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Abstract

We examine the p-ary codes from incidence matrices of Paley graphs P (q) where q ≡ 1 (mod 4)
is a prime power, and show that the codes are [ q(q−1)

4 , q − 1, q−1
2 ]2 or [ q(q−1)

4 , q, q−1
2 ]p for p odd.

By finding PD-sets we show that for q > 9 the p-ary codes, for any p, can be used for permutation
decoding for full error-correction. The binary code from the line graph of P (q) is shown to be the
same as the binary code from an incidence matrix for P (q).
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1 Introduction

The codes from the row span of adjacency matrices of Paley graphs are the well-known quadratic
residue codes and studied in many texts. We look here at the codes from the row span of incidence
matrices of Paley graphs, following the ideas of some earlier papers that studied such codes for
various classes of graphs and their line graphs, including Hamming graphs, complete graphs, and
complete bipartite graphs: see [15, 16, 7, 8, 6].

An incidence matrix G for a graph Γ = (V,E) is a |V | × |E| matrix with rows labelled by the
vertices and columns by the edges and an entry 1 if a vertex is on edge, 0 otherwise. Thus every
column has two non-zero entries 1 in it, and the row corresponding to a vertex has k non-zero entries
1, where k is the valency of the vertex. If Γ is regular, G can be regarded as an incidence matrix
for a 1-design on |E| vertices, called an incidence design for Γ. The p-ary codes, for any prime p,
obtained from the row span of these incidence matrices for graphs from various infinite classes of
regular connected graphs, have been shown to have certain common properties relating to dimension,
minimum weight, minimum-weight vectors, and minimun weight of the dual code, viz., the dimension
is |V | or |V | − 1, the minimum weight the valency k, the minimum words are the scalar multiples
of the rows of G, and the minimum weight of the dual code is 4 when closed paths of length 4 are
present, or 3 in the binary case: see [7, 8, 15, 16] for some classes of graphs. In addition, it has been
observed that there is often a gap in the weight enumerator between k and 2(k−1), the latter arising
∗dina@mat.uniroma1.it
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from the difference of two rows. This recalls a similar gap in the codes from desarguesian projective
planes: see [5] and [18, 23] for further results and a full bibliography of this property.

If L(Γ) denotes the line graph of Γ, then the code Cp(L(Γ)) spanned by the rows of an adjacency
matrix of L(Γ) over Fp will be a subcode of C2(G) if p = 2, of minimum weight usually k or 2(k−1);
if p is odd, the code is of little use, being of minimum weight at most 4 when Γ has closed paths of
length 4.

We examine here these codes for the Paley graphs P (q) which are defined to have vertices the
set of elements of the finite field Fq where q ≡ 1 (mod 4) and two vertices x, y are adjacent if x− y
is a non-zero square. Thus P (q) is regular of valency q−1

2 and with q(q−1)
4 edges. Our main result is:

Theorem 1 Let P (q) denote the Paley graph on q vertices, where q ≥ 9 is a prime power, and
q ≡ 1 (mod 4). Let Gq denote the 1-( q(q−1)

4 , q−1
2 , 2) incidence design of P (q). Then, for any prime

p,

1. (a)

C2(Gq) = [
q(q − 1)

4
, q − 1,

q − 1
2

]2, C2(Gq)⊥ = [
q(q − 1)

4
,
(q − 1)(q − 4)

4
, 3]2;

(b)

Cp(Gq) = [
q(q − 1)

4
, q,

q − 1
2

]p, Cp(Gq)⊥ = [
q(q − 1)

4
,
q(q − 5)

4
, 4]p

for p odd.

The codes Cp(Gq) can correct q−5
4 errors.

2. If L(P (q)) denotes the line graph of P (q) and Cp(L(P (q))) the code from the row span over Fp
of an adjacency matrix for L(P (q)), then C2(L(P (q)) = C2(Gq)), and for p odd, Cp(L(P (q))
has words of weight 4.

3. For q prime, let

I = {[0, 1], [1, 2], . . . , [q − 1, 0]}, I∗ = I \ {[q − 1, 0]},

be sets of edges of P (q). Then I is an information set for Cp(Gq) for p odd, and I∗ is an
information set for C2(Gq). For q ≥ 13 the set of automorphisms obtained from multiplication
by the non-zero squares in Fq form a PD-set of size q−1

2 for Cp(Gq) for any prime p with
information set I for p odd, or information set I∗ for p = 2.

For all q > 9, any subgroup of the automorphism group that is transitive on edges will form a
PD-set for Cp(Gq) for all p.

The proof of the theorem follows from Propositions 3, 5, 6 and Corollary 4 in the sections to follow.
Section 2 contains some background results and terminology, including a description of permutation
decoding; Section 3 has a result that holds for any strongly regular graph. Our main results about the
codes from the incidence matrices of Paley graphs are in Section 4. In Section 5 we obtain the PD-sets,
in Section 6 we examine the codes from line graphs, and in Section 7 we obtain some computational
results concerning the binary hulls of the codes. Computations were done with Magma [3, 4].



2 GENERAL OBSERVATIONS AND BACKGROUND 3

2 General observations and background

The notation for designs and codes is as in [1]. An incidence structure D = (P,B,J ), with point
set P, block set B and incidence J is a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident
with precisely k points, and every t distinct points are together incident with precisely λ blocks. The
design is symmetric if it has the same number of points and blocks. The code CF (D) of the
design D over the finite field F is the space spanned by the incidence vectors of the blocks over F .
If Q is any subset of P, then we will denote the incidence vector of Q by vQ, and if Q = {P}
where P ∈ P, then we will write vP instead of v{P}. Thus CF (D) =

〈
vB |B ∈ B

〉
, and is a subspace

of FP , the full vector space of functions from P to F . For any w ∈ FP and P ∈ P, w(P ) denotes
the value of w at P . If F = Fp then the p-rank of the design, written rankp(D), is the dimension
of its code CF (D), which we usually write as Cp(D).

