Permutation decoding for codes from designs and

graphs

J. D. Key

keyj@clemson.edu
www.math.clemson.edu/~keyj

25 June 2008
Costermano

J. D. Key Permutation decoding for codes from designs and graphs



Abstract

The method of permutation decoding was first developed by
MacWilliams [Mac64] in the early 60’s and can be used when a linear
code has a sufficiently large automorphism group to ensure the existence
of a set of automorphisms, called a PD-set, that has some specifed
properties.

This talk will describe some recent developments in finding PD-sets for
codes defined through the row-span over finite fields of incidence
matrices of designs or adjacency matrices of regular graphs. These codes
have many properties that can be deduced from the combinatorial
properties of the designs or graphs, and often have a great deal of
symmetry and large automorphism groups.
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Coding theory terminology

B A linear code is a subspace of a finite-dimensional vector
space over a finite field. (All codes are linear in this talk.)

B The weight of a vector is the number of non-zero coordinate
entries. If a code has smallest non-zero weight d then the code
can correct up to Ld—glj errors by nearest-neighbour decoding.

B A code Cis [n, k,d], if it is over F; and of length n,
dimension k, and minimum weight d.

B A generator matrix for the code is a & X n matrix made up
of a basis for C'.

B The dual code C" is the orthogonal under the standard inner
product (,), i.e. C+ = {v € F"|(v,c) = 0 for all ¢ € C}.
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Coding theory terminology continued

B A check matrix for C is a generator matrix H for C-+.

B Two linear codes of the same length and over the same field
are isomorphic if they can be obtained from one another by
permuting the coordinate positions.

B An automorphism of a code C is an isomorphism from C' to
C.

B Any code is isomorphic to a code with generator matrix in
standard form, i.e. the form [I} | A]; a check matrix then is
given by [—AT | I,,_x]. The first k coordinates are the
information symbols and the last n — k& coordinates are the
check symbols.
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Permutation decoding

Definition

If C'is a t-error-correcting code with information set Z and check
set C, then a PD-set for C' is a set S of automorphisms of C which
is such that every t-set of coordinate positions is moved by at least
one member of S into the check positions C.

[Huf98, Mac64, MS83]

For s <t an s-PD-set is a set S of automorphisms of C which is
such that every s-set of coordinate positions is moved by at least
one member of S into C. [KMMO05, KV05]
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Permutation decoding

Definition

If C'is a t-error-correcting code with information set Z and check
set C, then a PD-set for C' is a set S of automorphisms of C which
is such that every t-set of coordinate positions is moved by at least
one member of S into the check positions C.

[Huf98, Mac64, MS83]

For s <t an s-PD-set is a set S of automorphisms of C which is
such that every s-set of coordinate positions is moved by at least
one member of S into C. [KMMO05, KV05]

Specifically, if Z = {1, ..., k} are the information positions and
C={k+1,...,n} the check positions, then every s-tuple from
{1,...,n} can be moved by some element of S into C.
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Algorithm for permutation decoding

C'is a [n, k,d], code where d = 2t + 1 or 2t + 2.

G = [Ix|A] is a k x n generator matrix for C:

Any k-tuple v is encoded as vG.

The first k columns are the information symbols, the last n — k are
check symbols.

H = [-AT|I,_4] is an (n — k) x n check matrix for C:
S={g1,.-.,9m} is a PD-set for C', written in some chosen order.
Suppose z is sent and y is received and at most ¢ errors occur:

B fori=1,...,m, compute yg; and the syndrome
s; = H(yg;)" until an i is found such that the weight of s; is
t or less;

B if u=wujus...uy are the information symbols of yg;,
compute the codeword ¢ = uG,

B decode y as cgz-_l.
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Why permutation decoding works

Let C be an [n, k,d], t-error-correcting code.

Suppose H is a check matrix for C in standard form, i.e. such that
L,_r is in the check positions.

