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Abstract

Recent advances in technology have produced a requirement for new implementa-
tions of good error-correcting codes. Such applications of codes also require efficient
encoding and decoding methods.

The method of permutation decoding was first developed by Jessie MacWilliams in
the early 60’s and can be used when a linear code has a sufficiently large automorphism
group to ensure the existence of a set of automorphisms, called a PD-set, that has some
specific properties.

This paper will give a brief survey of permutation decoding and some recent results
in the search for PD-sets.

1 Introduction

Permutation decoding was first developed by MacWilliams [Mac64]. It involves finding a set
of automorphisms of a linear code, called a PD-set, that acts in a certain way with respect
to a known information set for the code. If such a set can be found, then a simple algorithm
using this set can be followed to correct the maximum number of errors of which the code
is capable. The method is described fully in MacWilliams and Sloane [MS83, Chapter 15]
and also in Huffman [Huf98, Section 8], where a survey of results up to the time of writing
that chapter is given. We will describe the method and the algorithm in Section 3.

We will give here a brief, but complete, description of permutation decoding, and discuss
some recent results. In particular we will look at codes defined by designs or graphs, where
the automorphism group is known and large enough to allow permutation decoding or
partial permutation decoding to be used.

In the sections to follow we first give some background material on designs, codes and
graphs in Section 2. Section 3 describes permutation decoding and the notions of PD-sets
and s-PD-sets. The remaining sections outline some of the known results for PD-sets.
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2 Background and terminology

Terminology for codes and designs will be as in Assmus and Key [AK92]. An incidence
structure D = (P,B, I), with point set P, block set B and incidence I is a t-(v, k, λ) design,
if |P| = v, every block B ∈ B is incident with precisely k points, and every t distinct points
are together incident with precisely λ blocks.

The code of the design D over the finite field F is the space spanned by the incidence
vectors of the blocks over F . If the point set of D is P and the block set is B, and if Q is
any subset of P, then we will denote the incidence vector of Q by vQ. Thus the code of
the design over F is C =

〈
vB |B ∈ B

〉
, and is a subspace of FP , the full vector space of

functions from P to F .
All the codes here will be linear codes, i.e. subspaces of the ambient vector space.

If a code C over a field of order q is of length n, dimension k, and minimum weight d,
then we write [n, k, d]q to show this information. A generator matrix for the code is a
k × n matrix made up of a basis for C. The dual code C⊥ is the orthogonal under the
standard inner product, i.e. C⊥ = {v ∈ Fn|(v, c) = 0 for all c ∈ C}. A check matrix for
C is a generator matrix for C⊥; the syndrome of a vector y ∈ Fn is HyT . A code C
is self-orthogonal if C ⊆ C⊥ and is self-dual if C = C⊥. If c is a codeword then the
support of c is the set of non-zero coordinate positions of c. A constant word in the code
is a codeword, all of whose coordinate entries are either 0 or 1. The all-one vector will be
denoted by , and is the constant vector of weight the length of the code. Two linear codes
of the same length and over the same field are equivalent if each can be obtained from the
other by permuting the coordinate positions and multiplying each coordinate position by
a non-zero field element. They are isomorphic if they can be obtained from one another
by permuting the coordinate positions. Any code is isomorphic to a code with generator
matrix in so-called standard form, i.e. the form [Ik |A]; a check matrix then is given by
[−AT | In−k]. The first k coordinates are the information symbols and the last n − k
coordinates are the check symbols. An automorphism of a code C is any permutation
of the coordinate positions that maps codewords to codewords.

Terminology for graphs is also standard: the graphs, Γ = (V,E) with vertex set V and
edge set E, are undirected and the valency of a vertex is the number of edges containing
the vertex. A graph is regular if all the vertices have the same valency; a regular graph is
strongly regular of type (n, k, λ, µ) if it has n vertices, valency k, and if any two adjacent
vertices are together adjacent to λ vertices, while any two non-adjacent vertices are together
adjacent to µ vertices. The line graph of a graph Γ = (V,E) is the graph Γt = (E, V )
where e and f are adjacent in Γt if e and f share a vertex in Γ. The code associated with
a graph over a field Fp will be the row span over Fp of an adjacency matrix for the graph.

