
Chapter 14

Some error-correcting codes and
their applications

J. D. Key1

14.1 Introduction

In this chapter we describe three types of error-correcting linear codes that have
been used in major applications, viz. photographs from spacecraft (first order Reed-
Muller codes), compact discs (Reed-Solomon codes), and computer memories (ex-
tended binary Hamming codes).

Error-correcting codes were first developed in the 1940s following a theorem of
Claude Shannon [14] that showed that almost error-free communication could be
obtained over a noisy channel. The message to be communicated is first “encoded”,
i.e. turned into a codeword, by adding “redundancy”. The codeword is then sent
through the channel and the received message is “decoded” by the receiver into
a message resembling, as closely as possible, the original message. The degree of
resemblance will depend on how good the code is in relation to the channel.

Such codes have been used to great effect in some important applications, and
we will describe here the codes that are used in three of these applications, showing
how they can be constructed and how they can be used:

• Computer memories [11]: the codes used are extended binary Hamming
codes, the latter being perfect single-error-correcting;

• Photographs from spacecraft: the codes initially used were first-order
Reed-Muller codes, which can be constructed as the orthogonal extended Ham-
ming codes; later the binary extended Golay code was used;

• Compact discs [7]: the codes used are Reed-Solomon codes, constructed
using certain finite fields of large prime-power order.

1Chapter 14 of “Applied Mathematical Modeling: A Multidisciplinary Approach”, D. R. Shier
and K. T. Wallenius (Eds.), Chapman & Hall/CRC Press, Boca Raton, FL, 1999
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After an introductory section on the necessary background to coding theory,
including some of the effective encoding and decoding methods, we will describe how
the codes can be used in each of these applications, and give a simple description
how each of these classes of codes can be constructed. We will not include details of
the implementation of the codes, nor of the mathematical background to the theory;
the reader is encouraged to consult the papers and books in the bibliography for
this. Those readers who are familiar with the elementary concepts in coding theory
should pass immediately on to the applications, and refer back to Section 14.2 when
necessary. The final section contains some simple exercises and some projects for
further study.

14.2 Background coding theory

More detailed accounts of error-correcting codes can be found in: Hill [6], Pless [13],
MacWilliams and Sloane [10], van Lint [9], and Assmus and Key [1, Chapter 2].
See also Peterson [12] for an early article written from the engineers’ point of view.
Proofs of all the results quoted here can be found in any of these texts; our summary
here follows [1].

The usual pictorial representation of the use of error-correcting codes to send
messages over noisy channels is shown in the schematic diagram Figure 14.1.
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Figure 14.1: A noisy communications channel

Here a message is first given by the source to the encoder that turns the message
into a codeword , i.e. a string of letters from some alphabet, chosen according to the
code used. The encoded message is then sent through the channel, where it may
be subjected to noise and hence altered. When this message arrives at the decoder
belonging to the receiver, it is equated with the most likely codeword, i.e. the one
(should that exist) that, in a probabilistic sense depending on the channel, was
probably sent, and finally this “most likely” codeword is decoded and the message
is passed on to the receiver.

Example 14.1 Suppose we use an alphabet of just two symbols, 0 and 1, and we
have only two messages, for example “no” corresponding to 0, and “yes” correspond-
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ing to 1. We wish to send the message “no”, and we add redundancy by simply
repeating the message five times. Thus we encode the message as the codeword
(00000). The channel might interfere with the message and could change it to, say,
(10100). The decoder assesses the message and decides that of the two possible
codewords, i.e. (00000) and (11111), the former is the more likely, and hence the
message is decoded, correctly, as “no”.

We have made several assumptions here: for example we have assumed that the
probability of an error at any position in the word is less than 1

2 , that each codeword
is equally likely to be sent, and that the receiver is aware of the code used.

Definition 14.1 Let F be a finite set, or alphabet, of q elements. A q-ary
code C is a set of finite sequences of symbols of F , called codewords and written
x1x2 . . . xn, or (x1, x2, . . . , xn), where xi ∈ F for i = 1, . . . , n. If all the sequences
have the same length n, then C is a block code of block length n.

The code used in the example above is a block code, called the repetition code
of length 5: it can be generalized to length n and to any alphabet of size q, and
hence will have q codewords of the form xx · · ·x, where x ∈ F .

Given an alphabet F , it will be convenient, and also consistent with terminology
for cartesian products of sets and for vector spaces when F is a field, to denote the
set of all sequences of length n of elements of F by Fn and to call these sequences
vectors, referring to the member of F in the i th position as the coordinate at i. We
use either notation, x1x2 · · ·xn or (x1, x2, . . . , xn), for the vectors. A code over F of
block length n is thus any subset of Fn.

The formal process in the reasoning of the simple example given above uses the
concept of the distance between codewords.

Definition 14.2 Let v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be two vectors in
Fn. The Hamming distance, d(v, w), between v and w is the number of coordinate
places in which they differ:

d(v, w) = |{i|vi 6= wi}|.

We will usually refer to the Hamming distance as simply the distance between
two vectors. It is simple to prove that the Hamming distance defines a metric on
Fn, i.e.

(1) d(v, w) = 0 if and only if v = w;

(2) d(v, w) = d(w, v) for all v, w ∈ Fn;

(3) d(u, w) ≤ d(u, v) + d(v, w) for all u, v, w ∈ Fn.