Let y = c+ e be a vector in F', where c € C and e has weight
<t

Then the information symbols in y are correct if and only if the
weight of the syndrome Hy® of y is < t.
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Minimum size for a PD-set

Counting shows that there is a minimum size a PD-set can have;
most the sets known have size larger than this minimum. The
following is due to Gordon [Gor82], using a result of

Schonheim [Sch64]:

If S is a PD-set for a t-error-correcting [n, k, d|,code C, and
r=n—k, then

(Proof in Huffman [Hufog].)

This result can be adapted to s-PD-sets for s < ¢ by replacing ¢ by
s in the formula.
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Example: The binary extended Golay code, parameters [24,12, 8],
hasn =24, r =12 and t = 3, so

12 [ i1 [ =+

and PD-sets of this size has been found (see Gordon [Gor82] and
Wolfmann [Wol83]).
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Finding PD-sets

First we need an information set. These are not known in general.
Different information sets will yield different possibilities for
PD-sets.

For symmetric designs with a symmetric incidence matrix (e.g.
desarguesian projective planes), a basis of incidence vectors of
blocks will yield a corresponding information set, by duality. This
links to the question of finding bases of minimum-weight vectors in
the geometric case, again something not known in general.

For planes, Moorhouse [Moo091] or Blokhuis and

Moorhouse [BM95] give bases in the prime-order case. For the
designs of points and hyperplanes of prime order see [KMMO06]
NOTE: [CSWO06] has been a great help in looking at small
cases to get the general idea of what to might hold for the general
case and infinite classes of codes.
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Classes of codes having s-PD-sets

B If Aut(C) is k-transitive then Aut(C') itself is a k-PD-set, in
which case we attempt to find smaller sets;

B existence of a k-PD-set is not invariant under code
isomorphism;

B codes from the row span over a finite field [}, of an incidence
matrix of a design or geometry D or from an
of a graph I, written C,(D) or (', ("), respectively;

B using Result 2 it follows that many classes of designs and
graphs where the minimum-weight and automorphism group
are known, cannot have PD-sets for full error-correction for
length beyond some bound; for these we look for s-PD-sets
with 2 < s < L%J: e.g. finite planes, Paley graphs;

B for some classes of regular and semi-regular graphs with large
automorphism groups, PD-sets exist for all lengths: e.g.
binary codes of triangular graphs, lattice graphs, line graphs of
complete multi-partite graphs.
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Some infinite classes of codes having PD-sets

In all of these, suitable information sets had to be found.
1.

For any n, the triangular graph T'(n) is the line graph of the
complete graph K,,, and is strongly regular. (The vertices are the
(g) 2-sets, with two vertices being adjacent if they intersect: this
is in the class of )

The row span over [F5 of an adjacency matrix gives codes:
[@,n — 1,n — 1], for n odd and

[@, n—2,2(n — 1))z for n even

where n. > 5. [Hae99]

The automorphism group is, apart from n = 5, S,, acting naturally;
PD-sets of size n for n odd and n? — 2n + 2 for n even are found
in [KMRO04b].
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Specifically, if
T ={P={l,n},P,={2,n},...,Pp_1 ={n—1,n}}

Then for n > 5, with Z in first n — 1 positions,
O Cisal(3),n—1,n— 1], code for n odd and, with Z as the
information positions,

S={lg}u{(,n) |1 <i<n-1}

is a PD-set for C of n elements in S,,;
@ Cisa(y),n—2,2(n—1)]s code for n even, and with 7
excluding P,,_1 as the information positions,

S={1c}U{(i,n) |1<i<n-1}

U{l(i,n = 1)(j,n)]*! | 1<, j <n—2}

is a PD-set for C' of n? — 2n + 2 elements in S,,.
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2.

Define three graphs with vertex set the subsets of size three of a
set of size n and adjacency according to the size of the intersection
of the 3-subsets. Properties of these codes are in [KMR04a].

Sy, in its natural action is the automorphism group.

If C'is the binary code in the case of adjacency if the 3-subsets
intersect in two elements, then the dual C* is a (1), ("5').n — 2]
code and a PD-set of size n3 can be found by [KMR06].

(Similarly for the ternary codes of these graphs.)

W. Fish (Cape Town) is working on binary codes from
in general (odd graphs, Johnson graphs, Knesner
graphs, etc.)
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3.

