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Abstract

We show how to find s-PD-sets of the minimal size s+1 for the
[
qn−qu

q−1 , n, qn−1 − qu−1
]
q

MacDonald q-ary codes Cn,u(q) where n ≥ 3 and 1 ≤ u ≤ n − 1. The construction of [6]

can be used and gives s-PD-sets for s up to the bound b qn−u−1
(n−u)(q−1)c − 1, of effective use

for u small; for u ≥ bn2 c an alternative construction is given that applies up to a bound
that depends on the maximum size of a set of vectors in Vu(Fq) with each pair of vectors
distance at least 3 apart.
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1 Introduction

The MacDonald codes, introduced by MacDonald [12] for binary codes, with the definition
extended to q-ary codes in [2, 15], are punctured simplex codes, of length qn−qu

q−1 for any n and

1 ≤ u ≤ n−1. They have parameters
[
qn−qu
q−1 , n, qn−1 − qu−1

]
q

and are 2-weight codes with the

non-zero words of weight qn−1− qu−1 and qn−1. Following [2], we denote the codes by Cn,u(q).
In [6] permutation decoding for the simplex codes was considered and s-PD-sets of the min-

imal size s+1 were found for s up to some large bound. Since the efficiency of the decoding de-
pends on the size of the PD-set, those of minimal size as determined by the Gordon-Schönheim
bound (see Result 1) are the best ones to obtain. The ideas behind the establishment of these
PD-sets for the simplex codes can be applied to the MacDonald codes, and we obtain here
some similar results. The automorphism group used for the permutation decoding is a sub-
group of the general linear group and thus described as n×n matrices. A general construction
of suitable matrices allows us to prove a general theorem:

Theorem 1. For n ≥ 3 and 1 ≤ u ≤ n − 1, q a prime power, let Cn,u(q) denote the[
qn−qu
q−1 , n, qn−1 − qu−1

]
q

MacDonald q-code. Then Cn,u(q) has s-PD-sets of size s+ 1
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• for all s such that 1 ≤ s ≤ fn−u(Fq) =
⌊

qn−u−1
(n−u)(q−1)

⌋
− 1;

• for n ≥ 4 for all s such that 1 ≤ s ≤ |D| − 1 where D is a set of vectors in Vu(Fq) which
is such that any two members of D are distance at least 3 apart.

Such s-PD-sets can be explicitly given in terms of matrices in GLn(Fq).

The construction for the first bound is given in Proposition 2 and Corollary 1, using Re-
sult 3, and for the second in Proposition 3 and Corollary 2. The s-PD-sets are all nested in
the sense that if 1 ≤ r ≤ s then any subset of the set of size r + 1 will correct r errors.

Unlike in the simplex case, these sets from Corollary 1 are too small, and therefore correct
too few errors, if u is large. In that case one uses the second construction (of Proposition 3),
and particular examples of these arise from any q-ary code of length u and minimum weight at
least 3: for example, the Hamming codes. Other examples exist by finding sets of s+ 1 vectors
in Vu(Fq) such that the distance between any two vectors in the set is at least 3.

We describe our notation and give some background definitions in Section 2 and Section 3,
and prove the results on the s-PD-sets of size s + 1 in Section 4. Included as Section 6 is an
appendix giving some tables showing the best size of s for sets of size s+ 1 using our methods,
for 4 ≤ n ≤ 10, 1 ≤ u ≤ n− 1, and q = 2, 3, 4, 5. Magma [3, 5] was used for any computations,
and in particular to find the sets in the case where u is large.

2 Background and terminology

The notation for codes is standard and can be found in [1]. The codes here are all linear
codes, and the notation [n, k, d]q will be used for a q-ary code C of length n, dimension k,
and minimum weight d, where the weight wt(v) of a vector v is the number of non-zero
coordinate entries. The distance, d(u, v), between two vectors u, v is wt(u−v), i.e. the number
of coordinate places in which they differ. A generator matrix for an [n, k, d]q code C is a
k × n matrix whose rows form a basis for C, and the dual code C⊥ is the orthogonal under
the standard inner product (, ), i.e. C⊥ = {v ∈ Fn | (v, c) = 0 for all c ∈ C}. A check matrix
for C is a generator matrix for C⊥.