Nearest-neighbor decoding picks the codeword v′ nearest (in terms of Ham-
ming distance) to the received vector, should such a vector be uniquely determined.
This method maximizes the decoder’s likelihood of correcting errors — provided
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that each symbol has the same probability (less than 1
2) of being received in error

and each symbol of the alphabet is equally likely to occur. A channel with these
two properties is called a symmetric q-ary channel.

Definition 14.3 The minimum distance d(C) of a code C is the smallest of the
distances between distinct codewords; i.e.

d(C) = min{d(v, w)|v, w ∈ C, v 6= w}.

For the repetition code of length 5 given in Example 14.1 this distance is 5.

The following simple result is very easily proved and shows the vital importance
of this concept for codes used in symmetric channels.

Theorem 14.1 If d(C) = d then C can detect up to d − 1 errors or correct up to
b(d− 1)/2c errors.

(Here bnc denotes the floor function of n.) Thus in Example 14.1 up to four
errors can be detected or up to two errors can be corrected.

If C is a code of block length n having M codewords and minimum distance
d, then we say that C is an (n, M, d) q-ary code, where |F | = q. We will refer
to n as the length of the code rather than the block length. Thus the code in
Example 14.1 is a (5, 2, 5) 2-ary (binary) code.

From the above discussion, we see that for a good (n, M, d) code C, i.e. one that
detects or corrects many errors, we need d to be large. However we also prefer n to
be small (for fast transmission) and M to be large (for a large number of messages).
These are clearly conflicting aims, since for a q-ary code, M ≤ qn. In fact there are
many bounds connecting these three parameters, one of the simplest of which is the
Singleton bound (see, for example, [1, Theorem 2.1.2]):

M ≤ qn−d+1. (14.1)

Another bound, usually better than the Singleton bound, is the sphere-packing
bound.

Definition 14.4 Let F be any alphabet and suppose u ∈ Fn. For any integer
r ≥ 0, the sphere of radius r with center u is the set of vectors Sr(u) = {v|v ∈
Fn, d(u, v) ≤ r}.

Let C be an (n, M, d) code. Then the spheres of radius ρ = b(d − 1)/2c with
center in C do not overlap, i.e. they form M pairwise disjoint subsets of Fn. The
integer ρ is called the packing radius of C. Hence we have the sphere-packing
bound: if C is an (n, M, d) q-ary code of packing radius ρ, then

M

(
1 + (q − 1)n + (q − 1)2

(
n

2

)
+ · · ·+ (q − 1)ρ

(
n

ρ

))
≤ qn. (14.2)
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The covering radius of a code is defined to be the smallest integer R such that
spheres of radius R with their centers at the codewords cover all the words of Fn. If
the covering radius R is equal to the packing radius ρ, the code is called a perfect
ρ-error-correcting code. Thus perfect codes are those for which equality holds
in (14.2)

The binary (i.e. |F | = 2) repetition codes of odd length n are trivial perfect
(n−1)/2-error-correcting codes; the infinite class of binary perfect 1-error-correcting
codes with n = 2m − 1 and hence M = 2n−m was discovered by Hamming [4] and
generalized to the q-ary case by Golay.

A code C over the finite field F = Fq of prime-power order q, of length n is
linear if C is a subspace of V = Fn. If dim(C) = k and d(C) = d, then we write
[n, k, d ] or [n, k, d ]qfor the q-ary code C; if the minimum distance is not specified we
simply write [n, k]. The information rate is k/n and the redundancy is n− k.

Thus a q-ary linear code is any subspace of a finite-dimensional vector space
over a finite field Fq, but with reference to a particular basis. The standard basis
for Fn, as the space of n-tuples, has a natural ordering through the numbers 1 to n,
and this coincides with the spatial layout of a codeword as a sequence of alphabet
letters sent over a channel. To avoid ordering the basis we may take V = FX , the
set of functions from X to F , where X is any set of size n. Then a linear code is
any subspace of V .

For any vector v = (v1, v2, . . . , vn) ∈ V = Fn, let S = {i | vi 6= 0}; then S
is called the support of v, written Supp(v), and the weight of v, wt(v), is |S|.
The minimum weight of a code is the minimum of the weights of the non-zero
codewords, and for linear codes is easily seen to be equal to d(C).

For linear [n, k, d ] q-ary codes the Singleton bound and the Sphere-packing
bound become the following:

Singleton bound: d ≤ n− k + 1;

sphere-packing bound:
∑ρ

i=0(q − 1)i
(n

i

)
≤ qn−k.

A code for which equality holds in the Singleton bound is called an MDS (maximum
distance separable) code. The Reed-Solomon codes (see Section 14.5.2) are MDS
codes.

Definition 14.5 Two linear codes in Fn are equivalent if each can be obtained
from the other by permuting the coordinate positions in Fn and multiplying each
coordinate by a non-zero field element. The codes will be said to be isomorphic if
a permutation of the coordinate positions suffices to take one to the other.

