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1 Introduction

The reader familiar with “Designs and their Codes” will soon understand the
debt this chapter owes to that book — especially its Chapter 5. We have,
however, entirely reworked that material and, more importantly, added a
discussion of the group-algebra approach to the Reed-Muller and generalized
Reed-Muller codes. This enables us to include a straightforward new proof
of Berman’s theorem identifying the Reed-Muller codes with the radical
powers in the appropriate modular group algebra and to use our treatment
of the Mattson-Solomon polynomial to give a proof of the generalization
of Berman’s theorem to the p-ary case. We have also included Charpin’s
treatment [16] of the characterization of “affine-invariant” extended cyclic
codes due to Kasami, Lin and Peterson.

We have relied heavily on Charpin’s doctoral thesis [14, 16] for the new
material. The older material relies (as did Chapter 5 of our book) on the
treatment of the polynomial codes introduced by Kasami, Lin and Peterson
[29] given by Delsarte, Goethals and MacWilliams [18].

Our definition of the generalized Reed-Muller codes is the straightfor-
ward generalization of the boolean-function definition of the Reed-Muller
codes and, for us, the cyclicity of the punctured variants is simply a conse-
quence of the easily seen fact that their automorphism groups contain the
general linear groups.

We are, of course, principally interested in the geometric nature of certain
of these codes. Were one interested only in the binary case the development
would be very short and our treatment reflects that fact in that we first dis-
cuss the Reed-Muller codes giving complete proofs that differ substantially
from those given for the general case. In fact, we have here an instance in
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which the generalization to an arbitrary finite field seems far from trivial,
the biggest hurdle being the passage to fields that are not of prime order.

The peculiar nature of the definitions of the geometric codes in the
coding-theory literature was due to the interest — at the time of their in-
troduction — in majority-logic decoding of these codes; we therefore also
give a short discussion of decoding. On the other hand, we give the natu-
ral definitions of the geometric codes (as codes generated by the incidence
vectors of the geometric objects at hand) and, hence, our definitions are not
the ones found in many engineering texts.

We review the necessary geometry briefly before beginning our discussion
of the codes; our treatment is undoubtedly too brief to be useful to a reader
with no background whatsoever in finite geometry and such a reader may
wish to jump directly to Section 3 — which may even motivate a study of
the geometry involved. Much of the material will be understandable even
without a firm grip on the geometry and subsequent sections should be of
interest to professional coding theorists. We have, at least, tried to make
them so.

We assume a knowledge of coding theory and we believe the reader will
find in Chapter 1 the coding theory necessary for a study of this chapter.

We have not attempted to discuss open problems or to explore new
avenues of research. The reader interested in such matters may wish to
consult our book [2] or the articles cited in the bibliography.

2 Projective and affine geometries

Let F be a field and V a vector space over F. We denote by PG(V) the
projective geometry of V. Its elements are the subspaces of V' and its
structure is given by set-theoretic inclusion. Similarly, AG(V) denotes the
affine geometry of V. Its elements are the cosets, x + U, of subspaces U
of V, where x is any vector in V, and again the structure is given by set-
theoretic inclusion. The “geometry” of these structures arises by viewing
inclusion as an incidence relation.

2.1 Projective geometry

If the vector space V has dimension n+ 1 over F', then PG(V') has projec-
tive dimension n. We record this with the notation PG, (F), realizing V'
as F"*1 In this case a “point” of the geometry is given in homogeneous co-
ordinates by (zg, z1,...,x,) where all ; are in F' and are not all zero; each
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point has many such coordinate representations’, in fact ¢— 1 when F is F,,
since (zg,1,...,x,) and (Azg, Az1,...,Axy,) yield the same 1-dimensional
subspace of F™*! for any non-zero A, the 1-dimensional subspaces being the
points — or objects of projective dimension 0. Similarly, the projective
dimension of any subspace is defined to be 1 less than the dimension of
the subspace (as a vector space over F).