All the codes here are linear codes, and the notation [n, k, d]q will be used for a q-ary code C of
length n, dimension k, and minimum weight d, where the weight wt(v) of a vector v is the number
of non-zero coordinate entries. The support, Supp(v), of a vector v is the set of coordinate positions
where the entry in v is non-zero. So |Supp(v)| = wt(v). The distance d(u, v) between two vectors
u, v is the number of coordinate positions in which they differ, i.e., wt(u− v). A generator matrix
for C is a k × n matrix made up of a basis for C, and the dual code C⊥ is the orthogonal under
the standard inner product (, ), i.e. C⊥ = {v ∈ Fn | (v, c) = 0 for all c ∈ C}. If C = Cp(D), where
D is a design, then C ∩ C⊥ is the hull of D at p, or simply the hull of D or C if p and D are clear
from the context. A check matrix for C is a generator matrix for C⊥. The all-one vector will be
denoted by , and is the vector with all entries equal to 1. If we need to specify the length m of the
all-one vector, we write m. A constant vector has all entries either 0 or some fixed non-zero a ∈ F ,
i.e. a scalar multiple of some incidence vector. We call two linear codes isomorphic if they can be
obtained from one another by permuting the coordinate positions. An automorphism of a code C
is an isomorphism from C to C. The automorphism group will be denoted by Aut(C). Any code
is isomorphic to a code with generator matrix in so-called standard form, i.e. the form [Ik |A]; a
check matrix then is given by [−AT | In−k]. The set of the first k coordinates in the standard form is
called an information set for the code, and the set of the last n−k coordinates is the corresponding
check set.

The graphs, Γ = (V,E) with vertex set V and edge set E, discussed here are undirected with no
loops and no multiple edges. If x, y ∈ V and x and y are adjacent, we write x ∼ y, and [x, y] for the
edge in E that they define. The valency of a vertex is the number of vertices adjacent to it, and the
graph is regular if all the vertices have the same valency.. If [xi, xi+1] for i = 1 to r− 1, and [xr, x1]
are all edges of Γ, and the xi are all distinct, then the sequence written (x1, . . . , xr) will be called a
closed path or circuit of length r for Γ. A closed path that goes through every vertex of Γ exactly
once is called a Hamiltonian path and if a graph has such a path, it is called Hamiltonian. If
for every pair of vertices there is a path connecting them, the graph is connected.

An adjacency matrix A of a graph Γ = (V,E) is a |V | × |V | matrix with entries aij such that
aij = 1 if vertices vi and vj are adjacent, and aij = 0 otherwise. An incidence matrix of Γ is an
|V | × |E| matrix B with bi,j = 1 if the vertex labelled by i is on the edge labelled by j, and bi,j = 0
otherwise. If Γ is regular with valency k, then the 1-(|E|, k, 2) design with incidence matrix B is
called the incidence design of Γ. The neighbourhood design of a regular graph is the 1-design
formed by taking the points to be the vertices of the graph and the blocks to be the sets of neighbours
of a vertex, for each vertex, i.e. regarding an adjacency matrix as an incidence matrix for the design.
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The line graph of a graph Γ = (V,E) is the graph L(Γ) with E as vertex set and where adjacency is
defined so that e and f in E, as vertices, are adjacent in L(Γ) if e and f as edges of Γ share a vertex
in Γ. A strongly regular graph Γ of type (n, k, λ, µ) is a regular graph on n = |V | vertices, with
valency k which is such that any two adjacent vertices are together adjacent to λ vertices and any
two non-adjacent vertices are together adjacent to µ vertices. The complement of the graph Γ is also
strongly regular of type (n, n− k − 1, n− 2k + µ− 2, n− 2k + λ). To avoid trivial cases, we require
that a strongly regular graph and its complement are both connected, and so 0 < µ < k < n− 1.

The code of a graph Γ over a finite field F is the row span of an adjacency matrix A over the
field F , denoted by CF (Γ) or CF (A). The dimension of the code is the rank of the matrix over F ,
also written rankp(A) if F = Fp, in which case we will speak of the p-rank of A or Γ, and write
Cp(Γ) or Cp(A) for the code. It is also the code over Fp of the neighbourhood design. Similarly, if B
is an incidence matrix for Γ, Cp(B) denotes the row span of B over Fp and is the code of the design
with blocks the rows of B, in the case that Γ is regular. If M is an adjacency matrix for L(Γ) where
Γ is regular of valency k, |V | vertices, |E| edges, then

BBT = A+ kI|V | and BTB = M + 2I|E|, (1)

where A is an adjacency matrix, and B an incidence matrix, for Γ.
Permutation decoding was first developed by MacWilliams [19] and involves finding a set

of automorphisms of a code called a PD-set. The method is described fully in MacWilliams and
Sloane [20, Chapter 16, p. 513] and Huffman [10, Section 8]. In [12] and [17] the definition of PD-sets
was extended to that of s-PD-sets for s-error-correction:

Definition 1 If C is a t-error-correcting code with information set I and check set C, then a PD-
set for C is a set S of automorphisms of C which is such that every t-set of coordinate positions is
moved by at least one member of S into the check positions C.

The algorithm for permutation decoding is given in [10] and requires that the generator matrix
is in standard form.

Such sets might not exist at all, and the property of having a PD-set might not be invariant under
isomorphism of codes, i.e. it depends on the choice of I and C. Furthermore, there is a bound on the
minimum size that the set S may have, due to Gordon [9], from a formula due to Schönheim [22],
and quoted and proved in [10]:

Result 1 If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r = n− k, then

|S| ≥
⌈
n

r

⌈
n− 1
r − 1

⌈
. . .

⌈
n− t+ 1
r − t+ 1

⌉
. . .