In terms of the distinguished basis that is present when discussing codes, code
equivalence is obtained by reordering the basis and multiplying each of the basis
elements by a non-zero scalar. Thus the codes C and C ′ are equivalent if there is a
linear transformation of the ambient space Fn, given by a monomial matrix (one
non-zero entry in each row and column) in the standard basis, that carries C onto
C ′. When the codes are isomorphic, a permutation matrix can be found with this
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property. When q = 2, the two concepts are identical. Clearly equivalent linear
codes must have the same parameters [n, k, d ].

If C is a q-ary [n, k] code, a generator matrix for C is a k × n array obtained
from any k linearly independent vectors of C.

Via elementary row operations, a generator matrix G for C can be brought into
reduced row echelon form and still generate C, and then, by permuting columns, it
can be brought into a standard form

G′ = [Ik|A] (14.3)

where this is now a generator matrix for an equivalent (in fact, isomorphic) code.
Here A is a k × (n− k) matrix over F .

Now we come to another important way of describing a linear code, viz.
through its orthogonal or dual. For this we need an inner product defined on
our space; it is the standard inner product: for v, w ∈ Fn, v = (v1, v2, . . . , vn),
w = (w1, w2, . . . , wn), we write the inner product of v and w as (v, w) where

(v, w) =
n∑

i=1

viwi. (14.4)

Definition 14.6 Let C be a q-ary [n, k] code. The orthogonal code (or dual
code) is denoted by C⊥ and is given by

C⊥ = {v ∈ Fn|(v, c) = 0 for all c ∈ C}.

We call C self-orthogonal if C ⊆ C⊥ and self-dual if C = C⊥.

From elementary linear algebra we have

dim(C) + dim(C⊥) = n (14.5)

since C⊥ is simply the null space of a generator matrix for C. Taking G to be a
generator matrix for C, a generator matrix H for C⊥ satisfies GHt = 0, i.e. c ∈ C
if and only if cHt = 0, or, equivalently, Hct = 0. Any generator matrix H for C⊥ is
called a parity-check or check matrix for C. If G is written in the standard form

[Ik|A],

then
H = [−At|In−k] (14.6)

is a check matrix for the code with generator matrix G.

In Example 14.1, which is a linear [5, 1, 5]2 code, we have generator matrix

G = [1, 1, 1, 1, 1],

already in standard form, and thus

H =


1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 0 0 0 1


6



as a check matrix.

A generator matrix in standard form simplifies encoding: suppose data con-
sisting of qk messages are to be encoded by adding redundancy using the code C
with generator matrix G. First identify the data with the vectors in F k, where
F = Fq. Then for u ∈ F k, encode u by forming uG. If u = (u1, u2, . . . , uk)
and G has rows R1, R2, . . . , Rk, where each Ri is in Fn, then uG =

∑
i uiRi =

(x1, x2, . . . , xk, xk+1, . . . , xn) ∈ Fn, which is now encoded. But when G is in stan-
dard form, the encoding takes the simpler form

u 7→ (u1, u2, . . . , uk, xk+1, . . . , xn),

and here the u1, . . . , uk are the message or information symbols, and the last n− k
entries are the check symbols, and represent the redundancy.

In general it is not possible to say anything about the minimum weight of C⊥

knowing only the minimum weight of C but, of course, either a generator matrix or
a check matrix gives complete information about both C and C⊥. In particular, a
check matrix for C determines the minimum weight of C in a useful way:

Theorem 14.2 Let H be a check matrix for an [n, k, d ] code C. Then every choice
of d− 1 or fewer columns of H forms a linearly independent set. Moreover if every
d−1 or fewer columns of a check matrix for a code C are linearly independent, then
the code has minimum weight at least d.

Notice that in terms of generator matrices, two codes C and C ′ with generator
matrices G and G′ are equivalent if and only if there exist a non-singular matrix
M and a monomial matrix N such that MGN = G′, with isomorphism if N is a
permutation matrix and equality if N = In, n being the block length of the codes.

Example 14.2 The smallest non-trivial Hamming code (see Section 14.3.2) is a
[7,4,3] binary code, which is a perfect single-error-correcting code. It can be given
by the generator matrix G in standard form [I4|A] where

A =


1 1 1
0 1 1
1 0 1
1 1 0

 .

Thus a check matrix will be

H =

 1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1

 .

Taking {a, b, c, d} as the information symbols, and {b′, c′, d′} as the check sym-
bols, the diagram shown in Figure 14.2 (due to McEliece — see, for example, [11])
can be used to correct a single error, for any vector received, if at most a single
error has occurred. The rule is that the sum of the coordinates in any of the three
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Figure 14.2: The Hamming code H3

circles must be 0, which constitute the “parity checks” as seen from the matrix H
above. Thus, for example, if the vector 1011111 is received, checking the parity in
the three circles shows that an error occurred at the information symbol b, so that
the error is corrected, yielding 1111111.