Thus the points of PG(V') are the 1-dimensional subspaces of V, the
lines are the 2-dimensional subspaces of V', the planes the 3-dimensional
subspaces of V', and the hyperplanes the n-dimensional subspaces of V.
Neither {0} nor V play a significant role in projective geometry and they
are usually ignored. Frequently when working with projective geometry the
projective dimension is referred to simply as the dimension. The dimension
formula for subspaces of V' holds for projective dimension as well, provided
it is written as follows:

dim(U) + dim(W) = dim(U + W) + dim(U N W),

where U and W are arbitrary non-zero subspaces of V and U + W =
(UUW) ={u+w|u € Uyw € W}. Note that we use (S) to denote the
subspace generated by the set S. The formula has the following important
consequence:

Suppose H is a hyperplane of PG, (F). If U is a subspace of dimension
t >0, then UN H has dimension t ort — 1, the former if and only if U is
contained in H.

If P and @ are distinct points of PG(V'), then P + @ is necessarily a
line of PG(V'), again by the above formula, and, in fact, it is the unique
line through P and (). Thus every two distinct points lie on a unique line.
In projective dimension 2, i.e. in a projective plane, every two distinct lines
intersect in a unique point. We will, as here, use geometric terminology
whenever convenient.

If = F, and V is m-dimensional, one can see by counting bases that
the number of subspaces of V' of dimension k, where 0 < k < m, is

(@™ = D™ —q)...(¢" —¢*")
(" =1)(¢*—q)...(¢" —¢&71)

Similarly — or by using the above formula on a quotient space — if V
is of dimension m, U a subspace of dimension 7, and k an integer with

!Except in the binary case; it is this uniqueness that makes the Reed-Muller codes so
much easier to analyze than the generalized Reed-Muller codes.
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0 < r < k < m, then the number of subspaces of V of dimension k that

contain U is . 1
(@ =q" ) g™ = ¢ ). (g™ —¢" )
(* =g )(g* —q*h) ... (¢F — ¢ 1)

n+1_
R
and the number of lines in the pencil of lines containing a point is qn;rl_q =

q-—q
=l _n—l g4
1 4 )

In particular, the number of points of PG, (Fy) is

Definition 2.1 If V and W are finite-dimensional vector spaces, then
PG(V) and PG(W) are isomorphic if there is a bijection

o : PG(V) — PG(W)

such that, for U, U € PG(V), U C U’ if and only if Up CU'p. If W =V,
then such a map ¢ is called an automorphism or collineation of PG(V').

Since the projective dimension of PG(V) is equal to the length of the
longest chain, Uy, Us, ..., Uy, of elements of PG(V') satisfying U; C Us C
. C Uy, it follows that isomorphic geometries have the same projective
dimension. That is, V and W must be of the same dimension and, provided
they are vector spaces over the same field, they must be isomorphic as vector
spaces. Any invertible linear transformation from V to W will induce an
isomorphism of the geometries, but something slightly more general will
also, a so-called semilinear transformation:

Definition 2.2 Let F be a field and let V and W be vector spaces over F.
A semilinear transformation of V into W is given by a map

T:V->W

together with an associated automorphism, a(T), of the field F. The map T
is additive, i.e. (v+u)T = vI'+uT for allv,u € V, and (av)T = a®T)(vT)
foralla e F and v € V.

A semilinear transformation carries subspaces into subspaces, preserv-
ing inclusion, and thus induces an incidence-preserving map on the projec-
tive geometries. It is an isomorphism of the projective spaces whenever
T is an isomorphism of the additive structures, the inverse being given by
T—!, with the associated automorphism of F being «(7)~!. Notice that
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the composition of semilinear transformations is again semilinear and, in
fact, a(ST) = a(S)a(T). It follows that when V = W the semilinear iso-
morphisms form a group and that the map sending 7' to «(7T") defines a
homomorphism into the Galois group of F' (here the automorphism group
of F). The kernel is the group of invertible linear transformations of V.

