 124 | 61 131 |5 |1
8 |4 1]240 |120 |59 | 1272 |1
8 | 5(224 |112 |55 |118 |1 |3
8 | 6]192 | 96 47 110210 |7
8 | 7] 128 | 64 31 |70 |0 |15
9 | 1]|510 |255 | 127|328 |301|0
9 | 2|508 |2564 |126|322|17 |0
9 |3 ]|504 |252 12513209 |1
9 |4]1496 | 248 | 123|315 |5 |1
9 |5 ]480 | 240 | 119|302 |2 |3
9 |6 |448 [ 224 | 111 | 283 |1 |7
9 | 71384 192 |95 | 243 |0 |15
9 |8|256 |128 |63 | 163 |0 | 15
10 | 1 ] 1022 | 511 | 255 | 787 | 55 | O
10 | 2 | 1020 | 510 | 254 | 779 | 30 | O
10 | 3 | 1016 | 508 | 253 | 782 | 17 | 1
10 | 4 | 1008 | 504 | 251 | 773 |9 |1
1015|992 | 496 | 247 | 762 | 5 | 3
1016 | 960 | 480 | 239 | 736 | 2 |7
10 | 7 | 896 | 448 | 223 1691 |1 |15
10 | 8 | 768 | 384 | 191 | 590 | 0 | 15
1019 | 512 | 256 | 127 [ 396 | 0 | 31
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g|ln |ul|/f mw t gb S1 S9

314 | 1139 26 12 18 3 0
4 12136 24 11 16 1 0
4 |3 |27 18 8 12 0 2
5 | 11120 80 39 68 9 0
5 |2 117 78 38 67 3 0
5 | 3] 108 72 35 61 1 2
5 | 4] 81 54 26 47 0 8
6 | 1] 363 242 120 | 267 23 0
6 | 2| 360 240 119 | 265 9 0
6 | 3] 351 234 116 | 260 3 2
6 | 4| 324 216 107 | 237 1 8
6 | 5| 243 162 80 181 0 8
7 | 1]1092 | 728 363 | 1051 | 59 0
7 | 2| 1089 | 726 363 | 1044 | 23 0
7 | 3] 1080 | 729 359 | 1035 |9 2
7 | 4] 1053 | 702 350 | 1010 | 3 8
7 |5 ]972 648 323 | 931 1 8
7 161|729 486 242 | 700 0 23
8 | 113279 | 2186 | 1092 | 4170 | 155 | O
8 | 2]3276 | 2184 | 1091 | 4159 | 59 0
8 | 3] 3267 | 2178 | 1088 | 4151 | 23 2
8 | 4]3240 | 2160 | 1079 | 4118 | 9 8
8 | 5] 3159 | 2106 | 1052 | 4017 | 3 8
8 | 612916 | 1944 | 971 | 3706 |1 23
8 | 7| 2187 | 1458 | 728 | 2780 |0 71
9 | 1]9840 | 6560 | 3279 | 16740 | 409 | O
9 | 2| 9837 | 6558 | 3278 | 16746 | 155 | O
9 | 3]9828 | 6552 | 3275 | 16723 | 59 2
9 | 4]9801 | 6534 | 3266 | 16688 | 23 8
9 |5 ]9720 | 6480 | 3239 | 16536 | 9 8
9 | 6|9477 | 6318 | 3158 | 16131 | 3 23
9 | 7| 8748 | 5832 | 2915 | 14881 | 1 71
9 | 8| 6561 |4374 | 2186 | 11180 | 0 197
10 | 1 | 29523 | 19682 | 9849 | 67894 | 1092 | 0
10 | 2 | 29520 | 19680 | 9839 | 67885 | 409 | 0
10 | 3 | 29511 | 19674 | 9836 | 67861 | 155 | 2
10 | 4 | 29484 | 19656 | 9827 | 67783 | 59 8
10 | 5 | 29403 | 19602 | 9800 | 67606 | 23 8
10 | 6 | 29160 | 19440 | 9719 | 67040 | 9 23
10 | 7 | 28431 | 18954 | 9476 | 65365 | 3 71
10 | 8 | 26244 | 17496 | 8747 | 60334 | 1 197
10 | 9 | 19683 | 13122 | 6560 | 45254 | O 518
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6 APPENDIX