A general method of decoding for linear codes is a method, due to Slepian [15],
that uses nearest-neighbor decoding and is called standard-array decoding. The
error vector is defined to be e = w− v, where v is the codeword sent and w is the
received vector. Given the received vector we wish to determine the error vector.
We look for that coset of the subgroup C in Fn that contains w and observe that
the possible error vectors are just the members of this coset. The strategy is thus to
look for a vector e of minimum weight in the coset w + C, and decode as v = w− e.
A vector of minimum weight in a coset is called a coset leader; of course it might
not be unique, but it will be in the event that its weight is at most ρ, where ρ is
the packing radius, and this will always happen when at most ρ errors occurred
during transmission. It should be noted that there may be a unique coset leader
even when the weight of that leader is greater than ρ and thus a complete analysis
of the probability of success of nearest-neighbor decoding will involve analyzing the
weight distribution of all the cosets of C; in the engineering literature this is known
as “decoding beyond the minimum distance”. Use of a parity-check matrix H for C
to calculate the syndrome, viz.

synd(w) = wHt, (14.7)

of the received vector w assists this decoding method, the syndrome being constant
over a coset and equal to the zero vector when a codeword has been received.

Definition 14.7 Let C be a q-ary [n, k, d ] code. Define the extended code Ĉ to be
the code of length n + 1 in Fn+1 of all vectors ĉ for c ∈ C where, if c = (c1, . . . , cn),
then

ĉ =

(
c1, . . . , cn,−

n∑
i=1

ci

)
.

This is called adding an overall parity check, for we see that if v =
(v1, . . . , vn+1) then v ∈ Ĉ satisfies

∑
vi = 0. If C has generator matrix G and

check matrix H, then Ĉ has generator matrix Ĝ and check matrix Ĥ, where Ĝ is
obtained from G by adding an (n+1)th column such that the sum of the columns of
Ĝ is the zero column, and Ĥ is obtained from H by attaching an (n−k+1)th row and
(n+1)th column onto H, the row being all 1’s and the column being (0, 0, . . . , 0, 1)t.
If C is binary with d odd, then Ĉ will be an [n + 1, k, d + 1] code.
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Example 14.3 Extending the [7, 4, 3] binary Hamming code gives an [8, 4, 4] binary
code, which is self-dual.

An inverse process to extending an [n, k, d ] code is that of puncturing, which
is achieved by simply deleting a coordinate, thus producing a linear code of length
n− 1. The dimension will be k or k − 1, clearly, but in the great majority of cases
the dimension will remain k; the minimum weight may change in either way, but
unless the minimum weight of the original code is 1, the minimum weight of the
punctured code will be either d− 1 or d and in the great majority of cases d− 1.

Another way to obtain new codes is by shortening: given an [n, k, d] q-ary code
C, for any integer r ≤ k, we take the subspace C ′ of all codewords having 0 in a fixed
set of r coordinate positions, and then remove those coordinate positions to obtain
a code of length n − r. For example, if G is a generator matrix for C in standard
form, shortening by the first coordinate will clearly produce an [n−1, k−1, d′] code,
where d′ ≥ d. In this way we obtain [n− r, k − r, d′] codes. This techinique is used
in Section 14.5.

14.3 Computer memories and Hamming codes

14.3.1 Introduction

Before going on to defining the actual codes, we describe briefly how the memory
chips are designed, and how codes may be used, and why they are needed. A fuller
account of the use of error-correcting codes in computer memories may be found in
the article [11].

The memories of computers are built from silicon chips. Although any one of
these chips is reliable, when many thousands are combined in a memory, some might
fail. The use of an error-correcting code can mean that a failed chip will be detected
and the error corrected. The errors in a chip might occur in the following way: a
memory chip is a square array of data-storage cells, for example a 64K chip, where
K = 210. The 64K chip stores 64K = 216 = 65, 536 bits, i.e. binary digits, of data.
Alternatively, there are 256K = 218 and one-megabit (220 bits) chips. In the 64K
chip the data-storage cells are arranged in a 28× 28 array, where each cell stores a 0
or a 1. Each cell can be accessed individually, and has an “address” corresponding
to the row and column coordinates, usually numbered from 0 to 255. The largest
address is in position (255, 255) = (28 − 1, 28 − 1); the binary representation of 255
is 11111111, a sequence of eight bits, and thus the row and column addresses for
a 64K require eight bits each, i.e. 16 in all. A 256K chip has 29 = 512 rows and
columns and thus requires 18 bits to address a cell, and a one-megabit chip requires
20.

The 0’s or 1’s stored in a memory chip are represented by the presence or absence
of negative electric charges at sites in the silicon crystal whose electrical properties
make them potential wells for negative charge. When a 0 is to be stored in a cell
the potential well at the site is filled with electrons; when a 1 is to be stored the
well is emptied. The cell is read by measuring its negative charge; if the charge is
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higher than a certain value it is read to be a 0, otherwise a 1.

Clearly, if a potential well lost its charge it would be read incorrectly. Errors do
occur: hard errors occur when the chip itself is damaged; soft errors occur when
the chip itself is not damaged but alpha particle bombardment occurs and changes
the charge in a cell. The latter is a common cause of error and cannot be avoided.

An error-correcting code is used to correct such errors in the following way:
suppose we have a one megabyte memory consisting of 128 64K chips. In such a
memory the chips are arranged in four rows of 32 chips each; each chip contains
216 memory cells, so the memory has a total of 223 cells. The data are divided into
words of 32 bits each, and each word consists of the contents of one memory cell in
each of the 32 chips in one row. In order to correct errors, a further seven chips are
added to each of the four rows, making 156 chips. Each row has now 39 chips, the
seven extra bit being the parity bits, and are reserved for error-correction. The code
actually employed is the binary extended Hamming code of length 64, i.e. a [64, 57, 4]
binary code. Such a code will actually protect 57 bits of data, but designers of the
codes use only 32 bits.