Following [1, Definition 2.2.3], two linear codes over the same field are called equivalent
if each can be obtained from the other by permuting the coordinate positions and multiplying
each coordinate by a non-zero field element. The codes will be said to be isomorphic if a
permutation of the coordinate positions suffices to take one to the other. Generally, an auto-
morphism of a code C is a code equivalence from C to C, and the set of all these gives the
automorphism group of the code, written Aut(C) or MAut(C) (following [8, Chapter 7,Sec-
tion 1.3]), since they are given by monomial matrices, and we do not consider here the more
general case that includes field automorphisms, or the Galois groups. If only permutations of
the coordinate positions are allowed then the group of permutation automorphisms is, again
following [8, Chapter 7, Section 1.3], called the permutation automorphism group, written
PAut(C). Any code is isomorphic to a code with generator matrix in so-called standard
form, i.e. the form [Ik |A]; a check matrix then is given by [−AT | In−k]. The set of the first k
coordinate positions in the standard form is called an information set for the code, and the
set of the last n− k coordinate positions is the corresponding check set.

Permutation decoding was developed by MacWilliams [13] and involves finding a set of
automorphisms of a code called a PD-set. The method is described fully in MacWilliams and
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Sloane [14, Chapter 16, p. 513] and Huffman [8, Section 8]. In [9] and [11] the definition of
PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 1. If C is a t-error-correcting code with information set I and check set C, then
a PD-set for C is a set S of automorphisms of C which is such that every t-set of coordinate
positions is moved by at least one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set of
coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding is as follows: we have a t-error-correcting [n, k, d]q
code C with check matrix H in standard form. Thus the generator matrix G = [Ik|A] and
H = [−AT |In−k], for some A, and the first k coordinate positions correspond to the information
symbols. Any vector v of length k is encoded as vG. Suppose x is sent and y is received and
at most t errors occur. Let S = {g1, . . . , gs} be the PD-set. Compute the syndromes H(ygi)

T

for i = 1, . . . , s until an i is found such that the weight of this vector is t or less. Compute the
codeword c that has the same information symbols as ygi and decode y as cg−1i .

Notice that this algorithm actually uses the PD-set as a sequence. Thus it is expedient to
index the elements of the set S by the set {1, 2, . . . , |S|} so that elements that will correct a
small number of errors occur first. Thus if nested s-PD-sets are found for all 1 < s ≤ t then
we can order S as follows: find an s-PD-set Ss for each 0 ≤ s ≤ t such that S0 ⊂ S1 . . . ⊂ St
and arrange the PD-set S as a sequence in this order:

S = [S0, (S1 − S0), (S2 − S1), . . . , (St − St−1)].

(Usually one takes S0 = {id}.)
There is a bound on the minimum size that a PD-set S may have, due to Gordon [7], from

a formula due to Schönheim [16], and quoted and proved in [8]:

Result 1. If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r = n− k, then

|S| ≥
⌈
n

r

⌈
n− 1

r − 1

⌈
. . .

⌈
n− t+ 1

r − t+ 1

⌉
. . .

⌉⌉⌉
. (1)

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the formula. Note
that since r < n, the innermost term for any s is 2, and since there are s terms in the formula,
it follows that the size of an s-PD-set is at least s+ 1.

We will use the following from [10, Lemma 7]:

Result 2. Let C be a code with minimum distance d, I an information set, C the corresponding
check set and P = I ∪ C. Let A be an automorphism group of C, and n the maximum of
|O ∩ I|/|O|, where O is an A-orbit. If s = min(d 1ne − 1, bd−12 c), then A is an s-PD-set for C.