In terms of bases, given ordered bases vi,vo,..., v, and wi,Wa, ..., W,
of V and W, respectively, then if (v;)T = >°"_; a;yw;, A = (a;;) and o =
a(T), then

T:(z1,22,...,%m) — (2F,25,...,25)A,

where, as usual, we have used the bases to identify V' with F'™ and W with
F". In matrix form, the composition of two semilinear transformations,

(o, A) and (B, B), is (a3, A’B), where A® denotes the matrix (az’gj) Since
a matrix A together with an automorphism « clearly yield, by the above
formula, a semilinear transformation, the map sending T' to «(T'), in the
case where V' = W is a homomorphism onto the Galois group of F'

Thus, for a given vector space V', the group of semilinear isomorphisms
of V' contains GL(V'), the group of invertible linear transformations of V/,
as a normal subgroup, the quotient being the Galois group of F'. The group
of semilinear isomorphisms is denoted by I'L(V') . Clearly every semilinear
isomorphism of V' induces an isomorphism of PG(V). The scalar trans-
formations (i.e. those that send v to av for some fixed a € F') induce the
identity isomorphism and they are the only semilinear isomorphisms that
do. The subgroup of scalar transformations is the centre of GL(V') and a
normal subgroup of I"'L(V'); the quotient groups are denoted, respectively,
by PGL(V) — the projective general linear group — and PI'L(V)
— the projective semilinear group. If V' is n-dimensional and a basis
has been chosen, PGL(V') becomes a matrix group modulo scalar matrices
and is denoted by PGL,(F'); similarly in this case we write PI'L, (F') for
PI'L(V). Each of these groups acts as a permutation group on the elements
of PG(V), the action on the points of PG(V') being doubly-transitive, which
means that given any two pairs of distinct points, (P, Q) and (P’,Q"), there
is an automorphism in PGL(V') which simultaneously carries P to P’ and
Q to Q. In the standard notation, PGL,(F) acts on PG,_1(F); similarly
for the semilinear group.

All the collineations of PG(V') are induced by semilinear transforma-
tions; this is the content of the following classical fundamental theorem
of projective geometry:
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Theorem 2.3 Let V' be a wector space of dimension at least 3. Then
PI'L(V) is the full automorphism group of PG(V).

There are well-established proofs of this theorem readily available: see
Artin [1, Chapter II], for example, or, for a slightly more modern account,
Hahn and O’Meara [24, Chapter 3]. Also note that the theorem starts with
planes; the projective line consists merely of points and the lack of any inci-
dences allows an arbitrary permutation to be admitted as an automorphism.

Amongst the automorphisms of PG, (F,) there is always one of order v =
(¢"T!1 —1)/(g—1) that permutes the points of the geometry in a single cycle
of this length, called a Singer cycle (after Singer [49]). This automorphism
is constructed as follows: view the finite field K = Fn+1 as a vector space of
dimension n+ 1 over the field /' = F, and let w be a primitive element of K,
that is, a generator of the cyclic group K* = K —{0}. Using the given field
structure, it is clear that multiplication by w induces a linear transformation
on the vector space V = K. Since the field F' has w? as primitive element,
it is easy to see that this linear transformation induces an automorphism of
PG(V) that acts as a cycle of length v on the v points of the geometry. In
fact, the 1-dimensional subspaces of V = K given by the non-zero vectors
1,w,w?, ..., w’ ! represent all the points of PG, (F), where, of course, w"
represents the same point as 1, etc.

2.2 Affine geometry

The affine geometry, AG(V), where V is a vector space over a field F,
consists of all cosets, x 4+ U, of all subspaces U of V with incidence defined
through the natural inclusion relation. Here the dimension is the same as
that of the vector space—for obvious geometric reasons. The dimension of
a coset is that of the defining subspace U, and if the latter has dimension
r, we will also refer to a coset of U as an r-flat. Thus the points are
all the vectors, including 0, the lines are 1-dimensional cosets, or 1-flats,
the planes are the 2-dimensional cosets, or 2-flats, and so on, with the
hyperplanes the cosets of dimension n — 1 — where V is of dimension n
over F. We also write AG,(F) for AG(V), in analogy with the projective
case. The affine geometry of these cosets is defined by the inclusion relation
which specifies that, if M = x4+ U and N =y + W are cosets in AG(V),
then M contains N if M O N, from which it follows that W is a subspace of
U. The affine geometry AG(M) is, by definition, the set of cosets of AG(V)
that are contained in M together with the induced incidence relation. This
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is quite clear when M is a subspace but if M = x+ U with x ¢ U it follows
also that AG(M) is isomorphic to AG(U) since every element of AG(M)
can be written in the form x + U’ for some subspace U’ of U. As in the
projective case we will use standard geometric terminology — in particular
the notion of parallelism:

Definition 2.4 The cosets x+U and y+W in AG(V') are parallel if U C W
or W CU.