We now describe how the (binary) Hamming codes are defined.

14.3.2 Hamming codes

These codes were first fully described by Golay [3] and Hamming [4, 5] although
the [7, 4] binary code had already appeared in Shannon’s fundamental paper. They
provide an infinite class of perfect codes. We need here only the binary case, which
was the one considered by Hamming. Consider a binary code C with check matrix
H: the transposed syndrome, Hyt, of a received vector y is, in the binary case,
simply the sum of those columns of H where the errors occurred. To design a
single-error-correcting code we want H not to have any zero columns, since errors
in that position would not be detected; similarly, we want H not to have any equal
columns, for then errors in those positions would be indistinguishable. If such an
H has r rows, n columns and is of rank r, then it will be a check matrix for a
single-error-correcting [n, n − r] code. Thus, to maximize the dimension, n should
be chosen as large as possible. The number of distinct non-zero r-tuples available
for columns is 2r − 1. We take for H the r× (2r − 1) binary matrix whose columns
are all the distinct non-zero r-tuples.

Definition 14.8 The binary Hamming code of length 2r−1 is the code Hr that has
for check matrix the r × (2r − 1) matrix H of all non-zero r-tuples over F2.

Theorem 14.3 The binary code Hr is a [2r − 1, 2r − 1− r, 3] perfect single-error-
correcting code for all r ≥ 2.

Example 14.4 (1) If r = 2 then

H =

[
1 0 1
0 1 1

]
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and H2 is a [3, 1, 3] code, which is simply the binary repetition code of length
3.

(2) If r = 3, H3 is a [7, 4, 3] binary code, with check matrix

H =

 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 .

Decoding a binary Hamming code is very easy. We first arrange the columns
of H, a check matrix for Hr, so that the j th column represents the binary repre-
sentation (transposed) of the integer j. Now we decode as follows. Suppose the
vector y is received. We first find the syndrome, synd(y) = yHt. If synd(y) = 0,
then decode as y, since then y ∈ Hr. If synd(y) 6= 0, then, assuming one error has
occurred, it must have occurred at the j th position where the vector (synd(y))t is
the binary representation of the integer j. Thus decode y to y + ej , where ej is the
vector of length n = 2r − 1 with 0 in every position except the j th, where it has a
1. The examples given here use this ordering, but notice that the ordering of the
entries in the transposed m-tuple representing a number is read from left to right.
Thus, [1011] (transposed) represents 1 + 0 + 4 + 8 = 13 rather than the customary
1 + 2 + 0 + 8 = 11.

If we form the extended binary Hamming code Ĥr, we obtain a [2r, 2r − 1− r, 4]
code which is still single-error-correcting, but which is capable of simultaneously
detecting two errors. This code is useful for incomplete decoding : see Hill [6].

Example 14.5 Let C = Ĥ3, with check matrix Ĥ obtained as described above (see
after Definition 14.7):

Ĥ =


1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0
0 0 0 1 1 1 1 0
1 1 1 1 1 1 1 1

 ,

and generator matrix

Ĝ =


1 1 1 0 0 0 0 1
1 0 0 1 1 0 0 1
0 1 0 1 0 1 0 1
1 1 0 1 0 0 1 0

 .

The data set (1, 0, 1, 0) is encoded as (1, 0, 1, 0)Ĝ = (1, 0, 1, 1, 0, 1, 0, 0). If a single
error occurs at the i th position, then the received vector y will have (synd(y))t the
i th column of Ĥ and decoding can be performed. However, if two errors occur, at
the i th and j th positions, the (synd(y))t will be the sum of the i th and j th columns
of Ĥ, and thus will have 0 as the last entry. Decocoding will thus not take place.

Definition 14.9 The orthogonal code H⊥
r of Hr is called the binary simplex code

and is denoted by Sr.
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The simplex code Sr clearly has length 2r − 1 and dimension r. The generator
matrix is H. It follows that Sr consists of the zero vector and 2r − 1 vectors of
weight 2r−1, so that it is a [2r − 1, r, 2r−1] binary code. Any two codewords are
at Hamming distance 2r−1 and, if the codewords are placed at the vertices of a
unit cube in 2r − 1 dimensions, they form a simplex. Now from elementary coding
theory (see Section 2) we know that a check matrix for Ĥr is H with a column of
zeros attached, and then a further row with all entries equal to 1: the code spanned
by this matrix, i.e. Ĥr

⊥
, is a [2r, r + 1, 2r−1] binary code, and is also a first-order

Reed-Muller code, denoted by R(1, r). It can correct 2r−2 − 1 errors.

Finally now, looking back at the application to computer memories, the code
used is Ĥ6, a [64, 57, 4] binary code. A check matrix can easily be constructed in
the manner described above. The code will now correct any single error that occurs
in the way described above, and will simultaneously detect any two errors.