3 MacDonald codes

The q-ary simplex code Sn(Fq), for any prime-power q, is a q-ary code with generator matrix
having for columns any set of qn−1

q−1 representatives of the distinct 1-dimensional subspaces of
Vn(Fq), i.e. the points of the projective space PGn−1(Fq): see, for example, [1, Section 2.5].
Thus for q > 2 the actual code depends on the representatives chosen, but the codes are of
course all equivalent. It follows that Sn(Fq) is a [ q

n−1
q−1 , n, q

n−1]q code and all the non-zero
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words have weight qn−1: see [1, Section 2.5]. The coordinate positions are labelled by the
projective points PGn−1(Fq). The automorphism group is isomorphic to ΓLn(q), as shown
in [8, Section 7].

The MacDonald codes were introduced by MacDonald [12] for p = 2 and in [15] (see also [2])
for any q, and are simplex codes punctured in a particular way. Thus for any number u such
that 1 ≤ u ≤ n−1, if ei denotes the ith basis element of the standard basis for the vector space
Vn(Fq) = Fn

q , let U = 〈ei | n− u+ 1 ≤ i ≤ n〉, i.e. all the vectors with the first n− u positions

equal to 0. The qu−1
q−1 coordinate positions for the vectors in U are removed to produce a code

of length qn−qu
q−1 , with coordinate positions labelled by the points of PGn−1(Fq) that are not

in the projective space PGu−1(Fq). The code still has dimension n but now it is a two-weight
code, with words of weight qn−1 and qn−1− qu−1, as can easily be seen. We denote these codes
by Cn,u(q), following [2]. If q > 2 then different choices of the representatives of the projective
points (columns of the generator matrix) will produce different codes, but the codes will be
equivalent.

Thus for all q, n, u where 1 ≤ u ≤ n− 1, Cn,u(q) is a[
qn − qu

q − 1
, n, qn−1 − qu−1

]
q

q-ary code with non-zero codewords of weight qn−1 or qn−1 − qu−1.
It is clear that if

In,u = {ei | 1 ≤ i ≤ n− u} ∪ {e1 + ei | n− u+ 1 ≤ i ≤ n} = {wi | 1 ≤ i ≤ n}, (2)

then the corresponding projective points will form an information set for Cn,u(q) for any n, u, q,
where we write wi = ei for 1 ≤ i ≤ n− u, and wi = e1 + ei for n− u+ 1 ≤ i ≤ n.

As in [6] we will write our vectors as rows and have an n×n matrix A act on v ∈ Vn(Fq)\{0}
(i.e. 〈v〉 ∈ PGn−1(Fq)) as vA. However, if q > 2, it could happen that vA is not the chosen
representative of the projective point 〈vA〉. In such cases automorphisms of the code C are
still produced, but do not correspond to permutations of the code, i.e. they are in MAut(C)
but not in PAut(C). In this case the action of the n× n matrix A on the code is as described
in [6, Corollary 5], and involves using a generator matrix G, in standard form, for the code,
and finding a monomial matrix M such that GTA = MGT . Then the action on the code is
given by c 7→ cMT for any codeword c, and permutation decoding may still be used. In the
binary case we can always just use the matrix itself.

For simplicity, we will choose the columns of the defining generating matrix to have first
entry 1. In this way any suitable matrix in upper triangular form with 1’s on the diagonal will
directly give a member of PAut(C).

Let Mm,n(Fq) denote the m× n matrices over Fq. We take n ≥ 3 to avoid trivial cases or
codes that would not be used for permutation decoding.

Proposition 1. Let n ≥ 3, q a prime power, 1 ≤ u ≤ n− 1, Cn,u(q) the MacDonald code,

K = {
[
A C

0 B

]
| A ∈ GLn−u(Fq), B ∈ GLu(Fq), C ∈Mn−u,u(Fq)},

and
H = {M |M ∈ G,B = Iu}.
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Then K preserves Cn,u(q), and H acts transitively on the coordinate positions of Cn,u(q).
Furthermore, H is an s-PD-set for Cn,u(q), for any information set, where

s = min(d q
n − qu

n(q − 1)
e − 1, bq

n−1 − qu−1 − 1

2
c).