The (square) lattice graph Lo(n) is the line graph of the complete
bipartite graph K, ,, and is strongly regular.

The binary code of La(n) is [n2,2(n —1),2(n — 1))z for n > 5
with S, ¢ .So as automorphism group.

PD-sets of size n? in S,, x S,, were found in [KS08].

A similar result holds for the (rectangular) lattice graph La(m,n),
m < n: the codes are

[mn, m +n — 2,2mly for m + n even,

[mn,m +n — 1, m|y for m +n odd.

PD-sets of size m? 4+ 1 and m + n, respectively, in S,, x S,, were
found in [KS06].

Similarly for the line graph L,,,(n) of the complete multipartite
graphs K, ,, with automorphism group Sy, 0 .Sy,. [KS07a].
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Time complexity

The worst-case time complexity for the decoding algorithm using
an s-PD-set of size m on an [n, k, d]; code is O(nkm).

So we want small PD-sets.

Since the algorithm uses an ordering of the PD-set, good choices
of the ordering of the elements can reduce the complexity.

For example:
find an s-PD-set S, for each 0 < s < ¢ such that

So<S1...<S;
and arrange the PD-set S in this order:

S()U(Sl _SO)U(SQ_Sl)U..-U(St—Stfl).

(Usually take Sp = {id}).
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Complexity of permutation decoding

The following can be used to order the PD-set for the binary code
of the square lattice graph.

[Sen07] For the [n?,2(n — 1),2(n — 1)]2 code from the lattice
graph Lo(n), using information set

{(;,n)]2<i<n—-1}U{(n,i)|]1 <i<n},
for0<k<t=n-2,
Sk = {((%n)a(%n))’”—k <i,] < n}

is a k-PD-set.
( (n,n) is the identity permutation in Sy,.)
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Thus ordering the elements of the PD-set as
So, 91 — 80,5 — S1,...,5—2 — Sn—3

will result in a PD-set where, if s <t = n — 2 errors occur then the
search through the PD-set need only go as far as st block of
elements. Since the probability of less errors is highest, this will
reduce the time complexity.
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[Sen07] If C = Ca(La(m,n)) (the rectangular lattice graph) for
2 <m <n, then C is

e [mn,m+n — 2,2m|y for m + n even;

e [mn,m+n—1,m]s form +n odd.
Theset T ={(i,n)|1 <i<m}U{(m,i)|l <i<n-—1}isan
information set for m +n odd, and T\{(1,n)} is an information
set for m + n even. The sets of automorphisms

e S ={((i,m), (4,n))|1 <1i<2s}U{id} for m +n odd;
o Sy ={((i,m),(5,n)|1 <i<m,1<j<stuU{id} form+n
even

are s—error correcting PD-sets for any 0 < s <t errors.

A study of the complexity of the algorithm for some algebraic
geometry codes is give in [Joy05].
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Some infinite classes of codes having only s-PD-sets

1.

If ¢ = p® where p is prime, the code of the desarguesian projective
plane of order g has parameters:

C =g +q+1,(E5) 1 1,¢+1],.

For the desarguesian affine plane the code is ,qp-
Similarly, the designs formed from points and subspaces of
dimension 7 in projective or affine space, have codes whose
parameters are known.

The codes are subfield subcodes of the generalized Reed-Muller
codes, and the automorphism groups are the semi-linear groups
and doubly transitive.

[qQ’ (p(lgi-l))e
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Thus 2-PD-sets (in fact also 3- and 4-PD-sets) always exist but
the bound for full error-correction of Result 2 is greater than the
size of the group (see [KMMO05]) as ¢ gets large, so beyond these
bounds PD-sets for full error correction cannot exist:

E.g., for projective desarguesian planes correcting Lq;—lj €errors:
q = p prime and p > 103;

q=2°and e > 12;

q = 3° and e > 6;

q = 5% and e > 4;

q="7°and e > 3;

q=11° and e > 2;

q=13% and e > 2;

q=p°forp>13and e > 1.

