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Abstract

Codes defined through the row-span over finite fields of incidence matrices of designs or

adjacency matrices of regular graphs have many properties that can be deduced from

the combinatorial properties of the designs or graphs. In particular those codes that

come from designs defined by finite geometries have been used both in applications

and for classification purposes within design theory.

We look here at their applicability to permutation decoding and generalize the notion

of PD-sets to that of partial PD-sets that can be used to correct some number of

errors possibly less than the full capability of the code. These have been found for

some infinite classes of codes from finite geometries and graphs.
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Design theory background

An incidence structure D = (P,B, I), with point set P, block set B and incidence I
is a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident with precisely k points,

and every t distinct points are together incident with precisely λ blocks.

E.g. A 2-(n2 +n+1, n+1, 1) is a projective plane of order n, where n = pe is a prime

power (in all known cases);

a 2− (16, 6, 2) is a biplane.

The code CF of the design D over the finite field F is the space spanned by the

incidence vectors of the blocks over F , i.e. the row span over F of an incidence matrix:

see [AK92, AK96] for more.

Similarly, the code of an undirected graph Γ over a finite field F is the row span over

F of an adjacency matrix for Γ.

http://www.ces.clemson.edu/math/


4/23 P�i?
22333ML232

Coding theory terminology

� A linear code is a subspace of a finite-dimensional vector space over a finite

field.

� The weight of a vector is the number of non-zero coordinate entries. If a code

has smallest non-zero weight d then the code can correct up to bd−1
2 c errors by

nearest-neighbour decoding.

� If a code C over a field of order q is of length n, dimension k, and minimum weight

d, then we write [n, k, d]q to show this information.

� A generator matrix for the code is a k × n matrix made up of a basis for C.

� The dual code C⊥ is the orthogonal under the standard inner product (, ), i.e.

C⊥ = {v ∈ Fn|(v, c) = 0 for all c ∈ C}.

� A check matrix for C is a generator matrix H for C⊥.

http://www.ces.clemson.edu/math/
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Coding theory terminology continued

� Two linear codes of the same length and over the same field are isomorphic if

they can be obtained from one another by permuting the coordinate positions.

� An automorphism of a code C is an isomorphism from C to C.

� Any code is isomorphic to a code with generator matrix in standard form,

i.e. the form [Ik |A]; a check matrix then is given by [−AT | In−k]. The first k

coordinates are the information symbols and the last n − k coordinates are

the check symbols.

http://www.ces.clemson.edu/math/
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Permutation decoding

Permutation decoding was first developed by Jessie MacWilliams [Mac64]. It can be

used when a code has sufficiently many automorphisms to ensure the existence of a set

of automorphisms called a PD-set. We extend the definition of PD-sets to s-PD-sets

for s-error-correction [KMM05]:

Definition 1 If C is a t-error-correcting code with information set I and check set C,

then a PD-set for C is a set S of automorphisms of C which is such that every t-set

of coordinate positions is moved by at least one member of S into the check positions

C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set

of coordinate positions is moved by at least one member of S into C.

More specifically, if I = {1, . . . , k} are the information positions and C = {k+1, . . . , n}
the check positions, then every s-tuple from {1, . . . , n} can be moved by some element

of S into C.

http://www.ces.clemson.edu/math/
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Algorithm for permutation decoding

C is a q-ary t-error-correcting [n, k, d]q code; d = 2t + 1 or 2t + 2.

k × n generator matrix for C: G = [Ik|A].
Any k-tuple v is encoded as vG. The first k columns are the information symbols, the

last n− k are check symbols.

(n− k)× n check matrix for C: H = [−AT |In−k].

Suppose x is sent and y is received and at most t errors occur.

S = {g1, . . . , gm} is a PD-set for C.