Proof: Clearly any such matrix will map a vector of the form (0, . . . , 0, an−u+1, . . . , an) to one
of the same form so the vectors corresponding to the coordinate positions are preserved. To
show the group H is transitive on the coordinate positions we can show that e1 can map to
any vector v from the coordinate set by taking a matrix with v as the first row. Thus any
member of the coordinate set can be mapped to any other by some automorphism of the code
induced by a member of H.

To show that H is an s-PD-set as stated, use Result 2. �

Note: The permutation group PAut(Cn,u(q)) may not be transitive for q > 2.

Example 1. For u = n − 1, H = {
[

1 c

0 In−1

]
| c ∈ Vn−1(Fq)}. Thus |H| = qn−1 and the

group H will be a s-PD-set for Cn,n−1(q) for n ≥ 3, where s = d q
n−qn−1

n(q−1) e − 1 = d q
n−1

n e − 1,

since this is smaller than, or equal to, b q
n−1−qn−2−1

2 c.

4 s-PD-sets of size s+ 1

We can use the results of [6] to obtain s-PD-sets of size s+ 1 for the MacDonald codes using
automorphisms from the matrix group GLn(Fq) acting on the coordinate positions. Recall
that we noted after giving Result 1 (the Gordon-Schönheim bound) that for correcting s errors
the PD-set must have size at least s+ 1.

We consider the binary case, since the ideas can be extended to the q-ary case as well, as
in [6]. The coordinate positions for Cn,u(2) are the vectors from Vn(F2) \ U , where U = 〈ei |
n− u+ 1 ≤ i ≤ n〉. The information set is In,u as given in Equation (2).

Proposition 2. For n ≥ 3, 1 ≤ u ≤ n − 1, let Cn,u(2) be the [2n − 2u, n, 2n−1 − 2u−1]2
MacDonald code with information set In,u and check set Cn,u. For fixed k ≥ 1, let

Pk = {Mi =

[
Ni 0

0 Iu

]
| 0 ≤ i ≤ k}

where Ni ∈ GLn−u(F2), be a set of k+ 1 matrices in GLn(F2) such that no two matrices N−1i

and N−1j for i 6= j have a row in common. Then Pk is a k-PD-set of k+1 elements for Cn,u(2)
with information set In,u. Furthermore, any subset of Pk of size s+ 1 where 1 ≤ s ≤ k is an
s-PD-set for Cn,u(2).

Conversely, if Rk = {Li =

[
Hi 0

0 Iu

]
| 0 ≤ i ≤ k} ⊆ K is a k-PD-set for Cn,u(2) then no

two matrices H−1i and H−1j for i 6= j have a row in common.

Proof: Note first that M−1i =

[
N−1i 0

0 Iu

]
. Suppose Pk = {Mi | 0 ≤ i ≤ k} as shown, and no

two matrices N−1i and N−1j for i 6= j have a row in common. Let T = {v1, . . . , vk} be a set of k



4 S-PD-SETS OF SIZE S + 1 6

distinct vectors in Vn(F2) \U . Suppose that we cannot map T into Cn,u by any element of Pk.
Then for each i such that 0 ≤ i ≤ k, there is a vj ∈ T , for 1 ≤ j ≤ k, such that vjMi ∈ In,u.
Since there are k+ 1 values of i but only k of j we must have vjMi and vjMl, for some j, and
l 6= i, both in In,u. Suppose vjMi = wr and vjMl = wt; then vj = wrM

−1
i = wtM

−1
l . There

are three cases to consider:
Case (1): r, t ≤ n − u. Then wr = er and wt = et, so the rth row of M−1i is the tth row of
M−1l , contradicting our assumption.
Case (2): r ≤ n− u, t > n− u. Then wr = er and wt = e1 + et. Thus wrM

−1
i is the rth row of

M−1i , which has the last u digits equal to 0, and wtM
−1
l = (e1 + et)M

−1
l , i.e. the sum of the

first row of M−1l and the tth row, and this does not have 0’s in the last u digits.
Case (3): r > n− u, t > n− u. Then wr = e1 + er and wt = e1 + et. Thus wrM

−1
i is the sum

of the first and rth rows of M−1i , and wtM
−1
l is the sum of the first and tth rows of M−1l . This

is again a contradiction, since the first rows of M−1i and M−1l are different.
Clearly the above argument works for any s with 1 ≤ s ≤ k.
The proof of the remaining statement is virtually the same as that given in [6, Proposi-

tion 1]. �

The proof of the proposition extends easily to Cn,u(q) for any q, noting that we take the
rows of the matrices N−1i to be normalized and the action of the matrix on the code might not
be a permutation automorphism, as described in Section 3.