Similar results hold for the affine and dual cases, in all of the
designs.
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Information sets for generalized Reed-Muller codes

The ptt-order generalized Reed-Muller code Ry, (p,m), of
length ¢ over the field IF, is defined to be

m
(22 xm | 0<ip <q—1, for 1 <k <m, Zlk <p).
k=1
In particular, Ry, ((m —7)(p — 1), m) is the p-ary code of the
affine geometry design AG,, ,(F,) of points and r-flats of
AG,(Fp), p prime.
In [KMMO06] we found information sets for these codes:
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[KMMO6] Let V = F™, where ¢ = p* and p is a prime, and
Fq = {ao, ..., ag—1}. Then

m
T ={(iys- - 05,) | ZikSV, 0<ip<qg-—1}
k=1

is an information set for Ry, (v, m).
If g =p is a prime,

m

T ={(i,-,im) | ix €Fp, 1<k <m, Y ix <v}
k=1

is an information set for Ry, (v, m), by taking c;, = ij.
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Examples to illustrate the theorem

q=3 ojojof1[1][2]1]2]2
m =2 o1 |2|0[1]0|2]|1]2
) o] 1|11 |11 |1]1f1]1
zizs o1 ffofj1|2]of]1]o0o]2]1]2
273 2] o1 |1][0]1[0|1|1]1
5 [Lojffofojof1j1|2(1]2]2
(i [Liffojofoflof1fof2]2]1
bt Rojjfojo|O|1|1|1]1f1]1

Figure: Rng (2, 2) = Cg(AGQ(Fg,)) = [9, 6, 3]3

B = {JZ?Z‘? | 0<ip<2,41+1i9 < 2}.
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[KMMO6] If C = C,(PGym—1(F),)), where p is a prime and
m > 2, then, using homogeneous coordinates, the incidence
vectors of the set

m

{(laala'”aanl)/ ‘ aiE]FpazaiSpil}u{(ov'”vovl)/}

=l

of hyperplanes form a basis for C.

Similarly, a basis of hyperplanes for C',(AC,, ., 1(F,)) form > 2,
p prime is the set of incidence vectors of the hyperplanes with
equation

m m

Z(u‘\',' =p— 1 with Z(:,' <p-1,

i=1 i=1
where a; € IF), for 1 < i < m, and not all the a; are 0, along with
the hyperplane with equation X, = 0.

V.
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Example

A basis of minimum-weight vectors for C3(PG2,1(F3)).

o O |Oo|o|H o
OO |0 |0 OO
[ OO |O
oo+ |O|+H OO
o|olo|lH|H|O|O
OO+ |0 |0 O |
— OO O+ |+ |O
OO+ |O | |
— OO |0 |0 |o |
oo+ |00 |+ |0
o|lolo|H |0 |0 |
(OO | O 0o o o
oO|HlO|lO |+ |O |
SlelelElEE
S|S|SIS|=1E
glEl2EE|lEl=

Figure: C3(PG21(F3))
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Example

A basis of minimum-weight vectors for
R, (2,2) = C3(AG2,1(F3)).

O[O0 |0 |1 |1 |2(1]2]|2

O(1(2|0|1]0¢(2]1]|2
Xo=0 1{0|0|1 (0|1 )0]|]O0]|O
X9 =2 0j0j1(0|0]0}1]0]|1
Xy =1 0100|100 1]|0
X1=2 000|001 0]1]|1
Xi+Xe=2 ]| 0|01 |O0O|1|1)0]|]O0]|O0
2X1 =2 0y0j0 1|10} 1]0]|0

Figure: R]FS (2, 2) B Cg(AGQ’l(Fg))

Compare with the generator matrix using the polynomial basis 1.
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Partial permutation decoding

1.
2-and 3-PD-sets exist for any information set ; 4-PD-sets exist for
particular information sets;

Using a Moorhouse [Mo091] basis,

2-PD-sets of 37 elements for the [p?, (*3'), p], codes of the
desarguesian affine planes of any prime order p and

2-PD-sets of 43 elements for the [p? +p + 1, (pgl) +1,p+1],
codes of the desarguesian projective planes of any prime order p
were constructed in [KMMO05].

