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Abstract

We produce a simple rule that will give information sets for the generalized Reed-
Muller codes over any finite field, and use these information sets to obtain new bases
of minimum-weight vectors for the codes of the designs of points and hyperplanes over
prime fields.

The information sets can also be used to apply partial permutation decoding to these
codes.

Joint work with T. P. McDonough and V. C. Mavron of the University of Wales,
Aberystwyth, [KIMIM].
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Generalized Reed-Muller codes

Let ¢ = p’, p a prime, and V = IFZ” with standard basis. The codes are g-ary subcodes
of length ¢"* of the function space IE*‘;/ that has the usual basis of characteristic functions
on V.

Take f € IE"‘}J/ as a function of the m-variables denoting the coordinates of a vector in
V,ie if x = (z1,%2,...,%m) €V, then f € F is given by f = f(z1,%2,...,%m)

and the z; take values in I,.

The codeword defined by f will have f(v) at the coordinate position corresponding to

vV = (01,02,...,vm) eV.

Every f € F}J/ can be written as a polynomial given uniquely as a linear combination

of the ¢ monomial functions

M:{xilx?...xf{l”mgikgq—l, for 1 <k < m}.

The degree p of a monomial is the total degree, i.e. p = >"," ;i and 0 < p < m(g—1).
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Definition 1 Let V. = F", m > 1, over F,, where ¢ = p* and p prime. For 0 <
p < m(q—1), the pth-order generalized Reed-Muller code Rp, (p,m) is the
subspace of F}J/ (with basis the characteristic functions of vectors in V') of all m-variable

polynomial functions (reduced modulo x! — ;) of degree at most p. Thus
. . . m
R]Fq(,o,m) = (zixl - |0<ip<qg—1, for1 <k <m, sz < p).
k=1

The codes have length ¢ and the codewords are obtained by evaluating the m-variable
polynomials in the code at all the points of the vector space V.

Further R (p,m)* = RFq(u,m) for p < m(q—1) and where p+pu+1 =m(qg—1).

[For more about the generalized Reed-Muller codes, see [AK98] or [AK92].]
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Some properties of GRM codes

RFq (p7 m) — [qm7 fp,m,qa dp,m,q]q Where

m

fomyq = Z(_l)Z(T) (mt%_iq) and dp,m,q = (¢ — b)qm_a_la
i=0

where p=a(qg—1)+b, 0<b<q—1.
Aut(RFq (p,m)) = AGL,,(F,) for 0 < p <m(q—1).

RFQ (p,m)* is the punctured GRM, of length ¢"*—1, and is cyclic with GL,, (F,)

as automorphism group.

With m =1, Ry, (p,1)* is the Reed-Solomon code and Ry, (p, 1) the extended

Reed-Solomon code, i.e.

R, (p,1) = (z' | 0 < < p),

where p < g—1and d,1, = (¢ — p), so the code is [¢q,p + 1,9 — p]; and is an
MDS code.
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If p =7r(qg—1), the minimum distance of RFq(r(q —1),m) is ¢"~" and the minimum
words are the incidence vectors of the subspaces of dimension (m — ) and their cosets
(the (m — r)-flats), e.g.

r

p(T1, ... Tm) = H(1 —z1") € R (r(g—1),m)

is the incidence vector of the subspace of V' given by the equations

Xi=Xy==X,=0
of dimension m — r.
The incidence (characteristic) vector of a point (vector) w = (wq,...,wy) € V is
m

xw =" =[]0 = (@i —w)?™).

1=1
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Information sets

The coordinate set of the codes are the vectors (vi,vs,...,vy) € V, where v; € Fy,
and the vectors can be ordered in any way. For a generator matrix to be in standard
form, we want the first k positions to form an information set, where k is the dimension
of the code.

The set of monomial functions of degree at most v,
. . m
B={zlzy. .27 |0<i <qg—1, for 1 <k <m, sz < v},
k=1

is an [F,-basis of RFq(l/, m). A subset § CV = F,” will be an information set of

the code if, and only if, the subspace of Fqs spanned by the restriction of B to S has
B|.

dimension
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Theorem 1 Let V =", where ¢ = p' and p is a prime, and Fy = {a, ..., ag_1},
and

Let < denote the partial order defined on S by [i1,19,...,%m] < [J1,52,- -, Jm] if and
only if i, < g for all k such that 1 < k < m.

Let X C S have the property
reEX=>((yeS)AN(y<z)=yeX).
and let

C = (xal? - zim | [ir,d9,...,im] € X).