Cosets of the same subspace are thus parallel and cosets of the same
dimension are parallel if and only if they are cosets of the same subspace.
For a given subspace U of dimension r, its distinct cosets partition V' into
parallel r-flats and parallelism is an equivalence relation on the set of r-flats
of V, the equivalence classes being called parallel classes. Hyperplanes, i.e.
(n—1)-flats, in AG,(F) are parallel if and only if they are equal or intersect
in the empty set and in AG,(F>) a hyperplane and its complement make
up a parallel class. In AG),(Fy) there are ¢ hyperplanes in a parallel class.
Here is one more important fact about flats that we will need to properly
explain Reed’s decoding algorithm for Reed-Muller codes:

If M is an r-flat and N an (n—r)-flat in AG,,(F), then either M NN is
a single point, in which case N meets all the r-flats parallel to M in a single
point, or else the intersection of N with an r-flat parallel to M 1is either a
flat of positive dimension or the empty set.

As in the projective case, both GL(V') and I'L(V') act on the geometry,
but now we also have V itself acting via translation. The underlying action
of the affine general linear group, AGL(V) , and the affine semilinear
group, AI'L(V), is given as follow: for T € I'L(V) and v € V, the map
(T,v) is defined by

x(T,v) =xT +v

for each x € V. Such maps preserve cosets and thus act on AG(V'). Com-
position is given by (S,v)(T,w) = (ST,vT 4+ w) and it follows that these
affine groups are semi-direct products of the linear and semilinear groups
(respectively) with the additive group of V, the action of the linear and
semilinear groups on V being the natural one. The permutation action on
the points of AG(V), i.e. on the vectors in V, is doubly-transitive and, if
F = Fy, it is triply-transitive.

Given a basis vi,va,...,v, for V, if (T,v) is an element of AI'L(V),
and v = ), b;v;, define the matrix A via v;T = Zj a;jvj, and let a be the
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field automorphism associated with 7. Then

(T,v): (z1,... xn) — (xF, ..., z0) A+ (b1, ..., by).

rrn

Moreover, given any triple (a, A, (b1,...,by)) where « is an automorphism of
the field F', A is an n x n matrix with entries from F and (by,...,b,) € F™,
the formula above defines an element of AI'L(V') and, in fact, with the
obvious multiplication of the triples,

(OZ,A, (b17 .- 7bn))(ﬁ>B> (Cla s >CTL)) = (aﬁv A5B7 (b? +c,.. 7bg + Cn)),

we have an isomorphism of AI'L(V') with this group, denoted by AI'L, (F).
Similarly we write AGL,,(F') for the affine linear group — when it is given
explicitly.

In analogy with the projective case, there is a fundamental theorem of
affine geometry which states that for n > 2, Aut(AG,(F)) = AI'L,(F).
This is the same theorem, in effect, as the fundamental theorem for projec-
tive geometry, if we consider the way in which affine geometries are embed-
ded in projective geometries:

Theorem 2.5 Let V' be a vector space over F', H a hyperplane, and x a
vector in V that is not in H. Set PG(V)! = {U|U € PG(V),U ¢ H}.
Define a map

v: AG(x+ H) — PG(V)

by M — (M) for any coset M € AG(x+H). Then ¢ is an incidence preserv-
ing injection with image PG(V). Further, the inverse map ¢~ satisfies

Up'=Un(x+ H),
for any U € PG(V)H.

This is the fundamental embedding theorem and the proof is quite
direct from the definitions; it can be found in Gruenberg and Weir [23].
Note that the choice of the hyperplane H and vector x that produce the
embedding is not crucial since for another choice, K and y, it is clear
that AG(x + H) is isomorphic to AG(y + K) and, moreover, H and K
are equivalent under the projective group. One generally thinks of the 1-
dimensional subspaces of H as the “points at infinity” of the projective
space PG(V) and discarding these points leaves the affine geometry of the
same dimension. In coordinate terms one can view H as the hyperplane in
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F"l = L(zg,21,...,2,) |2; € F} given by the equation Xy = 0, taking,
for convenience, x = (1,0,...,0). Then the embedded affine space is F"
viewed as the last n coordinates, where every projective point not at infinity
has homogeneous coordinates that can be taken to be (1,z1,...,z,). More
precisely, the embedded affine geometry of dimension n is obtained from a
projective geometry of dimension n by removing a hyperplane and all the
subspaces contained in it. The points and subspaces remaining form the
affine geometry.