qg|ln |ul/ mw t gb S1 S9
414 |1 84 63 31 51 6 0
4 2|80 60 29 47 1 0
4 |3 |64 48 23 37 0 3
5 | 1] 340 255 127 263 20 0
5 121 336 252 125 258 6 0
5 |31 320 240 119 245 1 3
5 | 4| 256 192 95 196 0 15
6 | 1] 1364 1023 511 1430 67 0
6 | 2| 1360 1020 509 1420 20 0
6 | 3| 1344 1008 503 1406 6 3
6 | 4| 1280 960 479 1337 1 15
6 |5 | 1024 768 383 1072 0 63
7 | 1| 5460 4095 2047 7905 226 | 0
7 | 2| 5456 4092 2045 7894 67 0
7 | 3| 5440 4080 2039 7873 20 3
7 | 4| 5376 4032 2015 7775 6 15
7 | 5| 51207 | 3840 1919 7408 1 63
7 | 6| 4096 3072 1535 5932 0 63
8 |1 |21844 | 16383 | 8191 44423 779 |0
8 | 2| 21840 | 16380 | 8189 44396 226 | 0
8 | 3] 21824 | 16368 | 8183 44376 67 3
8 | 4] 21760 | 16320 | 8159 44245 20 15
8 | 5| 21504 | 16128 | 8063 43715 6 63
8 | 6| 20480 | 15360 | 7679 41641 1 63
8 | 7116384 | 12288 | 6143 33319 0 255
9 | 1| 87380 | 65535 | 32767 | 252567 | 2729 |0
9 | 2| 87376 | 65532 | 32765 | 252536 | 779 |0
9 | 3| 87360 | 65520 | 32759 | 252480 | 226 | 3
9 | 4| 87296 | 65472 | 32735 | 252300 | 67 15
9 | 5| 87040 | 765280 | 32639 | 251556 | 20 63
9 | 6| 86016 | 64512 | 32255 | 248597 | 6 63
9 | 7| 81920 | 61440 | 30719 | 236754 |1 255
9 | 8| 65536 | 49152 | 24575 | 189409 | O 1023
10 | 1 | 349524 | 262143 | 131071 | 1451611 | 9708 | O
10 | 2 | 349520 | 262140 | 131069 | 1451557 | 2729 | 0
10 | 3 | 349504 | 262128 | 131063 | 1451482 | 779 | 3
10 | 4 | 349440 | 262080 | 131039 | 1451227 | 226 | 15
10 | 5 | 349184 | 261888 | 130943 | 1450159 | 67 63
10 | 6 | 348160 | 261120 | 130559 | 1445916 | 20 63
10 | 7 | 344064 | 258048 | 129023 | 1428896 | 6 255
10 | 8 | 327680 | 245760 | 122879 | 1360863 | 1 1023
10 | 9 | 262144 | 196608 | 98303 | 1088719 | 0 4095
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6 APPENDIX

glnlullf mw t gb s1 S9
5141|1155 124 61 104 9 0
4121150 120 59 100 2 0
4131|125 100 49 84 0 4
511 780 624 311 720 38 0
512|775 620 309 718 9 0
513|750 600 299 694 2 4
514625 500 249 581 0 16
6 | 1] 3905 3124 1561 5084 155 0
6 | 2| 3900 3120 1559 5074 38 0
6 | 3| 3875 3100 1549 5040 9 4
6 | 4| 3750 3000 1499 4877 2 16
6 |5 | 3125 2500 1249 4065 0 73
711119530 | 15624 | 7811 36509 650 0
712 ]19525 | 15620 | 7809 36502 155 0
713 ] 19500 | 15600 | 7799 36457 38 4
714 ]19375 | 15500 | 7749 36228 9 16
715 | 18750 | 15000 | 7499 35055 2 73
716 | 15625 | 12500 | 6249 29222 0 264
8 | 1| 97655 | 78124 | 39061 | 266388 | 2789 |0
8 | 2| 97650 | 78120 | 39059 | 266379 | 650 0
8 | 397625 | 78100 | 39049 | 266310 | 155 4
8 | 4| 97500 | 78000 | 38999 | 265959 | 38 16
8 | 5| 96875 | 77500 | 38749 | 264254 | 9 73
8 | 6 | 93750 | 75000 | 374999 | 255748 | 2 264
8 | 7| 78125 62500 31249 213124 0 1112
9 | 1 | 488280 | 390624 | 195311 | 1968014 | 12206 | 0
9 | 2 | 488275 | 390620 | 195309 | 1967995 | 2789 | 0
9 | 3 | 488250 | 390600 | 195299 | 1967896 | 650 4
9 | 4 | 488125 | 390500 | 195249 | 1967389 | 155 16
9 | 5| 487500 | 390000 | 194999 | 1964873 | 38 73
9 | 6 | 484375 | 387500 | 193749 | 1952282 | 9 264
9 | 7| 468750 | 375000 | 187499 | 1889299 | 2 1112
9 | 8 | 390625 | 312500 | 156249 | 1574452 | 0 4694
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