⌉⌉⌉
.

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the formula.
We will need the following results from [8]:

Result 2 Let Γ = (V,E) be a graph, L(Γ) its line graph, G a |V | × |E| incidence matrix for Γ, and
γ = (P,Q,R, S) a closed path in Γ. Let

u(γ) = v[P,Q] + v[R,S] − v[P,S] − v[Q,R]. (2)

Then
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1. for any prime p, u(γ) ∈ Cp(G)⊥; for p an odd prime, u(γ) ∈ Cp(L(Γ));

2. if Γ is regular with valency k and G the 1-(|E|, k, 2) incidence design for Γ, then Aut(Γ) =
Aut(G).

For a regular graph Γ = (V,E) of valency k, the incidence design G of Γ has a block of size k
defined for each vertex P which we will denote by P̄ where

P̄ = {[P,Q] | Q ∈ V }, (3)

i.e. corresponding to the set of k edges through P .
The following is from [6, 14].

Result 3 Let Γ = (V,E) be a graph, G an incidence matrix for Γ, Cp(G) the row-span of G over
Fp. If Γ is connected then dim(C2(G)) = |V | − 1, and if Γ is connected and has a closed path of odd
length ≥ 3, then dim(Cp(G)) = |V | for odd p.

Proof: Let C = Cp(G). That dim(C) ≥ |V | − 1 for a connected graph, is well known, but can be
proved by induction on |V | = n by using a standard result concerning graphs, and proved in [2,
Theorem 3.1.10], for example, that any connected graph with |V | ≥ 2 has at least two non-cut
vertices, where a cut vertex is one that when removed from a connected graph disconnects the
graph. For then, since it is clearly true for n = 2, supposing the stated result is true for n − 1
vertices, and |V | = n, then by removing one of these non-cut vertices, say P , the remaining graph
on n − 1 vertices will still give rank at least n − 2, and by adjoining P the rank becomes at least
n− 1. Clearly there is equality for p = 2.

For p odd, let w =
∑
airi be a sum of multiples of the rows of G. We wish to show that if

w = 0 then all the ai are 0. So suppose w = 0. Denoting the vertices of the graph by the labels
of the rows, if [i, j] is an edge then ai = −aj . Taking a path of odd length i0, i1, . . . im we see that
ai0 = −ai1 = . . . = aim = −ai0 , so ai0 = 0. Since the graph is connected, we thus get ai = 0 for all
i, as required. �

Corollary 2 If Γ = (V,E) is a strongly regular graph with λ ≥ 1, then the p-rank of an incidence
matrix for Γ for p odd is |V |.

Proof: If λ 6= 0 then clearly Γ has triangles, i.e. closed paths of length 3. �

3 Incidence designs of strongly regular graphs

Now let Γ be a strongly regular graph with parameters (v, k, λ, µ). We assume that Γ is connected,
that 0 < µ < k < v− 1 and that it has closed paths of length 4, so that from Result 2, for any prime
p, the dual of the p-ary code from an incidence matrix has words of weight 4.

Proposition 1 Let Γ = (V,E) be a strongly regular graph with parameters (v, k, λ, µ). Let G be the
1-(vk2 , k, 2) incidence design of Γ and let C = Cp(G), where p is any prime.

Let B denote the set of supports of the weight-4 vectors of C⊥ as obtained in Result 2. Then B
is the set of blocks of a 1-(vk2 , 4, r) design F where

r = (k − λ− 1)(µ− 1) + λ(λ− 1). (4)
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If P denotes the point set of G, then for X ∈ P the number of blocks of B through X and another
point Y ∈ P is in the set N = {0, 1, 2, µ− 1, λ− 1}.

Proof: We look at the closed paths (P,Q,R, S) of vertices of Γ and, taking a point X = [P,Q] ∈ P,
we count the number of paths that contain X.

Since P ∼ Q there are λ vertices in V adjacent to both P and Q, and (k − λ − 1) vertices R
adjacent to Q but not to P . The number of S ∈ V , excluding Q, that are adjacent to both P and
R is (µ− 1), giving (k − λ− 1)(µ− 1) such paths. Now counting the paths where R ∼ P as well as
R ∼ Q, there are λ such R, and then (λ − 1) such S, excluding Q, that are adjacent to R and P ,
giving another λ(λ− 1) paths. This gives the asserted value for r.

Let X = [P,Q] and count the number of blocks of B through X and Y for various types of Y ∈ P:

1. if Y = [Q,R] then we get either λ − 1 or µ − 1 vertices S, depending on P ∼ R or not. The
support of such a block would be {[P,Q], [P, S], [Q,R], [R,S]}. Similarly if Y = [P, S].

2. if Y = [R,S] where R,S 6= P,Q, then for X and Y to be on a block we need [P,R] and [Q,S],
or [P, S] and [Q,R], or both, giving one, two or no blocks if none of these three options hold.

This completes the proof. �

With the same notation as in Proposition 1:

Proposition 2 Let Γ be a (v, k, λ, µ) strongly regular graph. Let m = max{2, λ − 1, µ − 1}. If s is
the weight of a word in C = Cp(G), then

s ≥ 1 +
1
m

((k − λ− 1)(µ− 1) + λ(λ− 1)) .