� For i = 1, . . . ,m, compute ygi and the syndrome si = H(ygi)T until an i is found

such that the weight of si is t or less;

� if u = u1u2 . . . uk are the information symbols of ygi, compute the codeword

c = uG;

� decode y as cg−1
i .

http://www.ces.clemson.edu/math/
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Why permutation decoding works

Result 1 Let C be an [n, k, d]q t-error-correcting code. Suppose H is a check matrix

for C in standard form, i.e. such that In−k is in the redundancy positions. Let y = c+e

be a vector, where c ∈ C and e has weight ≤ t. Then the information symbols in y

are correct if and only if the weight of the syndrome HyT of y is ≤ t.

http://www.ces.clemson.edu/math/
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Minimum size for a PD-set

Counting shows that there is a minimum size a PD-set can have; most the sets known

have size larger than this minimum. The following is due to Gordon [Gor82], using a

result of Schönheim [Sch64]:

Result 2 If S is a PD-set for a t-error-correcting [n, k, d]qcode C, and r = n−k, then

|S| ≥
⌈

n

r

⌈
n− 1
r − 1

⌈
. . .

⌈
n− t + 1
r − t + 1

⌉
. . .

⌉⌉⌉
.

(Proof in Huffman [Huf98].)

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the formula.

http://www.ces.clemson.edu/math/
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Single error

Correcting a single error is, in fact, simply done by using syndrome decoding, since in

that case multiples of the columns of the check matrix will give the possible syndromes.

Thus the syndrome of the received vector need only be compared with the columns of

the check matrix, by looking for a multiple.

So we look for s-PD-sets for s ≥ 2.

http://www.ces.clemson.edu/math/
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Classes of codes having s-PD-sets

� If Aut(C) is k-transitive then Aut(C) itself is a k-PD-set, in which case we attempt

to find smaller sets;

� existence of a k-PD-set is not invariant under isomorphism (not equivalence) of

codes;

� codes from the row span over a finite field of an incidence matrix of a design or

geometry, or from an adjacency matrix of a graph;

� using Result 2 it follows that many classes of designs and graphs where the

minimum-weight and automorphism group are known, cannot have PD-sets for

full error-correction for length beyond some bound; for these we look for s-PD-

sets with 2 ≤ s < bd−1
2 c: e.g. finite planes, Paley graphs;

� for some classes of regular and semi-regular graphs with large automorphism

groups, PD-sets exist for all lengths: e.g. binary codes of triangular graphs, lattice

graphs, line graphs of complete multi-partite graphs.

http://www.ces.clemson.edu/math/
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Some infinite classes of codes having PD-sets

In all of these, suitable information sets had to be found.

1. Triangular graphs

For any n, the triangular graph T (n) is the line graph of the complete graph Kn, and

is strongly regular. The row span over F2 of an adjacency matrix gives codes:

[n(n−1)
2 , n− 1, n− 1]2 for n odd and

[n(n−1)
2 , n− 2, 2(n− 1)]2 for n even

where n ≥ 5.

The automorphism group is Sn acting naturally (apart from n = 5) and get PD-sets

of size n for n odd and n2 − 2n + 2 for n even, by [KMR04b].

(The computational complexity of the decoding by this method may be quite low, of

the order n1.5 if the elements of the PD-set are appropriately ordered. The codes are

low density parity check (LDPC) codes.)

http://www.ces.clemson.edu/math/
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2. Lattice graphs

The (square) lattice graph L2(n) is the line graph of the complete bipartite graph

Kn,n, and is strongly regular. The row span over F2 of an adjacency matrix gives

codes: [n2, 2(n − 1), 2(n − 1)]2 for n ≥ 5 with Sn o S2 as automorphism group, and

PD-sets of size n2 in Sn × Sn were found in [KSb].

(The lower bound from Result 2 is O(n).)

A similar result holds for the rectangular lattice graph L2(m,n), m < n: the codes are

[mn, m + n− 2, 2m]2 for m + n even,

[mn, m + n− 1,m]2 for m + n odd.

PD-sets of size m2 + 1 and m + n, respectively, in Sm × Sn can be found. [KSa].

More generally for the line graphs of multi-partite graphs, with automorphism group

Sn1 × Sn2 × . . .× Snm : work in progress.

http://www.ces.clemson.edu/math/
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3. Graphs on triples

Define three graphs with vertex set the subsets of size three of a set of size n and

adjacency according to the size of the intersection of the 3-subsets. Properties od

these codes are in [KMR04a]. Again Sn in its natural action is the automorphism

group.