The construction of sets of matrices as required here is discussed in [6] and the reader is
referred to that paper and references there to see how this can be achieved. In particular, the
number

fn(Fq) =

⌊
qn − 1

n(q − 1)

⌋
− 1 (3)

for n ≥ 1, was introduced, it being the maximum value of s for which an s-PD-set of size s+ 1
for the simplex codes can exist: see [6, Lemma 2]. This also allows for construction of the
matrices Ni with the properties required in Proposition 2; a specific construction is given in [6,
Lemma 5]:

Result 3. For n ≥ 2, q ≥ 2 a prime power, let K = Fqn and let ζ be a primitive element of
K∗. For 0 ≤ i ≤ fn(Fq), if Bi = {ζj+in | 0 ≤ j ≤ n − 1}, then {Bi | 0 ≤ i ≤ fn(Fq)} is a set
of fn(Fq) + 1 mutually disjoint bases for Vn(Fq).

For our purposes we need matrices of size (n− u), but the same construction holds. Each
matrix N−1i has for its rows the field elements of a basis Bi expressed as vectors in Vn−u(Fq),
and normalized. Thus we have:

Corollary 1. For n ≥ 3 and 1 ≤ u ≤ n − 1, q a prime power, the MacDonald code Cn,u(q)

has s-PD-sets of size s+ 1 for all s such that 1 ≤ s ≤ fn−u(Fq) =
⌊

qn−u−1
(n−u)(q−1)

⌋
− 1.

Example 2. If q = 3 and n − u = 3 we have f3(F3) = 3, and we use Result 3 to construct,
with the computational help of Magma [3, 5], four normalized matrices, I3 = N−10 and N−1i

for 1 ≤ i ≤ 3, such that {
[
Ni 0

0 Iu

]
| 0 ≤ i ≤ 3} forms a 3-PD-set of minimal size 4 for

Cn,n−3(3), with the usual information set.
Thus we took F27 with primitive polynomial x3+2x+1, primitive root ζ, andB0 = {1, ζ, ζ2},

B1 = ζ3B0, B2 = ζ6B0, B3 = ζ9B0. Expressing these as vectors in V3(F3) and normalising
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gives the matrices:

I3, N
−1
1 =

 1 2 0
0 1 2
1 2 1

 , N−12 =

 1 1 1
1 1 2
1 0 1

 , N−13 =

 1 2 2
1 1 0
0 1 1

 ,
with inverses

I3, N1 =

 0 1 1
2 1 1
2 0 1

 , N2 =

 1 2 1
1 0 2
2 1 0

 , N3 =

 1 0 1
2 1 2
1 2 2

 .
These matrices may now be used for decoding Cn,n−3(3) for any n ≥ 4, recalling of course

that simple matrix multiplication will not give the automorphism here, so that the correspond-
ing monomial matrices as described in Section 3 will need to be constructed to complete the
decoding. �

If n−u is small it is not possible to find suitable matrices Ni, and in particular if u = n−1,
or n− 2, unless the field is large in the latter case. A different approach is needed here.

Proposition 3. For n ≥ 4, 3 ≤ u ≤ n − 1, q any prime, let Cn,u(q) be the [ q
n−qu
q−1 , n, qn−1 −

qu−1]q q-ary MacDonald code with information set In,u and check set Cn,u. For fixed k ≥ 1,
let

Pk = {Mi =

[
In−u Bi

0 Iu

]
| 0 ≤ i ≤ k}

where Bi ∈Mn−u,u(Fq), with rows ri,l for 1 ≤ l ≤ n− u, such that for any i 6= j:

wt(ri,l − rj,m) ≥ 2 for all l,m and wt(ri,1 − rj,1) ≥ 3.