3 Permutation decoding

Permutation decoding involves finding a set of automorphisms of a code, called a PD-
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set. The method is described fully in MacWilliams and Sloane [MS83, Chapter 15] and
Huffman [Huf98, Section 8]. In [KMM05] we extended the definition of PD-sets to s-PD-
sets for s-error-correction, a term that is also used in [KV05, KV].

Definition 1 If C is a t-error-correcting code with information set I and check set C, then
a PD-set for C is a set S of automorphisms of C which is such that every t-set of coordinate
positions is moved by at least one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set
of coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding, once a PD-set has been found, is as
follows: we have a t-error-correcting [n, k, d]q code C with check matrix H in standard
form. Thus the generator matrix G for C that is used for encoding has Ik as the first k
columns, and hence as the information symbols. Any k-tuple v is encoded as vG. Suppose
x is sent and y is received and at most t errors occur. Let S = {g1, . . . , gm} be the PD-set.
Compute the syndromes H(ygi)T for i = 1, . . . ,m until an i is found such that the weight
of this vector is t or less. Now look at the information symbols in ygi, and obtain the
codeword c that has these information symbols. Now decode y as cg−1

i . Note that this is
valid since permutations of the coordinate positions correspond to linear transformations of
Fn, so that if y = x+ e, where x ∈ C, then yg = xg + eg for any g ∈ Sn, and if g ∈ Aut(C),
then xg ∈ C.

That this method does correct t errors follows from the following result (proved in
[Huf98, Theorem 8.1]):

Result 1 Let C be an [n, k, d]q t-error-correcting code. Suppose H is a check matrix for
C in standard form, i.e. such that In−k is in the redundancy positions. Let y = c + e be a
vector, where c ∈ C and e has weight ≤ t. Then the information symbols in y are correct if
and only if the weight of the syndrome of y is ≤ t.

There is a lower bound on the size of a PD-set (and one for an s-PD-set), due to
Gordon [Gor82] using a formula of Schönheim [Sch64], and also proved in [Huf98]:

Result 2 If S is a PD-set for a t-error-correcting [n, k, d]qcode C, and r = n− k, then

|S| ≥
⌈

n

r

⌈
n− 1
r − 1

⌈
. . .

⌈
n− t + 1
r − t + 1

⌉
. . .

⌉⌉⌉
.

In Gordon [Gor82] and Wolfman [Wol83] small PD-sets for the binary Golay codes
were found. In Chabanne [Cha92] abelian codes, i.e. ideals in the group algebra of an
abelian group, are looked at using Gröbner bases, and the ideas of permutation decoding
are generalized. In general it is rather hard to find these PD-sets, and obviously they need
not even exist. Also the existence may depend on the chosen information set, and thus
existence of a PD-set is not invariant under equivalence of codes. Note that PD-seets need
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not be sought, in general, for codes with minimum weight 3 or 4, since correcting a single
error is, in fact, simply done by using syndrome decoding, because in that case multiples of
the columns of the check matrix will give the possible syndromes. Thus the syndrome of the
received vector need only be compared with the columns of the check matrix, by looking
for a multiple.

A simple argument yields that the worst-case time complexity for the decoding algorithm
using an s-PD-set of size m on a code of length n and dimension k is O(nkm).

A study of the complexity of the algorithm for some algebraic geometry codes is give
in [Joy05].

4 Cyclic codes

In her original paper, MacWilliams [Mac64] developed a theory for finding PD-sets for cyclic
codes.

An [n, k, d]q code C is cyclic if whenever c = c1c2 . . . cn ∈ C then every cyclic shift of c
is in C. Thus the mapping τ ∈ Sn defined by

τ : i 7→ i + 1

for i ∈ {1, 2, . . . n}, is in the automorphism group of C, and τn = 1. If a message c is
sent and t errors occur, then if e is the error vector and if there is a sequence of k zeros
between two of the error positions, then τ j for some j will move the sequence of zeros into
the information positions, and thus all the errors will occur in the check positions. Thus
< τ > will be a PD-set for C if k < n

t .
As shown in [Mac64], if q is a number prime to the length n, then the map

ρ : i 7→ qi

is also an automorphism of the cyclic code and in the normalizer N of < τ >. MacWilliams
examines cases where N contains a PD-set.