Proof: Let w ∈ C and S = Supp(w), and s = |S|. Let X ∈ S. Using notation as in Proposition 1,
we look at the blocks of B through X and note that they must meet S again, since the corresponding
weight-4 vector is in C⊥. Suppose there are zi blocks in B through X that meet S in i points. So
z0 = z1 = zi = 0 for i ≥ 5, and r = z2 + z3 + z4. Suppose there are rj points Y ∈ S such that X
and Y are on j blocks of B. So j ∈ N = {0, 1, 2, λ− 1, µ− 1}. Then s = 1 +

∑
j∈N rj and counting

incidences gives

r ≤ z2 + 2z3 + 3z4 =
∑
j∈N

jrj = r1 + 2r2 + (λ− 1)rλ−1 + (µ− 1)rµ−1 ≤ m(s− 1− r0). (5)

Since, from Equation (4), r = (k − λ− 1)(µ− 1) + λ(λ− 1), we get

s ≥ 1 + r0 +
1
m

((k − λ− 1)(µ− 1) + λ(λ− 1)) , (6)

giving a lower bound for the minimum weight of C. �

Example 1 If λ = µ then the neighbourhood design is a 2-design, and from Equation (6) we obtain
s = k, the valency, as the minimum weight of Cp(G).
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4 Paley graphs

Let q be a prime power with q ≡ 1 (mod 4). The Paley graph, denoted by P (q), has the finite
field Fq of order q as vertex set and two vertices x and y are adjacent if and only if x − y is a
non-zero square in Fq. Since q ≡ 1 (mod 4), −1 is a square in Fq. The condition that −1 is a square
in Fq is required to ensure that [x, y] is an edge if and only if [y, x] is. Thus P (q) is well-defined.
The Paley graph is a strongly regular graph of type (q, q−1

2 , q−1
4 − 1, q−1

4 ) and is isomorphic to its
complement. We will also make use of the fact that P (q) is Hamiltonian, as is well-known: see, for
example, [21, 11].

Let q = qe1 where q1 is a prime and F∗q = 〈w〉. For any σ ∈ Aut(Fq) and a, b ∈ Fq with a ∈ 〈w2〉,
we define the map τa,b,σ on Fq by

τa,b,σ : x 7→ axσ + b, (7)

for x ∈ Fq. Then

Aq = {τa,b,σ | σ ∈ Aut(Fq), a, b ∈ Fq, a a non-zero square} (8)

is well-known to be the automorphism group of P (q), of order 1
2eq(q− 1). It is transitive on vertices

of P (q) but not 2-transitive. Of course Aq ⊆ AΓL1(Fq).
We look here at the incidence design of P (q) for q ≥ 9, i.e. Gq, a 1-( q(q−1)

4 , q−1
2 , 2) design, from

an incidence matrix G(q) for P (q), with point set

P = {[x, x+ y] | x ∈ Fq, y a non-zero square of Fq} (9)

of size q(q−1)
4 . There are q blocks, one defined for each x ∈ Fq, which we denote by x̄, so that

x̄ = {[x, x+ y] | y a non-zero square of Fq}. (10)

The group Aq of Equation (8) acts on Gq and is transitive on P, as can easily be verified. For notation
we will use letters x, y, z ∈ Fq etc. for the vertices of P (q), i.e. elements of Fq, and capital letters
P,Q,R ∈ P etc. for the points of the incidence design Gq.

Proposition 3 Let Γ = P (q) where q ≥ 9, q a prime power, and q ≡ 1 (mod 4). Let Gq be the
1-( q(q−1)

4 , q−1
2 , 2) incidence design of P (q). Then

• C2(Gq) = [ q(q−1)
4 , q − 1, q−1

2 ]2, C2(Gq)⊥ = [ q(q−1)
4 , (q−1)(q−4)

4 , 3]2;

• Cp(Gq) = [ q(q−1)
4 , q, q−1

2 ]p, Cp(Gq)⊥ = [ q(q−1)
4 , q(q−5)

4 , 4]p for p odd.

For all p, Cp(Gq) can correct q−5
4 errors.

Proof: Let C = Cp(Gq). The dimension of the code in each case is as stated by Result 3 and
Corollary 2. Let w ∈ C and S = Supp(w), and s = |S|.

To get the minimum weight, we apply Propositions 1 and 2 since for q ≥ 9, P (q) has closed
paths of length 4. The Paley graph P (q) has v = q ≡ 1 (mod 4) where q is a prime power, k = q−1

2 ,

λ = q−1
4 − 1, µ = q−1

4 ≥ 3 for q ≥ 13. So, in the notation of the propositions, r = (q−5)2

8 and
m = µ − 1 = q−5

4 for q ≥ 13. For q = 9, µ − 1 = 1, but we still have m = 1 since the second type
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of point [u, v] in the proof of Proposition 1 can only yield one 4-block through [x, y] and [u, v] for
q = 9, as can easily be verified directly. Thus m = µ− 1 in this case too.

The inequality from Equation (6) becomes, for q ≥ 9:

s ≥ r0 +
q − 1

2
− 1 ≥ q − 1

2
− 1. (11)

If s = q−1
2 − 1 = k − 1 then this implies that r0 = 0 for all points of S, i.e. every pair of points of S

are together on a weight-4 block of B. Furthermore, if s = q−1
2 − 1, Equation (5) gives

r ≤ z2 + 2z3 + 3z4 ≤ (
q − 5

4
)(
q − 1

2
− 2) = r,

so r = z2 + z3 + z4 = z2 + 2z3 + 3z4 for all points of S, and thus z3 = z4 = 0 for all points of S.
For p = 2, since the binary code is generated by vectors of even weight k = q−1

2 , all the vectors
of C must have even weight, so the minimum weight is k = q−1

2 .
If p 6= 2, then for any point P of S, every block of B that contains it must meet S just once again.

The maximum number of blocks through P and another point Q is µ− 1, and if P = [x, y] then this
occurs if Q = [x, z] or [y, w] if µ− 1 > 2. Since there are k− 2 points in S other than P , the number
of blocks covered is at most (k − 2)(µ − 1) = ( q−5

2 )( q−5
2 ) = r, so that all the points must be of the

form Q = [x, z] or [y, w], if µ − 1 > 2. So for q > 13 this is the case and w is a constant word. If
there are points of the form [x, y1] and [y, x1] then, since the deduction regarding the nature of the
points in S is true for every point, we must have x1 = y1, and thus there is no other point [x, y2]
nor [y, x2]. So all the points of S have the form [x, yi] say, and hence w − vx has weight 1, which is
impossible. This proves the assertion for q ≥ 17.