Then the set of vectors

T = (i, i) | [i1,99, .. im] € X}

Is an information set for C.
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In particular,

m
T={(t,--s0,) | > ir<v, 0<ip<q—1}
k=1

Is an information set for RFq(l/, m), and if ¢ = p is a prime,

m
T =A{(i1,- im) | i €Fp, 1 <k <m, > ip <v}
k=1

is an information set for RFP(V, m), by taking oy, = .
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Examples to illustrate the theorem

qg=13 0|00 |1 |1 ]|21]|2]2
m =2 O|1 20|10 2|1]2
1 00 || 1|1 |1 |1 |11 |1]1]1
T 01] |0 |1 |20 |1 |0 2]1]2
2 02] O |1 |10 1|0 1]|1]1
T 10/ 0|0 |0 |1 |1 ]|2(1]2]2
1T 11 0o |l0|O0 |0 |1 |0 2]2]|1
7 200 | 0] 0[O0 |1 |1 |1 |1]1]1

Figure 1: RFq(p, m) = Ry, (2,2)

B={z"z2 | 0<ig <2 +iy <2}
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{050, a1, 2, 043}

Figure 2: RF4 (3, 2), F4

B={z""z2 |0<i, <3 i +iy <3}
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Example

The extended Reed-Solomon code,
) .
RE, (1) = (&' |0 << p)
where p<g—1landd,;,=(q—p), isalg,p+1,q9—p|,; Taking
{ag,...,aq 1} =1{0,1,w,w? ..., wl?%}
where w is a primitive element for I¥;, then our information set is the usual set

{0, 1,w,w2, . ,wp_l}

giving the usual generating matrix as for BCH codes (puncturing first at 0).
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Outline of proof:

The proof of Theorem 1 puts X in lexicographic order by <, i.e. x = [i1,... %] <
y = [J1,...,Jm] if, and only if, for some k with 1 < k < m, iy < 75 and 3y, = j, for
¢ < k. So < is a total order consistent with the partial order <.

The proof depends on some identities involving polynomials proved through a series of
lemmas.

Let up, u1, ...uy—1 be independent commuting indeterminates.
For 0 <14,5 <g-—1, leta;; = u; — uj.

Forg—1>1t>0, let 5.4 = Z Uiy Wiy - - Ui, forr > 1 and let sg; = 1.
0<21<e2<... <3<t

For0<j<i<q-1letei;= [[ aie
0<e<j—1
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Define three matrices M, L and R whose rows and columns are indexed by X', ordered
by <.
Let z,y € X and write x = [i1,...,%n] and y = [J1, .-, Im]-

_ b im
Set_ﬂ4¢£/-—fu§ —‘Tﬂﬂ o
Set Lw,y = Si1—j1,01 - * * Sim—jm,jm if y <z and Lx,y = 0 otherwise.

Set Ry y = Cjy iy -+ - Cjpmsim f T <y and Ry, = 0 otherwise.

Note that x < y implies that y £ x. So, L is lower triangular and R is upper triangular.

Lemma 2 M = LR and det M = H a?; where n; is the number of occur-
0<y<i<g—1

rences of 1 among the coordinates of elements of X .
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The theorem now follows:

the (@, ..., a;, )-coordinate of the monomial z7'zy’ ... zym is ool ... ™.

The dimension of the spanning set is the rank of the |X| x |X| matrix N with

11 12 Tm,
leéj2 .« e Oéjm

Ngy =«
where x = [i1,...,%m] and ¥y = [J1, ..., Im].
For0 <3 <1 <qg—1, Ietﬁi,j:ozi—ozj; Soﬁi,j#o.

From Lemma 2, with u; = a;, for 0 <i < ¢ —1, and §;; = a; 5,

detN =[] B #£0.

0<j<i<q—1

Thus Z is an information set for RFq(’/v m). l
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Illustration (not GRM)
Let X = {[0,0],][0,1],[0,2],[1,0],[1,1],[1,2]}, ¢ > 3 and F; = {ao, a1,...,04-1}.

1 0 0 0 0 0 ]|
g 1 0 0 0 0
ap? ap + a1 1 0 0 0
I = R
ao 0 0 1 0 0
2
aQ aQ 0 aQ 1 0
3 2
L ag (do +a1)ap  ag ap ag+ar 1]
[ 1 1 1 1 1 1
0 a1 —ap a2 — Qg 0 a1 — ag a2 — Qg
0 0 (a2 — ap) (a2 — a1) 0 0 (a2 — ap) (a2 — a1)
R =
0 0 0 a1 — g a1 — Qg a1 — Qg
0 0 0 0 (1 — ap)? (a2 — ap) (a1 — @p)
| O 0 0 0 0 (a2 — ag) (a2 —a1) (a1 — apg) |
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For x = [i1,...,4m] and y = [J1, ..., Jm] then
My, = aj-ll ozéz . oz;”n?b
and
_ (@, ) (a0,1) (a0, 2) (a1,a0) (a1,01) (a1, a2)
1 1 1 1 1 1 1
X9 Q) o o9 87y o a
M = LR = x% a02 0512 0422 O{()2 0512 Cll22
1 Qo Q) Qp 03] 03] 1
Ir1I9 (){()2 87i1eal 871104 87104} a12 o109
i a:lac% (){()3 Od()Oé12 0400522 0502@1 6813 0410{22
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Designs from geometries

The 2-design of points and r-dimensional subspaces (respectively flats) of an m-

dimensional projective (respectively affine) geometry over I, is denoted by PG, . (Fy)
(respectively AGp, - (Fy)).