Also 3-PD-sets for the code and the dual code in the affine prime
case of sizes 2p?(p — 1) and p?, respectively, were found.
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2.

[KMMO08] Let D be the 2-(p3,p, 1) design AG5(F,) of points and
lines in the affine space AG3(F,), where p is a prime, and

C =Ry, (2(p—1),3) = Cp(D). Then C is a [p, tp(5p* + 1), plp
code with information set

@)
T = {(ir,iz,3) | ir €Fp, 1 <k <3, Y i <2(p— 1)}
k=1

Let T be the translation group, D the invertible diagonal matrices,
and for each d € F, with d # 0, let d; be the associated dilatation.

Using I, forp > 5, TUT6p—1 is a 2-PD-set for C' of size 2p3;
2
forp > 17, TD is a 3-PD-set for C of size p3(p — 1)3.
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3.

If n is a prime power with n = 1 (mod 4), the Paley graph ,P(n),
has IF,, as vertex set and two vertices x and y are adjacent if and
only if x — y is a non-zero square in IF,,.

The row span over a field I, of an adjacency matrix gives an
interesting code (quadratic residue codes) if and only if p is a
square in IF,,.

For o € Aut(F,,), a,b € F,, with @ a non-zero square, the set of
maps Tapo : ¢ — ax’ + b is Aut(F,).

For n > 1697 and prime or n > 1849 and a square, PD-sets cannot
exist since the bound of Result 2 is bigger than the order of the
group (using the square root bound for the minimum weight, and
the actual minimum weight ¢ + 1 when n = ¢ and ¢ is a prime
power).
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If n is prime, n =1 (mod 8),

where d > /n, (the square-root bound) for p any prime dividing

n—1

C’i(P(n)) has a 2-PD-set of size 6 by [KL04].

(The automorphism group is not 2-transitive.)

For the dual code a 2-PD-set of size 10 for all n was found.
( Further results in [Lim05].)
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4.

The Hamming graph H*(n, q) has vertex set Fy, =,y adjacent if
wt(z —y) = k.

These are regular graphs with valency (¢ —1)(}).

(Eg. H'(n,2) = H(n,2) = Q,, the n-cube.)

The neighbourhood design is a symmetric

1-(¢", (g — 1)(}), (g — 1)(})) design with incidence matrix an
adjacency matrix for the graph.

All these graphs, designs and codes have automorphism group
containing 1" x S, where T' is the translation group.

The design can have a bigger automorphism group than that of
the graph: e.g. for the n-cube the design’s automorphism group is
(E % Sp,) 1 S2, where E denotes the translations using even-weight
vectors.
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The 2- and 3-PD-sets:

© For n even Co(H'(n,2)) = [2",2" ! n]s is self-dual and has
a 3-PD-set of size n2™ inside T' x S, (the group of the graph,
acting imprimitively) [KS07b, Fis07];

Q for n =0 (mod 4) Cy(H?(n,2)) = [2",2" 1 d],
(8 < d < (%)) is self-dual, not isomorphic to the case above,
but same 3-PD-set, different information set, works [FKMb];

© Forn >3 Cy(H'(n,3)) = [3", 5(3" — (=1)"), 2n]s, (with
dual code the span of the adjacency matrix with 1's on the
diagonal) then 2-PD-sets of size 9 can be found that work for
the code or the dual. (The lower bound is 4 or 7).(The
automorphism group is primitive.) [FKMa] Also 3-PD-sets of
size 2n3".
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5.

These are the codes of the affine geometry designs AG,, -(F2) and
the punctured codes are those of the projective geometry designs
PG, »(F2). Some results on these to obtain small s-PD sets for
first order Reed-Muller codes R(1,m) can be found in [KV, Sen].

For the designs of points and hyperplanes, from [KMMO06], the
translation group (of size 2™) is an s-PD-set for R(1,m) for

s = L%:J:llj for m > 4 and the Singer group (of size 2! — 1) is

an s-PD-set for R(1,m + 1)* for s = LQYZ:iQ_IJ
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