For q = 13, k = 6, µ− 1 = 2 = λ, and the above argument will apply if all the points of S have
the form [x, z], [y, w]. Otherwise there can be points of the form [z, w] on two blocks with [x, y], so
that, from the proof of Proposition 1, x ∼ z, x ∼ w, y ∼ z, y ∼ w, and since λ = 2, there can be
no other points of this type in S. So there are at least three points other than [x, y] of the type
[x, y1] or [y, x1] and hence of the form [x, xi], by the above argument. Thus w − vx has weight 3, a
contradiction.

For q = 9, k = 4, µ− 1 = 1 = m = λ, as pointed out before, and r = 2. If P = [0, 1] ∈ S then the
two blocks of B must meet S again, and this must be true for each of the three points in S. Using
the minimum polynomial X2 −X − 1 to construct F9, and letting w be a primitive root of this, an
examination of the blocks of B yields that the other two points of S must be [w2, w7], [w5, w6]. This
has to have inner product 0 with every block in B, which means the signs on any pair of these points
must differ. This is impossible, which means the minimum weight is 4.

That C can correct q−5
4 errors follows from

⌊
( q−1

2 − 1)/2
⌋

= q−5
4 , since q ≡ 1 (mod 4).

For the statements about the dual codes, for q ≥ 9 we have already used the fact that C⊥ has
words of weight 4 for all p. For p = 2, any triangle (x, y, z) of points in P (q) will give a word

u = v[x,y] + v[y,z] + v[z,x] ∈ C⊥.

Clearly the minimum weight cannot be 2, so it is 3 for p = 2. For p odd, if there is a word w of weight
3 in the dual, the support will either be a triangle or part of a row corresponding to a vertex x, say.
If a triangle with Supp(w) = {[x, y], [y, z], [z, x]}, then w([x, y]) = −w([y, z]) = w([z, x]) = −w([x, y])
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which is impossible for p odd. If Supp(w) = {[x, y], [x, z], [x, u]} where y, z, u are distinct, then
(w, ȳ) 6= 0, a contradiction. �

Note: (1). Computations using Magma [3, 4] show that the minimum words of the binary codes are
the rows of the incidence matrix for q = 9, 13, 17, 25, and that it is also true (with scalar multiples)
for the ternary codes for q = 9, 13, 17. We prove this below for all p for q = 9, and note that it has
been shown in [14] to be true for q > 17. Also, for all computationally feasible values of q and p we
found that the next weight after q−1

2 is that of the difference of two rows of the incidence matrix, i.e.
2( q−1

2 − 1) = (q − 3). There may be other vectors of this weight when p 6= 2.
(2). Computations also yielded that, for the binary case, for q ≥ 17,

• every weight-4 vector in the dual code can be expressed as a sum of vectors of weight 3, i.e.
from triangles of points in P (q);

• the dual code is generated by the words of weight 3.

This does not hold for q = 9, 13 since there are insufficient triangles.
In the following we use the notation u(γ), where γ is a closed path of length 4 in the graph, as

given in Equation (2).

Proposition 4 Let Γ = P (9), G9 its 1-(18, 4, 2) its incidence design. Then

• C2(G9) = [18, 8, 4]2, C2(G9)⊥ = [18, 10, 3]2, Hull2(G9) = [18, 4, 8]2 ;

• Cp(G9) = [18, 9, 4]p, Cp(G9)⊥ = [18, 9, 4]p for p odd.

and the vectors of weight q−1
2 = 4 of Cp(G9), for all p, are the scalar multiples of the rows of

an incidence matrix. Furthermore, there are no vectors in Cp(G9) having weight m in the range
4 = q−1

2 < m < 2( q−1
2 − 1) = (q − 3) = 6 for 2 ≤ p ≤ 17. If the minimum polynomial of w ∈ F9 is

X2 −X − 1 then
(0, 1, 2, w, w3, w6, w5, w7, w2)

is a closed Hamiltonian path for P (9).
If γ = (x0, x1, x2, x3) is a closed path of length 4 in P (9) with x0 6∼ x2, x1 6∼ x3, and if, for

0 ≤ i ≤ 3, γi denotes the closed path of length 4 through xi that meets γ only in xi, then

3∑
i=0

vxi =
3∑
i=0

u(γi)

is a vector of weight 8 in Hull2(G9).

Proof: For all p we know that the minumum weight of Cp(G9) is 4 from Proposition 3. To show
that the minimum words are as stated, for p = 2 we can simply use Magma.

Now take p odd, and suppose P = [0, 1] ∈ S. We need to show that words of this weight are the
scalar multiples of the rows of an incidence matrix. For the design of supports of weight-4 vectors
in the dual code, we have r = (q−5)2

8 = 2. Putting s = 4 in the Equation (11) gives r0 ≤ 1. If r0 = 0
then one of the blocks of B through P must have three points in S. But, by examining the nine
blocks in B, we see that the other block through one of these points cannot meet S again. Thus
r0 = 1 for every point on S. This means that S consists of one point on each of the two blocks, b1, b2,
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of B through P , the point P , and one more point that is not on a block with P . If Q and R are the
two points in S on b1 and b2 respectively, then the other blocks through these points must contain
the last point, T , of the set S. An analysis of the possibilities yields that the support is either the
block 0̄ or 1̄ of G. Thus the support is that of a block and since this is the minimum weight, it is
clear that the word must be a scalar multiple of the row corresponding to that block.

For codewords of weight m in the range q−1
2 = 4 < m < 2( q−1

2 − 1) = q − 3 = 6, i.e. only m = 5
for q = 9, clearly it cannot happen for the even-weight code when p = 2, and the other primes up
and including 17 were verified using Magma. Words of weight 2( q−1

2 − 1) arise from the difference of
two rows whose indexing vertices are adjacent.