Then Pk is a k-PD-set of k+1 elements for Cn,u(q) with information set In,u. Furthermore,
any subset of Pk of size s+ 1 where 1 ≤ s ≤ k is an s-PD-set for Cn,u(q).

Proof: We proceed in the same way as in Proposition 2. Note first that M−1i =

[
In−u −Bi

0 Iu

]
for 0 ≤ i ≤ k so the same set of conditions apply to the rows of −Bi. Let T = {v1, . . . , vk}
be a set of k distinct vectors in Vn(Fq) \ U . Suppose that we cannot map T into Cn,u by
any element of Pk. Then for each i such that 0 ≤ i ≤ k, there is a vj ∈ T , for 1 ≤ j ≤ k,
such that vjMi ∈ In,u. Since there are k + 1 values of i but only k of j we must have vjMi

and vjMl, for some j, and i 6= l, both in In,u. Suppose vjMi = wr and vjMl = wt; then
vj = wrM

−1
i = wtM

−1
l . There are three cases to consider:

Case (1): r, t ≤ n − u. Then wr = er, wt = et. Since the rth and tth rows of Bi and Bl are
distinct, this is not possible.
Case (2): r ≤ n − u and t > n − u. So wr = e1 and wt = e1 + et. Thus wrM

−1
i = wtM

−1
l

becomes the rth row of M−1i equal to the sum of the first and tth rows of M−1l , which implies
that ri,r − rl,1 has weight 1, which is not possible.
Case (3): r, t > n − u. Then we have (e1 + er)M

−1
i = (e1 + et)M

−1
l , and thus ri,1 − rl,1 is a

vector of weight at most 2, again not possible.
The last statement follows as before. �
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Note: (1) Since wt(ri,1 − rj,1) ≥ 3 for i 6= j, we can, without loss of generality, take Bi to be
the (n−u)×u matrix all of whose rows are ri,1. We can thus search for k+1 vectors in Vu(Fq)
such that any two are distance at least 3 apart.
(2) If u = 2 we must use the method of Proposition 2. This will yield some sets as long as
n > 3. For n = 3 and u = 2 the q-ary code is a [q2, 3, q2 − q]q code and other methods could
be employed.
(3) Since the matrices in this construction are all upper triangular, with 1’s on the diagonal,
they are in the permutation group of the code so the action on the coordinate positions is by
direct multiplication.

Using the matrices Bi as defined in the first note above, we have:

Corollary 2. Let n ≥ 4, 3 ≤ u ≤ n − 1, any q. Let D be a set of vectors in Vu(Fq) which is
such that any two members of D are distance at least 3 apart. Then the |D| matrices Bi, for
1 ≤ i ≤ |D|, where Bi is an (n − u) × u matrix with all rows the ith vector from D, will give
a set of |D| automorphisms of Cn,u(q) that form a (|D| − 1)-PD-set using the information set
In,u.

Note: A subspace of minimum weight at least 3 could serve as the set D. Methods for
constructing codes with a prescribed minimum distance are given in [4] for the binary case,
and [17] for the q > 2 case.

Example 3. For the code C6,5(3), a [243, 6, 162]3 code, the construction of Proposition 3 yields
the following nine matrices (using Magma) giving automorphisms of C6,5(3) that correct eight
errors, using the information set I6,5.

P8 = {
[

1 c

0 I5

]
| c ∈ 〈(1, 1, 1, 0, 0), (2, 1, 0, 1, 0)〉}

5 Conclusion

We include an appendix showing the best values for s for an s-PD-set of size s + 1 that we
have obtained for these MacDonald codes from these two constructions for some small set of
values for n and q and 1 ≤ u ≤ n − 1. It can be seen that the second construction gives the
better result when u is greater than bn2 c. It should be emphasised that we have used a specific
information set, In,u, and that other information sets might yield better results. Of course the
set from Proposition 1 is independent of the information set but is rather large.