5 Some infinite classes of codes having PD-sets

In searching for PD-sets, suitable information sets need first to be found. Codes from some
classes of graphs have large automorphism groups, so it was reasonable to consider some of
these classes of graphs first. Notice that a code defined by a design or graph as outlined in
Section 2 will have automorphism group at least that of the design or graph, and in some
cases a larger automorphism group.

5.1 Triangular graphs

For any n, the triangular graph T (n) is the line graph of the complete graph Kn, and is
strongly regular. The row span over F2 of an adjacency matrix for T (n), for n ≥ 5, gives
codes with the following parameters:
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• [n(n−1)
2 , n− 1, n− 1]2 for n odd;

• [n(n−1)
2 , n− 2, 2(n− 1)]2 for n even.

The automorphism group of the graph T (n) is the symmetric group Sn acting naturally
on pairs. The automorphism group of the binary code of T (n) is also Sn for n ≥ 5, n 6= 6,
since in the latter case the automorphism group of the code is larger. In [KMR04b, Rod03]
information sets and and PD-sets were obtained, the PD-sets being of size n for n odd and
n2 − 2n + 2 for n even.

The computational complexity of the decoding by this method may be quite low, of
the order n1.5 if the elements of the PD-set are appropriately ordered. The codes are low
density parity check (LDPC) codes.

5.2 Lattice graphs

The (square) lattice graph L2(n) is the line graph of the complete bipartite graph Kn,n, and
is strongly regular. The row span over F2 of an adjacency matrix gives codes with parameters
[n2, 2(n−1), 2(n−1)]2 for n ≥ 5 with Sn oS2 as automorphism group. Information sets and
PD-sets of size n2 in Sn × Sn were found in [KSc].

Similar results holds for the lattice graph L2(m,n) [KSa], i.e. the line graph of the
complete bipartite graph Km,n, where the codes are

• [mn, m + n− 2, 2m]2 for m + n even;

• [mn, m + n− 1,m]2 for m + n odd.

In both cases information sets and PD-sets of size mn in Sm × Sn were found.
More generally, the binary codes of the line graphs of the complete multi-partite graphs

Kn1,...,nm , where ni = n for i = 1, . . . m, with automorphism group Sn1 × Sn2 × . . . × Snm

were considered in [KSb], and PD-sets were found for some classes, and s-PD-sets were
found for all classes for some s.

5.3 Graphs on triples

We can define three regular graphs with vertex set the subsets of size three of a set of size
n and adjacency according to the size of the intersection of the 3-subsets. Properties of the
binary codes of these graphs were established in [KMR04a]. Again Sn in its natural action
acts as an automorphism group of the codes.

If C is the binary code in the case of adjacency defined if the 3-subsets intersect in two
elements, then the dual C⊥ is a [

(
n
3

)
,
(
n−1

2

)
, n− 2]2 code and a PD-set of size n3 was found

for a particular information set in [KMRa]. Similar results hold for some of the other more
interesting codes obtained in this way, but in some cases only partial decoding through
s-PD-sets was possible: see [KMRb].
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These graphs are particular cases of the class of uniform-subset graphs. A more general
study of the binary codes of these graphs and the application of permutation decoding to
the codes is being conducted by W. Fish [Fis].

6 Some infinite classes of codes only having partial PD-sets

6.1 Finite desarguesian planes

If q = pe where p is prime, the code of the desarguesian projective plane of order q has
parameters [q2 +q+1, (p(p+1)

2 )e +1, q+1]p. For the affine plane the code is [q2, (p(p+1)
2 )e, q]p.

The codes are subfield subcodes of the generalized Reed-Muller codes (see [AK98]), and the
automorphism groups are the semi-linear groups and doubly transitive on points.