14.4 Photographs in space and Reed-Muller codes

14.4.1 Introduction

Photographs of the planet Mars were first taken by the Mariner series of spacecraft in
the ’60s and early ’70s and the first-order Reed-Muller code of length 32 was used to
obtain good quality photographs. The original black and white photographs taken
by the earlier Mariners were broken down into 200 × 200 picture elements. Each
element was assigned a binary 6-tuple representing one of 64 possible brightness
levels from, say, 000000 for white to 111111 for black. Later this division was made
finer by using 700× 832 elements, and the quality was increased by encoding the 6-
tuples using the [32, 6, 16] binary 7-error correcting Reed-Muller code R(1, 5) in the
way described in Section 14.2. When color photographs were taken, the same code
was used simply by using the same photograph through different colored filters. In
the Voyager series after the late ’70s the binary extended Golay code G24, a [24, 12, 8]
code, was used in the color photography.

Later on in the Voyager series of spacecraft a different type of codes, viz. con-
volutional Reed-Solomon codes, was used: see [17]. We describe the Reed-Solomon
codes in Section 14.5.2.

14.4.2 First-order Reed-Muller codes

A full account of the Reed-Muller codes, which are all binary codes, can be found
in [10] or [1, Chapter 5]. We describe here simply a way to construct the [32, 6, 16]
code used for space photography, although in fact we can be more general since
we already have the construction from the extended Hamming codes. Thus we
have the first-order Reed-Muller code R(1,m) of length 2m is the code Ĥm

⊥
, i.e.

the orthogonal of the extended binary Hamming code. It is, as discussed above, a
[2m,m+1, 2m−1] binary (2m−2−1)-error-correcting code. A 6×32 generator matrix
G for R(1, 5) may thus be constructed as follows: first form a 5×31 matrix G0 with
columns the binary representation of each number between 1 and 31 as a column
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of length 5; then adjoin a column with all entries zero, and finally add a sixth row
with all entries equal to 1. Thus

G0 =


1 0 1 · · · 0 1
0 1 1 · · · 1 1
0 0 0 · · · 1 1
0 0 0 · · · 1 1
0 0 0 · · · 1 1



and

G =


0

G0
...
0

1 1 1 · · · 1

 .

14.4.3 The binary Golay codes

There are many ways to arrive at the perfect Golay [23, 12, 7] binary 3-error-
correcting code G23 and its extension, the [24, 12, 8] binary Golay code G24 that
was used in the Voyager spacecraft. We will give a generator matrix, as Golay
originally did in [3]. That the code generated by this matrix has the specified prop-
erties can be verified very easily, or by consulting any of the references given in
Section 14.2, for example [6, Chapter 9].

A generator matrix over F2 for G24 is

G = [I12|B], (14.8)

where I12 is the 12× 12 identity matrix and B is a 12× 12 matrix given by

B =


0 1 · · · 1
1
... A
1

 , (14.9)

where A is an 11 × 11 matrix of 0’s and 1’s defined in the following way: consider
the finite field F11 of order 11, i.e. the eleven remainders modulo 11. The first row
of A is labelled by these eleven remainders in order, starting with 0, and placing an
entry 1 in the ith position if i is a square modulo 11, and a 0 otherwise. The squares
modulo 11 are {0, 1, 3, 4, 5, 9}, and thus the first row of A is

[
1 1 0 1 1 1 0 0 0 1 0

]
.
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For the remaining rows of A simply cycle this row to the left ten times, to obtain

A =



1 1 0 1 1 1 0 0 0 1 0
1 0 1 1 1 0 0 0 1 0 1
0 1 1 1 0 0 0 1 0 1 1
1 1 1 0 0 0 1 0 1 1 0
1 1 0 0 0 1 0 1 1 0 1
1 0 0 0 1 0 1 1 0 1 1
0 0 0 1 0 1 1 0 1 1 1
0 0 1 0 1 1 0 1 1 1 0
0 1 0 1 1 0 1 1 1 0 0
1 0 1 1 0 1 1 1 0 0 0
0 1 1 0 1 1 1 0 0 0 1



. (14.10)

(This construction is quite general in fact and leads to a class of Hadamard
matrices and also to the quadratic residue codes: see [1, Chapters 2,7] for further
details.) An effective decoding algorithm for G24 is given in [16, Chapter 4].

The perfect binary Golay code G23 may be obtained from G24 by deleting any
coordinate.

14.5 Compact discs and Reed-Solomon codes

14.5.1 Introduction

A full account of the use of Reed-Solomon codes for error-correction in compact
discs is given in [7], [16, Chapter 7] or [17].

Sound is stored on a compact disc by dividing it up into small parts and rep-
resenting these parts by binary data, just as pictures are divided up, as described
in Section 14.4. A compact disc is made by sampling sound waves 44,100 times per
second, the amplitude measured and assigned a value between 1 and 216 − 1, given
as a binary 16-tuple. In fact, two samples are taken, one for the left and one for the
right channel. Each binary 16-tuple is taken to represent two field elements from
the Galois field of 28 elements, F28 , and thus each sample produces four symbols
from F28 .

For error-correction the information is broken up into segments called frames,
where each frame holds 24 data symbols. The code used for error-correction is a
Cross Interleaved Reed-Solomon code (CIRC) obtained by a process called “cross-
interleaving” of two shortened Reed-Solomon codes, as described below. The 24
symbols from F28 from six samples are used as information symbols in a (short-
ened) Reed-Solomon [28, 24, 5] code C1 over F28 . Another shortened Reed-Solomon
[32, 28, 5] code C2 also over F28 is then used in the interleaving process, which has
four additional parity-check symbols. See [7, 16, 17] for a detailed description of
this process.