The statement about the dual codes follows from Proposition 3 and that the path given is
Hamiltonian is easily verified.

Finally, to prove the equality given for the word in the binary hull, the left-hand side is easily
seen to have weight 8. For the right-hand side, first observe that each edge [xi, xi+1] (suffixes modulo
4) determines a unique third point of a triangle xi,i+1, since λ = 1, giving at most four more points.
There is thus another point x that cannot be adjacent to any of the xi, 0 ≤ i ≤ 3 since all the
adjacencies are used up, and thus must be adjacent to the xi,i+1 (suffixes modulo 4) and these are
thus all distinct. Thus γi = (xi, xi,i+1, x, xi+3,i) (suffixes modulo 4) for 0 ≤ i ≤ 3. The stated identity
then follows. �

5 Permutation decoding for Cp(Gq)
We show that the codes from the incidence matrices for Paley graphs can be used for full error
correction by permutation decoding. As before, Gq will denote the incidence 1-( q(q−1)

4 , q−1
2 , 2) design

for P (q).

Lemma 1 If (x1, . . . , xq) is a closed path of length q, xi 6= xj for i 6= j, for the Paley graph P (q)
where q ≥ 9, q ≡ 1 (mod 4), then I = {[x1, x2], [x2, x3], . . . , [xn−1, xn], [xn, x1]} is an information set
for Cp(Gq) for p odd, and I \ {[xn, x1]} is an information set for C2(Gq).

In particular, if q is a prime, then (0, 1, . . . , q − 1) is a closed Hamiltonian path.

Proof: The path exhibited in the statement clearly is a closed Hamiltonian path when q is a
prime. That I (respectively I \ {[xn, x1]}) is an information set for the p-ary (respectively bi-
nary) code follows by labelling the rows of the incidence matrix G(q) by x1, . . . , xq and the columns
by [x1, x2], [x2, x3], . . . , [xn, x1] (respectively [x1, x2], [x2, x3], . . . , [xn−1, xn]) and noticing that a row-
echelon-form can be obtained immediately. �

We now establish PD-sets in the case where q is a prime. We take q ≥ 13 since PD-sets are
only needed for correcting at least two errors, so we only consider minimum weight at least 5. For q
prime, we have σ = 1, the identity map, and we will write

τa,b = τa,b,1

in the notation of Equation (7). If F∗q =< w > and Kq =< w2 >, the subgroup of squares in the
multiplicative group of the field, of order q−1

2 , we write

Tq = {τ1,b | b ∈ Fq}, Qq = {τa,0 | a ∈ Kq} and Q∗q = {τa2,0 | a ∈ Kq}. (12)

Then Aq = Tq oQq, Tq is the group of translations and |Q∗q | =
q−1
4 .
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Proposition 5 Let q ≥ 13 be a prime with q ≡ 1 (mod 4), P (q) the Paley graph on Fq, Gq its
incidence design. Let

I = {[0, 1], [1, 2], . . . , [q − 1, 0]}, I∗ = I \ {[q − 1, 0]}.

Then Qq of Equation (12) is a PD-set of size q−1
2 for Cp(Gq) for any prime p, with information set

I for p odd, or information set I∗ for p = 2.

Proof: For all p, C = Cp(Gq) corrects t = q−5
4 errors, by Proposition 3. Let C denote the check

positions corresponding to I. We wish to find an element of Qq that will take a given t-set of points
into C.

Let u = w2. The points of Gq are of the form [x, x+ uk], for x ∈ Fq, where 0 ≤ k ≤ q−1
2 − 1, and

a point is in I if and only if uk = ±1. Let

T = {[xi, xi + uki ] | 1 ≤ i ≤ t}

be a set of t points. If T ⊆ C then we can use the identity map τ1,0.
Otherwise, since

[xi, xi + uki ]τun,0 = [xiun, xiun + uki+n],

where 0 ≤ n ≤ q−1
2 − 1, if we can choose n such that uki+n 6= ±1 for all 1 ≤ i ≤ t, then all the points

will move into C. Now t = q−5
4 , so there are at most 2t = q−5

2 values ±u−ki that un must not take,
which leaves at least q−1

2 −
q−5
2 = 2 values it can take. Thus we can find such an n for any t-set of

points. This argument works for all primes p, taking I∗ in the binary case. �

Note: Result 1 gives q−1
4 for the lower bound on the size of a PD-set, and our result is double this

size.

A closed Hamiltonian path for P (q) when q is not a prime can also be constructed in such
a manner that Qq will be an s-PD-set, for partial permutation decoding. We first describe the
construction of the closed Hamiltonian path, which is due to Aart Blokhuis 1: let q = rh where r is
prime, q ≡ 1 (mod 4), and let {si | 1 ≤ i ≤ h} be a set of non-zero squares of Fq that form a basis
of Fq as a vector space over Fr. Such a basis is possible, since the squares clearly generate Fq as a
vector space over Fr. Thus

Frh = {
h∑
i=1

aisi | ai ∈ Fr, 1 ≤ i ≤ h}.

Now choose a new basis {ti | 1 ≤ i ≤ h} for Fq over Fr as follows: for 1 ≤ i ≤ h, let ti = si−
∑h

j=i+1 sj .
Then si =

∑h
j=i tj . For x ∈ Fq in terms of the new basis, we write x =

∑h
i=1 xiti = (x1, . . . , xh),

where xi ∈ Fr, and order the elements of Fq lexicographically, starting with 0, then reading from the
right, i.e. (0, . . . , 1),(0, . . . , 2),and so on until finally (r− 1, . . . , r− 1). We claim that these elements
are adjacent in P (q) and the difference between any two consecutive elements is some si for 1 ≤ i ≤ h.
Finally, ((r − 1), . . . (r − 1)) is joined to 0 because t1 + t2 + . . . th = s1 is a square. This then gives
a Hamiltonian circuit for P (q). It is clearly the same as the one given in Lemma 1 when q = r, i.e.
h = 1, by taking s1 = 1.