The automorphism groups, PI'L,,+1(F,) or AI'L,,(F,), respectively, of these
designs (and codes) are the full projective or affine semi-linear groups, and 2-transitive
on points.

If ¢ = p° where p is a prime, the codes of these designs are over [F, and are subfield
subcodes of the generalized Reed-Muller codes. The dimension and minimum weight

iIs known In each case.

In particular, the code REO((m —71)(p—1),m) is the p-ary code of the affine geometry
design AG, - (F)p).



http://www.ces.clemson.edu/math/

Projective geometry

We can construct information sets for the code Cp(PGyy,+(Fp)) using what we have

found for the affine case:

if Z is an information set for Cp(AGm, m—1(Fp)), then

{0,...,0, )y u{(L,z1,...,xm) | (x1,...,2m) € T},
is an information set for Cp(PGpym—1(Fp)).

More generally, if Z is an information set for C),(AG, »(Fp)) and J is an information
set for Cp(PG_1,(Fp)), then Z* U JT is an information set for Cp(PG. . (F,)),

where

" ={(1,z1,---,xm) | (x1,---,2zm) € L},
VAl ={(0,z1,...,2zm) | (z1,...,2m) € T}
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Using this inductive construction, we get

{0,...,0,1)}u | J K

1<s<r

is an information set for Cp(PGp,m—r(Fp)), where IC; is the set of vectors

m
{0,--.,0, 1,8, 41, ,am)|0 < aj <p—Lr—i+1 < j<m, Y  a;<i(p—1)}.
— ~ j=r—i+1

r—1 m—1r 4+ 1
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This construction of information sets for the point-hyperplane projective geometry
designs immediately gives a set of hyperplanes whose incidence vectors form a basis

for the code in the prime case, by using homogeneous coordinates

This construction can be compared with the basis found in [GCK98], where a basis of
hyperplanes for the affine prime case was constructed and this then applied to the
projective case. In the case of planes, i.e. m = 2, the bases in both [GK98] and here

are Moorhouse [Vl0o091] bases.

The dimension of the code in the affine case Is

m+q—1
fq_laqu:< )7

m

and f,—1,m, + 1 in the projective case.
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Proposition 3 IfC = C,(PGmm—1(Fp)), where p is a prime and m > 2, then, using

homogeneous coordinates, the incidence vectors of the set

m
{(Lar, ... am) | as €Fp, Y ai <p—13U{(0,...,0,1)"}
1=1

of hyperplanes form a basis for C.

Similarly, a basis of hyperplanes for Cp(AG . m—1(Fy)) for m > 2, p prime is the set
of incidence vectors of the hyperplanes with equation

m

d aiXi=p-1

1=1

with
m
Z a; S p— ]-7
1=1

where a; € I, for 1 <+ < m, and not all the a; are 0, along with the hyperplane with

equation X,, = 0.
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Example

A basis of minimum-weight vectors for C3(PG21(F3)).

O | H O OO | | O
o | +H | O O O o | ©o
| [ | | O O O
ol ol O +H | O O
O | Ol O -H | - | O| O
O O +H | O O o | -
- O O O | | O
O O o +H | O |
- O | O O O O
O O +H | O O +H | O
O O O +H | O O | O
- O O O O O O
O |  +H | O O +HA | O |
= S RS e
OHOHOHOH1H1H2H
SO BN Bl ol Bl Bl B

Figure 3: C3(PG2,1(F3))
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Example

A basis of minimum-weight vectors for R, (2,2) = C5(AG2,1(F3)).

o001 |1 }|2¢)1}|2]|2

o(1 2|01 ]0¢}2|1]|2
Xo=0 100} 1 [0 1T})0|0]0
X9 =2 o,0]1 0010 1]0]1
Xo=1 o(1,0]0}1]0}30;1/0
X1 =2 o(o0,0]0]0}]1T}0|1/1
Xi+Xe=2| 0|01 [0 1T]1|0]0]O0
2X| =2 o(o,0]1|1]0}1]0/0

Figure 4: Ry, (2,2) = C3(AG2(Fs))

Compare with the generator matrix using the polynomial basis 1.
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