As a result of this interleaving process of error-correction, flaws such as scratches
on a disc, producing a train of errors called an “error burst”, can be corrected.
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We describe now the basic Reed-Solomon class of codes.

14.5.2 Reed-Solomon codes

The Reed-Solomon codes are a class of cyclic q-ary codes of length n dividing q − 1
that satisfy the Singleton bound, and are thus also MDS codes (see Section 14.2). It
would take too long to describe general cyclic codes, but we will nevertheless define
these codes as being cyclic and illustrate immediately how a generator matrix and
a check matrix may be found.

Let F = Fq and let n|(q − 1). Then F has elements of order n, and we let β be
such an element. Pick any number δ such that 2 ≤ δ ≤ n, and take any number a
such that 0 ≤ a ≤ q − 2. Then the polynomial

g(X) = (X − β1+a)(X − β2+a)(X − β3+a) . . . (X − βδ−1+a) (14.11)

is the generator polynomial of an [n, n − δ + 1, δ] code over F , a Reed-Solomon
code. In the special case when n = q−1 the code is a primitive Reed-Solomon code.
We obtain a generator polynomial for the code by first expanding the polynomial
g(X) to obtain, writing d = δ (since δ is indeed the minimum weight),

g(X) = g0 + g1X + · · ·+ gd−2X
d−2 + Xd−1 (14.12)

where gi ∈ F for each i. A generator matrix can then be shown to be

G =


g0 g1 g2 . . . gd−1 1 0 . . . 0
0 g0 g1 . . . gd−2 gd−1 1 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 . . . . . . g0 . . . . . . gd−2 gd−1 1

 . (14.13)

The general theory of BCH codes (see [1, Chapter 2]) immediately gives a check
matrix

H =


1 β β2 . . . β(n−1)

1 β2 β4 . . . β2(n−1)

...
...

...
...

1 βd−1 β2(d−1) . . . β(n−1)(d−1)

 , (14.14)

taking here a = 0. This is a convenient generator matrix for the orthogonal code
(which is also a Reed-Solomon code) with a rather simple encoding rule: the data
set (a1, a2, . . . , ad−1) is encoded as (a(1), a(β), a(β2), . . . , a(βn−1)) where

a(X) = a1X + a2X
2 . . . ad−1X

d−1.

The theory (see [1, Chapter 2]) also tells us that the reciprocal polynomial of
h(X) = (Xn − 1)/g(X), i.e. h̄(X) = Xn−d+1h(X−1), is a generator polynomial for
the orthogonal code, so another check matrix may be obtained for this in the same
way as we did for the code with g(X) as generator polynomial. A more convenient
method for the purposes here is to reduce G to standard form and then simply use
the formula shown in Equation (14.6).
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Example 14.6 Let q = 11 and n = 5. Then we can take β = 4 as this has order
precisely 5, and let a = 0 and δ = 3. Then

g(X) = (X − β)(X − β2) = (X − 4)(X − 5) = 9 + 2X + X2

so that

G =

 9 2 1 0 0
0 9 2 1 0
0 0 9 2 1

 .

Since (X5 − 1) = (X − 1)(X − 4)(X − 5)(X − 9)(X − 3), (X5 − 1)/g(X) = (X −
1)(X − 3)(X − 9) and the orthogonal code has generator polynomial

h̄(X) = X3(X−1 − 1)(X−1 − 3)(X−1 − 9) = 1 + 9X + 6X2 + 6X3,

so that a check matrix is

H =

[
1 9 6 6 0
0 1 9 6 6

]
.

Alternatively, the check matrix can be obtained from Equation (14.14), giving

H ′ =

[
1 4 5 9 3
1 5 3 4 9

]
,

which is of course row-equivalent to H.

The codes used are actually shortened Reed-Solomon codes (see Section 14.2).
The easiest way to describe these codes is to have a generator matrix of the original
Reed-Solomon code C in standard form, which is possible without even having
to take an isomorphic code in this case, due to the Reed-Solomon codes having
the property of being MDS codes. Thus a generator matrix can be row reduced
to standard form, without the need of column operations. (Sometimes it is more
convenient to use the standard form for the orthogonal code rather, and thus have
the generator matrix in the form [A|Ik].) If now C, an [n, k, d] q-ary code with
n− k = d− 1, is to be shortened in the first r places to obtain a code C ′ of length
n − r, we obtain a generator matrix G′ for C ′ also in standard form by simply
deleting the first r rows and columns of G. If H is the check matrix in standard
form for G, then the check matrix in standard form for G′ is H ′ obtained from H
by deleting the first r columns. It is easy to see that the MDS properties of the
original code show that C ′ is also MDS and is an [n− r, k− r, d] q-ary code, and, of
course, n− r = k − r + d− 1.

The finite field used in the codes used for compact discs is the field F = F28 of
order 28. This can be constructed as the set of all polynomials over the field F2 of
degree at most 7, i.e.

F = {a0 + a1X + a2X
2 + a3X

3 + a4X
4 + a5X

5 + a6X
6 + a7X

7 : ai ∈ F2}.