1The authors thank Aart Blokhuis for this construction
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Corollary 3 Let q = rh ≥ 25, where q ≡ 1 (mod 4) and r is a prime and h ≥ 2. Let (z1, . . . , zq) be
the closed Hamiltonian path described in the paragraph above. Let

I = {[z1, z2], [z2, z3], . . . , [zq, z1]}, I∗ = I \ {[zq, z1]}.

Then Qq of Equation (12) is an s-PD-set, where s < q−1
4h , of size q−1

2 for Cp(Gq) for any prime p,
with information set I for p odd, or information set I∗ for p = 2.

Proof: The proof follows that of Proposition 5 except that now we have to use the fact that all the
points of our information set have differences in the set {±si | 1 ≤ i ≤ h}, and so we need to ensure
that ` can be chosen so that uki+`, for 1 ≤ i ≤ s, avoids these elements. There are thus q−1

2 − 2hs
available elements, and this is greater than 0 for s < q−1

4h . Thus we have the required s-PD-set. �

Note: In case q is not a prime, we have not given an explicit information set, since it first needs
to be constructed from a basis for Fq over Fr of squares in Fq. For example, if h = 2 and w is a
primitive element then s1 = 1, s2 = w2 will clearly suffice, and hence t1 = 1− w2, t2 = w2 would be
the basis.

In case we do not wish to specify a particular information set, any transitive subgroup of Aq will
suffice for full error-correction, by the following two results, the first from [13, Lemma 7]:

Result 4 Let C be a code with minimum distance d, I an information set, C the corresponding check
set and P = I ∪C. Let A be an automorphism group of C, and n the maximum of |O∩I|/|O|, where
O is an A-orbit. If s = min(d 1

ne − 1, bd−1
2 c), then A is an s-PD-set for C.

This result is true for any information set. If the group A is transitive then |O| is the degree
of the group and |O ∩ I| is the dimension of the code. This is applicable to codes from incidence
matrices of connected regular graphs with automorphism groups transitive on edges, implying the
following from [6]:

Result 5 Let Γ = (V,E) be a regular graph of valency v with automorphism group A transitive on
edges. Let M be an incidence matrix for Γ. If, for p a prime, C = Cp(M) = [|E|, |V | − ε, v]p, where
ε ∈ {0, 1, . . . , |V | − 1}, then any transitive subgroup K of A will serve as a PD-set for full error
correction for C.

Corollary 4 Let q be a prime power with q ≡ 1 (mod 4), P (q) the Paley graph on Fq, Gq its in-
cidence design. For all primes p, the code Cp(Gq) can be used for full error correction for any
information set by using the group Aq ∩ASL1(Fq), or any subgroup of Aq that is transitive on edges.

Proof: This follows from the previous two results. �

6 Line graphs and binary hulls

If G is an incidence matrix for Γ = (V,E), and M an adjacency matrix for L(Γ) then, from Equa-
tion (1), GTG = M + 2I|E|. Thus for p = 2, we have C2(L(Γ)) ⊆ C2(G). For p odd the codes
Cp(L(Γ)) have minimum weight at most 4 as long as Γ has a closed path of length 4, by Result 2, so
are of no interest for classification nor practical purposes.
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Proposition 6 For q ≥ 5, q ≡ 1 (mod 4), C2(L(P (q)) = C2(Gq).

Proof: Let G(q) denote an incidence matrix for P (q), M(q) an adjacency matrix for L(P (q)) and
let V (q) denote the row span of G(q)T over F2. Then dim(V (q)) = q − 1. The map τ : V (q) →
C2(M(q)) defined by τ : v = (v1, . . . , vq) 7→ (v1, . . . , vq)G, is such that V (q)τ = C2(M(q)) and
dim(C2(M(q)))+dim ker(τ) = dim(V (q)) = q−1. A vector v is in the kernel if and only if v ∈ V (q)
and vG(q) = 0, and since qG(q) = 0, we need determine when q ∈ V (q).

But V (q) is spanned by vectors of weight 2, so it is an even-weight code. Since q ≡ 1 (mod 4), it
is odd, and so q 6∈ V (q). Thus C2(G(q)) = C2(Gq) = C2(M(q)) = C2(L(P (q)). �

Thus we have nothing new from the binary code from an adjacency matrix of L(P (q)), since
everything is told from C2(G(q)).

Now we consider an incidence matrix for L(P (q)). The incidence design is a 1-( q(q−1)(q−3)
8 , q−3, 2)

design. The p-ary codes from these designs appear to share the properties mentioned in Section 1
that hold for the codes from incidence matrices of many classes of graphs as regards the minimum
weight and minimum vectors, and also the gap in the weight enumerator. The graph L(P (q)) has
closed paths of length 3 and 4, since P (q) has such paths.

Lemma 2 Let Γ be a regular graph of valency k ≥ 3 with a closed path of length 3, G an incidence
matrix for Γ, and L an incidence matrix for L(Γ). Then C2(G)⊥ has minimum weight 3, and
Hull(C2(L)) has words of weight 6(k − 2).

For Γ = P (q), there are q(q−1)(q−5)
48 closed paths of length 3 (triangles), and thus at least this

number of words of weight 3(q − 5) in Hull(C2(L)).

Proof: Let (P,Q,R) be a close path in Γ. Then it is clear that

w = v[P,Q] + v[Q,R] + v[P,R] ∈ C2(G)⊥.

For L(Γ), recall that the blocks of the incidence design for L(Γ) are of the form

[P,Q] = {[[P,Q], [P,R]] | R 6= Q} ∪ {[[P,Q], [Q,R]] | R 6= P},

and the valency is 2(k − 1). If (P,Q,R) is a closed path in Γ, then let

w = v[P,Q] + v[Q,R] + v[P,R].