6 Appendix

In the tables to follow: for Cn,u(q), q is a prime power, n, u as before, ` is the length of the code,
mw is the minimum weight, t is the error correcting capability, gb is the Gordon-Schönheim
bound for the size of the PD-set for full error correction, s1 = fn−u (for the first construction),
s2 the computationally found value of s for the second construction when u ≥ 3. Thus the size
of the set is s1 + 1, s2 + 1, respectively.
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Table 1: s-PD-sets of size s+ 1 for Cn,u(q)

q n u ` mw t gb s1 s2
2 4 1 14 7 3 5 1 0

4 2 12 6 2 3 0 0
4 3 8 4 1 2 0 1

5 1 30 15 7 11 2 0
5 2 28 14 6 9 1 0
5 3 24 12 5 8 0 1
5 4 16 8 3 5 0 1

6 1 62 31 15 25 5 0
6 2 60 30 14 22 2 0
6 3 56 28 13 21 1 1
6 4 48 24 11 18 0 1
6 5 32 16 7 13 0 3

7 1 126 63 31 59 9 0
7 2 124 62 30 55 5 0
7 3 120 60 29 53 2 1
7 4 112 56 27 48 1 1
7 5 96 48 23 41 0 3
7 6 64 32 15 29 0 7

8 1 254 127 63 136 17 0
8 2 252 126 62 132 9 0
8 3 248 124 61 131 5 1
8 4 240 120 59 127 2 1
8 5 224 112 55 118 1 3
8 6 192 96 47 102 0 7
8 7 128 64 31 70 0 15

9 1 510 255 127 328 30 0
9 2 508 254 126 322 17 0
9 3 504 252 125 320 9 1
9 4 496 248 123 315 5 1
9 5 480 240 119 302 2 3
9 6 448 224 111 283 1 7
9 7 384 192 95 243 0 15
9 8 256 128 63 163 0 15

10 1 1022 511 255 787 55 0
10 2 1020 510 254 779 30 0
10 3 1016 508 253 782 17 1
10 4 1008 504 251 773 9 1
10 5 992 496 247 762 5 3
10 6 960 480 239 736 2 7
10 7 896 448 223 691 1 15
10 8 768 384 191 590 0 15
10 9 512 256 127 396 0 31
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q n u ` mw t gb s1 s2
3 4 1 39 26 12 18 3 0

4 2 36 24 11 16 1 0
4 3 27 18 8 12 0 2

5 1 120 80 39 68 9 0
5 2 117 78 38 67 3 0
5 3 108 72 35 61 1 2
5 4 81 54 26 47 0 8

6 1 363 242 120 267 23 0
6 2 360 240 119 265 9 0
6 3 351 234 116 260 3 2
6 4 324 216 107 237 1 8
6 5 243 162 80 181 0 8

7 1 1092 728 363 1051 59 0
7 2 1089 726 363 1044 23 0
7 3 1080 729 359 1035 9 2
7 4 1053 702 350 1010 3 8
7 5 972 648 323 931 1 8
7 6 729 486 242 700 0 23

8 1 3279 2186 1092 4170 155 0
8 2 3276 2184 1091 4159 59 0
8 3 3267 2178 1088 4151 23 2
8 4 3240 2160 1079 4118 9 8
8 5 3159 2106 1052 4017 3 8
8 6 2916 1944 971 3706 1 23
8 7 2187 1458 728 2780 0 71

9 1 9840 6560 3279 16740 409 0
9 2 9837 6558 3278 16746 155 0
9 3 9828 6552 3275 16723 59 2
9 4 9801 6534 3266 16688 23 8
9 5 9720 6480 3239 16536 9 8
9 6 9477 6318 3158 16131 3 23
9 7 8748 5832 2915 14881 1 71
9 8 6561 4374 2186 11180 0 197