Addition of these polynomials is just the standard addition, as is multiplication,
except that multiplication is carried out modulo the polynomial

1 + X2 + X3 + X4 + X8. (14.15)
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Thus X8 = 1 + X2 + X3 + X3 and all other powers of X are reduced to be at most
7, using this rule. The elements of F = F28 are thus effectively 8-tuples of binary
digits, and this is how they are treated for the application.

The length of the Reed-Solomon codes over F are divisors of 28 − 1 = 255 =
3× 5× 17. The code actually used is the shortened primitive one, i.e. the shortened
[255, 251, 5] code over F , with certain information symbols set to zero. Then if ω is
a primitive element for the field (i.e. an element of multiplicative order 255), we take
β = ω. Since we want minimum distance 5, we take k = n − 4 = 251, and shorten
to length 28 for C1 and to length 32 for C2. The original Reed-Solomon of length
255 would be the same for the two codes, and would have generator polynomial

g(X) = (X − ω)(X − ω2)(X − ω3)(X − ω4) = ω10 + ω81X + ω251X2 + ω76X3 + X4.

The powers of ω are then given as binary 8-tuples: for example,

ω10 = ω2 + ω4 + ω5 + ω6 = (0, 0, 1, 0, 1, 1, 1, 0),

and
ω251 = ω3 + ω4 + ω6 + ω7 = (0, 0, 0, 1, 1, 0, 1, 1),

as can be computed using, for example, the computer package Magma [2].

For further details of the properties of finite fields, the reader might consult [8].

14.6 Conclusion

We have been brief in this outline of the use of well-known mathematical construc-
tions in important practical examples, and have not included full details of the
implementation of the codes. The reader is urged to consult the bibliography in-
cluded here for a full and detailed description of the usage. We hope merely to have
given some idea as to the nature of the codes, and where they are applied.

The exercises included in the next section should be accessible using the defi-
nitions described in this chapter. They are mostly quite elementary. The projects
described are open problems whose solution might prove to have rather important
applications; some computational results might first be done to make the questions
more precise, in particular in the case of Project 2. Magma [2] is a good computa-
tional tool to use for this type of problem.

14.7 Exercises and projects

EXERCISES

1. Prove Theorem 14.1.

2. If C is a code of packing radius ρ, show that the spheres with radius ρ and
centers the codewords of C do not intersect. Hence deduce the sphere packing
bound, Equation 14.2.
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3. Prove Theorem 14.2.

4. Let C be a binary code with generator matrix

G =

[
1 0 1 1 0
1 1 0 1 1

]
.

Show that d(C) = 3 and construct a check matrix for C. If a vector y =
(0, 1, 1, 1, 1) were received, what would you correct it to?

5. State the Singleton bound and the sphere packing bound for an (n, M, d) q-
ary code. Compare these to find the best bound for M for a (10,M, 5) binary
code.

6. A linear code C is self-orthogonal if C ⊆ C⊥. Let C be a binary code. Show
that

(a) if C is self-orthogonal then every codeword has even weight;

(b) if every codeword of C has weight divisible by 4 then C is self-orthogonal;

(c) if C is self-orthogonal and generated by a set of vectors of weight divisible
by 4, then every codeword has weight divisible by 4 (i.e. C is doubly-even).

7. Let C be a linear code with check matrix H and covering radius r. Show that
r is the maximum weight of a coset leader for C, and that r is the smallest
number s such that every syndrome is a linear combination of s or fewer
columns of H.

8. Prove from Definition 14.8 that Hr is a [2r − 1, 2r − 1 − r, 3] perfect binary
code.

9. Use the diagram shown in Figure 14.2 to decode the received vectors 1101101
and 1001011.

10. Write down a check matrix for H4, writing the columns so that the jth column
is the binary representation of the number j. Use the method described on
page 11 to decode

∑10
i=1 ei and

∑5
j=1 e2j−1, where ei is the vector of length 15

with an entry 1 in the ith position, and zeros elsewhere.

11. Show that a binary [23, 12, 7] code is perfect, 3-error-correcting.

12. In the matrix A of Equation (14.10) show that the sum of the first row with
any other row has weight 6, and hence that the sum of any distinct two rows
of A has weight 6. What can then be said for the sum of any two rows of B?

13. If C is an [n, k, d] code with generator matrix G in standard form, show that
shortening of C by the first r coordinate positions, where r ≤ k, produces an
[n− r, k − r, d′] code C ′ where d′ ≥ d. (Hint: look at the check matrix for C ′

and use Theorem 14.2.) Show that it is possible for d′ > d by constructing an
example.
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14. Construct a primitive [6, 4, 3] Reed-Solomon code C over F7 using the primitive
element 3. Form a shortened code of length 4 and determine its minimum
distance.

Extend C to Ĉ (see Definition 14.7). Is Ĉ also MDS? Give generator matrices
for Ĉ and (Ĉ)⊥.

15. Construct the Reed-Solomon code of length 16 and minimum distance 5 by
giving its generator polynomial and a check matrix.

PROJECTS

1. Let C be a Hamming code Hr. Is it possible to construct a generator matrix
G for C such that every row of G has exactly three non-zero entries, and
every column of G has at most three non-zero entries?

2. Is it possible, in general, to construct a basis of minimum weight vectors for
other Hamming and Reed-Muller codes?
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