Clearly w ∈ C2(L), and it can easily be verified that (w, v[S,T ]) = 0 for every edge [S, T ] of Γ, so
w ∈ Hull(C2(L)). Finally it is clear that wt(w) = 3(2(k − 1)− 2) = 6(k − 2).

If [x, y] is an edge in P (q) then there are λ = q−5
4 points z that will give a triangle (x, y, z). The

group Aq is transitive on edges, so the number of triangles is 1
3
q(q−1)(q−5)

16 , as asserted. In this case
6(k − 2) = 3(q − 5). �

Note: It frequently happens that Hull(C2(G)) = {0} where G is the incidence matrix of a regular
graph. In contrast, we see that the binary hull of an incidence matrix of a line graph cannot be {0}
under the given conditions.

For Γ = P (q), L(P (q)) has q(q−1)
4 vertices and q(q−1)(q−3)

8 edges, and valency q − 3. By Whit-
ney [24], L(P (q)) has the same automorphism group Aq as P (q). Furthermore, it is easy to see that
L(P (q)) is Hamiltonian, since P (q) is.
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Example 2 For q a prime, we can use the Hamiltonian path (0, 1, . . . , q − 1) for P (q) to get a
Hamiltonian path for L(P (q)) and hence an information set for the code from an incidence matrix
for L(P (q)) as follows, using the notation of Equation (10): first let

S = {[0, 1], [1, 2], . . . , [q − 2, q − 1]},

and recall that, for any i ∈ Fq,

ī = {[i, i+ y] | y a non-zero square of Fq}.

Let Si = ī \ S for 0 ≤ i ≤ q − 1. Then all the vertices in Si are adjacent in L(P (q)), and

S0, [0, 1], S1, [1, 2], . . . , [q − 2, q − 1], Sq−1

will form a path through all the vertices by taking care that repeats are not included.
For example, if q = 13 then the non-zero squares are {1, 3, 4, 9, 10, 12}, and P (13) has 39 edges,

the number of vertices of L(P (13)). A Hamiltonian path formed in this way for L(P (13)) is:
[0, 12], [0, 3], [0, 4], [0, 9], [0, 10], [0, 1], [1, 5], [1, 4], [1, 11], [1, 10], [1, 2], [2, 12], [2, 6], [2, 11], [2, 5], [2, 3],
[3, 7], [3, 6], [3, 12], [3, 4], [4, 7], [4, 8], [4, 5], [5, 9], [5, 8], [5, 6], [6, 10], [6, 9], [6, 7], [7, 11], [7, 10], [7, 8],
[8, 11], [8, 12], [8, 9], [9, 12], [9, 10], [10, 11], [11, 12].

An information set for the p-ary code from an incidence matrix from this path will be

[[0, 12], [0, 3]], [[0, 3], [0, 4]], . . . , [[10, 11], [11, 12]], [[11, 12], [0, 12]]

for p odd, and omitting the last element for p = 2.
Using this information set on the binary code C from an incidence matrix for L(P (13)), with

Magma we verified that C = [195, 38, 10]2 and that C has a PD-set (correcting four errors) of size 26
from the group T13Q

∗
13, of order 39, using the notation of Equation (12). The same PD-set worked

for the ternary code, of dimension 39.

7 Computations on binary hulls

Using Magma [3, 4] we examined some binary hulls of the codes from the incidence matrices G of
P (q) and L of L(P (q)). The findings are given in Table 1, where in the table we write CG = C2(G),
CL = C2(L), H(CG) = Hull(CG), H(CL) = Hull(CL), d() for dimension, w() for minimum weight,
`() for the length of the code. We have `(CG) = q(q−1)

4 , `(CL) = q(q−1)(q−8)
8 , d(CG) = q − 1,

d(CL) = q(q−1)
4 − 1. Columns 2 to 5 relate to P (q), and columns 6 to 9 to L(P (q)).

In addition, Magma showed that for q = 9, 13, Hull(C2(L)) has q(q−1)(q−5)
48 (i.e. 6 and 26 respec-

tively) words of minimum weight 3(q − 5).
From these results we might make the following conjectures concerning the binary hulls:

• For q ≡ 1 (mod 8), dim(Hull(C2(G))) = q−1
2 ; for q 6≡ 1 (mod 8), the length of the code is odd

and Hull(C2(G)) = {0}.

• If q = 4t+1, then dim(Hull(C2(L)) = q(t−1) = q(q−5)
4 and the minimum weight of Hull(C2(L))

is 12(t− 1) = 6( q−1
2 − 2) = 3(q − 5).
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q `(CG) d(CG) d(H(CG)) w(H(CG)) `(CL) d(CL) d(H(CL)) w(H(CL))
9 18 8 4 8 54 17 9 12
13 39 12 0 0 195 38 26 24
17 68 16 8 32 476 67 51 36
25 150 24 12 40 1650 149 125 ≤ 60
29 203 28 0 0 2639 202 174 ≤ 72
37 333 36 0 0 5661 332 296 ≤ 96
41 410 40 20 140 7790 409 369 ≤ 108

Table 1: Computations on binary hulls

Note that the minimum weight of Hull(C2(L)) appears to be the weight found in Lemma 2 for
words from triangles in P (q), and that dim(Hull(C2(L))) = dim(C2(G)⊥)− 1. This last observation
appears to be related to the weight-3 words in C2(G)⊥ and the words of weight 3(q−5) in Hull(C2(L))
constructed from the associated triangle.

Acknowledgement

This research was performed in the framework of PRIN 2008 (project: Disegni, Grafi e i loro Codici
e Gruppi), GNSAGA of INDAM, and the Università di Roma “La Sapienza” (project: Gruppi, Grafi
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