Thus 2-PD-sets always exist. However, unlike the codes from graphs discussed in the
preceding sections, it is not possible to obtain a general construction of PD-sets that will
cover all members of this class of codes (i.e. for all q), since the bound of Result 2 for the size
of a PD-set for error-correction using the full capability of the code is greater than the size of
the group as q grows beyond a certain value: see [KMM05]. For example, in the projective
desarguesian case, when q is greater than the stated value, PD-sets for full error-correction
cannot exist beyond the stated values of q (computations done using Magma [BC94] and
GAP [GAP]):

• q = p prime and p > 103;

• q = 2e and e > 12;

• q = 3e and e > 6;

• q = 5e and e > 4;

• q = 7e and e > 3;

• q = 11e and e > 2;

• q = 13e and e > 2;

• q = pe for p > 13 and e > 1.

Similar results hold for the affine and dual cases. Thus it is not possible to give a general
construction of PD-sets for this whole class of codes. However, s-PD-sets that apply to the
whole class can be found for some small values of s ≥ 2: see Sections 6.2, 6.3 below.
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6.2 Small 2-PD-sets in prime-order planes

It is clear that 2-PD-sets exist for any information set for the p-ary code of a desarguesian
plane of order a power of p, since the group is 2-transitive. Since the smaller an s-PD-set is
the more economical it will be for decoding purposes, it is desirable to find small 2-PD-sets
inside the full group. In general this problem is not solved since information sets are not
know in general. However, for prime order a Moorhouse [Moo91] basis can be used to find
an information set, and using this, in [KMM05], the following sizes were obtained:

• 2-PD-sets of 37 elements for desarguesian affine planes of any prime order p;

• 2-PD-sets of 43 elements for desarguesian projective planes of any prime order p.

Also 3-PD-sets for the code and the dual code in the affine prime case of sizes 2p2(p−1)
and p2, respectively, were found.

6.3 Affine geometry designs

Information sets for the generalized Reed-Muller codes were found in [KMMa] and using
these, 2-PD sets of size 2p3 for p ≥ 5 and 3-PD-sets of size p3(p− 1)3 for p ≥ 7 were found
in [KMMb] for the p-ary codes from the 2-(p3, p, 1) affine geometry designs of points and
lines in 3-dimensional space over Fp, where p is a prime. The parameters of the codes are
[p3, 1

6p(5p2 + 1), p]p.

6.4 Paley graphs

If n is a prime power with n ≡ 1 (mod 4), the Paley graph,P (n), has Fn as vertex set and
two vertices x and y are adjacent if and only if x− y is a non-zero square in Fn. The row
span over a field Fp of an adjacency matrix gives a good code (in fact, a quadratic residue
code) if and only if p is a square in Fn.

For any σ ∈ Aut(Fn) and a, b ∈ Fn with a a non-zero square, the group of mappings
τa,b,σ : x 7→ axσ +b is the automorphism group of the code, and is not in general 2-transitive
on points. Using Magma [BC94], it can be verified (see [KL04, Lim05]) that for n ≥ 1697
and prime or n ≥ 1849 and a square, PD-sets cannot exist since the bound of Result 2 is
bigger than the order of the group (using the square root bound for the minimum weight,
and the actual minimum weight q + 1 when n = q2 and q is a prime power).

For the case where n is prime and n ≡ 1 (mod 8), the code of P (n) over Fp is C =
[n, n−1

2 , d]p where d ≥
√

n, (the square-root bound) for p any prime dividing n−1
4 . In [KL04]

a 2-PD-set for C of size 6, and for the dual code, a 2-PD-set of size 10, was found for
all n satisfying the stated conditions. Further results for this class of codes can be found
in [Lim05].
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7 Conclusion

This paper does not claim to give an exhaustive survey of all the known work to date on
the discovery of PD-sets and s-PD-sets. Huffman [Huf98] gives a survey up to the date of
publication of his chapter in the Handbook of Coding Theory. A more complete survey of
recent results will appear in [Sen]. After a somewhat sporadic interest following the intitial
work of MacWilliams, interest in the subject has picked up in the last few years, due to the
demand for good decoding methods, but a lot of the recent work is not yet published and
available at this time only in preprint form. The website

http://www.ces.clemson.edu/~keyj

contains some of the papers jointly authored by J. D. Key but still in press.
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