10 1 29523 19682 9849 67894 1092 0
10 2 29520 19680 9839 67885 409 0
10 3 29511 19674 9836 67861 155 2
10 4 29484 19656 9827 67783 59 8
10 5 29403 19602 9800 67606 23 8
10 6 29160 19440 9719 67040 9 23
10 7 28431 18954 9476 65365 3 71
10 8 26244 17496 8747 60334 1 197
10 9 19683 13122 6560 45254 0 518
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q n u ` mw t gb s1 s2
4 4 1 84 63 31 51 6 0

4 2 80 60 29 47 1 0
4 3 64 48 23 37 0 3

5 1 340 255 127 263 20 0
5 2 336 252 125 258 6 0
5 3 320 240 119 245 1 3
5 4 256 192 95 196 0 15

6 1 1364 1023 511 1430 67 0
6 2 1360 1020 509 1420 20 0
6 3 1344 1008 503 1406 6 3
6 4 1280 960 479 1337 1 15
6 5 1024 768 383 1072 0 63

7 1 5460 4095 2047 7905 226 0
7 2 5456 4092 2045 7894 67 0
7 3 5440 4080 2039 7873 20 3
7 4 5376 4032 2015 7775 6 15
7 5 51207 3840 1919 7408 1 63
7 6 4096 3072 1535 5932 0 63

8 1 21844 16383 8191 44423 779 0
8 2 21840 16380 8189 44396 226 0
8 3 21824 16368 8183 44376 67 3
8 4 21760 16320 8159 44245 20 15
8 5 21504 16128 8063 43715 6 63
8 6 20480 15360 7679 41641 1 63
8 7 16384 12288 6143 33319 0 255

9 1 87380 65535 32767 252567 2729 0
9 2 87376 65532 32765 252536 779 0
9 3 87360 65520 32759 252480 226 3
9 4 87296 65472 32735 252300 67 15
9 5 87040 765280 32639 251556 20 63
9 6 86016 64512 32255 248597 6 63
9 7 81920 61440 30719 236754 1 255
9 8 65536 49152 24575 189409 0 1023

10 1 349524 262143 131071 1451611 9708 0
10 2 349520 262140 131069 1451557 2729 0
10 3 349504 262128 131063 1451482 779 3
10 4 349440 262080 131039 1451227 226 15
10 5 349184 261888 130943 1450159 67 63
10 6 348160 261120 130559 1445916 20 63
10 7 344064 258048 129023 1428896 6 255
10 8 327680 245760 122879 1360863 1 1023
10 9 262144 196608 98303 1088719 0 4095
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q n u ` mw t gb s1 s2
5 4 1 155 124 61 104 9 0

4 2 150 120 59 100 2 0
4 3 125 100 49 84 0 4

5 1 780 624 311 720 38 0
5 2 775 620 309 718 9 0
5 3 750 600 299 694 2 4
5 4 625 500 249 581 0 16

6 1 3905 3124 1561 5084 155 0
6 2 3900 3120 1559 5074 38 0
6 3 3875 3100 1549 5040 9 4
6 4 3750 3000 1499 4877 2 16
6 5 3125 2500 1249 4065 0 73

7 1 19530 15624 7811 36509 650 0
7 2 19525 15620 7809 36502 155 0
7 3 19500 15600 7799 36457 38 4
7 4 19375 15500 7749 36228 9 16
7 5 18750 15000 7499 35055 2 73
7 6 15625 12500 6249 29222 0 264

8 1 97655 78124 39061 266388 2789 0
8 2 97650 78120 39059 266379 650 0
8 3 97625 78100 39049 266310 155 4
8 4 97500 78000 38999 265959 38 16
8 5 96875 77500 38749 264254 9 73
8 6 93750 75000 374999 255748 2 264
8 7 78125 62500 31249 213124 0 1112

9 1 488280 390624 195311 1968014 12206 0
9 2 488275 390620 195309 1967995 2789 0
9 3 488250 390600 195299 1967896 650 4
9 4 488125 390500 195249 1967389 155 16
9 5 487500 390000 194999 1964873 38 73
9 6 484375 387500 193749 1952282 9 264
9 7 468750 375000 187499 1889299 2 1112
9 8 390625 312500 156249 1574452 0 4694
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