If C is the binary code in the case of adjacency if the 3-subsets intersect in two elements,

then the dual C⊥ is a [
(
n
3

)
,
(
n−1

2

)
, n − 2]2 code and a PD-set of n3 can be found by

[KMR].

W. Fish (UWC) is working on binary codes from uniform subset graphs in general (odd

graphs, Johnson graphs, etc.)

http://www.ces.clemson.edu/math/
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Some infinite classes of codes only having partial PD-sets

1. Finite planes

If q = pe where p is prime, the code of the desarguesian projective plane of order q has

parameters: C = [q2 + q + 1, (p(p+1)
2 )e + 1, q + 1]p. For the affine plane the code is

[q2, (p(p+1)
2 )e, q]p.

Similarly, the designs formed from points and subspaces of dimension r, for some r, in

projective or affine space, have GRM codes and the parameters are known.

The codes are subfield subcodes of the generalized Reed-Muller codes, and the auto-

morphism groups are the semi-linear groups and doubly transitive.

http://www.ces.clemson.edu/math/
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Thus 2-PD-sets always exist but the bound for full error-correction of Result 2 is greater

than the size of the group (see [KMM05]) as q gets large. For example, in the projective

desarguesian case when:

q = p prime and p > 103;

q = 2e and e > 12;

q = 3e and e > 6;

q = 5e and e > 4;

q = 7e and e > 3;

q = 11e and e > 2;

q = 13e and e > 2;

q = pe for p > 13 and e > 1.

Similar results hold for the affine and dual cases, in all of the designs.

http://www.ces.clemson.edu/math/
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Finding PD-sets

First we need an information set. These are not known in general; further different

information sets will yield different possibilities for PD-sets.

For symmetric designs (e.g. projective planes), a basis of incidence vectors of blocks

will yield a corresponding information set, by duality. This links to the question of

finding bases of minimum-weight vectors in the geometric case, again something not

known in general.

For planes, Moorhouse [Moo91] or Blokhuis and Moorhouse [BM95] give bases in the

prime-order case. Recently a convenient information set for the designs of points and

hyperplanes of prime order was found in [KMM].

http://www.ces.clemson.edu/math/
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Small 2-PD-sets in prime-order planes

2-PD-sets exist for any information set (since the group is 2-transitive); for prime order,

using a Moorhouse [Moo91] basis,

2-PD-sets of 37 elements for desarguesian affine planes of any prime order p and

2-PD-sets of 43 elements for desarguesian projective planes of any prime order p

were constructed in [KMM05].

Also 3-PD-sets for the code and the dual code in the affine prime case of sizes 2p2(p−1)
and p2, respectively, were found.

Other orders q and other codes from geometries yield similar results.

http://www.ces.clemson.edu/math/
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2. Paley graphs

If n is a prime power with n ≡ 1(mod 4), the Paley graph ,P (n), has Fn as vertex

set and two vertices x and y are adjacent if and only if x − y is a non-zero square in

Fn. The row span over a field Fp of an adjacency matrix gives an interesting code

(quadratic residue codes) if and only if p is a square in Fn.

For any σ ∈ Aut(Fn) and a, b ∈ Fn with a a non-zero square, the group of maps

τa,b,σ : x 7→ axσ + b is the automorphism group of the code, and for n ≥ 1697 and

prime or n ≥ 1849 and a square, PD-sets cannot exist since the bound of Result 2

is bigger than the order of the group (using the square root bound for the minimum

weight, and the actual minimum weight q + 1 when n = q2 and q is a prime power).

http://www.ces.clemson.edu/math/
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For the case where n is prime and n ≡ 1 (mod 8), the code of P (n) over Fp is

C = [n, n−1
2 , d]p where d ≥

√
n,

(the square-root bound) for p any prime dividing n−1
4 .

C has a 2-PD-set of size 6 by [KL04]. (The automorphism group is not 2-transitive.)

For the dual code in this case, a 2-PD-set of size 10 for all n was found. Further results

in [Lim].

http://www.ces.clemson.edu/math/
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