When doing computations one works, normally, in the affine space. In an
affine geometry of dimension n, once a basis is chosen for the vector space,
any r-flat can be given by a set of (n — r) independent linear equations
and solutions are points of the geometry. In the projective case one uses
homogeneous equations, of course, and only looks for non-zero solutions —
which are not precisely the points but only representatives. So, for example,
in AG4(F) the equations X; + Xo — X3 = 0 and X; + X4 = 1 define a
2-flat; it is given by (0,0,0,1) + U where U is the 2-dimensional subspace
{(z,y,x+vy,—x)|x,y € F}. In other words the 2-flat consists of all vectors
in F* of the form {(x,y,z +y,1 — z}.

2.3 Designs from geometries

To define incidence structures from PG(V') and AG(V) we need to choose
point sets and block sets; the incidence relation will be that of the geometry,
namely containment. In every case the point set of our design will be the set
of points of the geometry: for projective spaces the 1-dimensional subspaces
of V and for affine spaces the vectors of V. For blocks we will take all
the subspaces (or cosets in the affine case) of a fixed dimension. In every
case the double-transitivity of the group involved will assure us that we are
dealing with a 2-design.

Thus, for example, we can consider the design of points and lines, the
design of points and planes, or the design of points and hyperplanes of a
geometry and be assured of a 2-design. The parameters will depend on both
the dimension of the geometry and the cardinality of the finite field. By
fixing one of these and letting the other vary we obtain numerous infinite
families of designs. Each of these designs will have an automorphism group
containing PI'L(V') or AI'L(V') in the projective or affine case, respectively.
Except for isolated cases the parameters will admit many designs other than
these classical designs, and a large amount of effort has gone into classifying
the classical designs amongst those with the same parameters.
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Perhaps the most interesting case is that of dimension 2. In the projective
case, PGy(Fy) produces the design of points and lines of a 3-dimensional
vector space over a finite field, a classical projective plane. It is a design
with parameters 2-(¢> +q + 1,¢ + 1,1). For g a proper power of a prime
there are many such designs that do not arise from PGa(F,), but for ¢ a
prime only the classical plane has appeared — and it is possible that there
may not be any others. For ¢ not a power of a prime no designs with
these parameters have been discovered. Observe that to recover ¢ from the
parameters one must take A\; — Ao in the notation of Chapter 1; this integer
is an important parameter of a design, and is called the order.

In the affine case, AG>(Fy) produces the design of points and lines of
a 2-dimensional vector space, i.e. a classical affine plane. It is a 2-(¢%, ¢, 1)
design. It also has order gq.

Projective planes are symmetric designs, i.e. have the same number of
points as blocks. For a symmetric 2-(v, k, A) design A\; = k and the order is
given as k — A, as it was for projective planes. More generally, the design
of points and hyperplanes of a projective geometry produces a symmetric
design. If the finite field has ¢ elements and the geometry has projective
dimension n, then this design of points and hyperplanes is a symmetric
design with parameters

5 qn+1_1qn_1qn—1_1
g—1 "¢—1" ¢g—1

and order ¢" 1.

2.4 Codes from designs

For any finite incidence structure D with point set P and block set B, the
code Cp(D) of D over a prime field F), is the subspace of the space Fg’ of
all functions from P to F), that is spanned by the incidence vectors of the
blocks of D. This code is equivalent to the code given by the row space of
any incidence matrix of the incidence stucture — where we use the blocks
to index the rows (and the points the columns) of the incidence matrix.
Although this is the appropriate way to view the incidence matrix in the
context of this chapter, it does sometimes prove useful to examine the code
given by the row space of the “point by block” incidence matrix; see, for
example, [52].

For any subset X C P, we denote the characteristic function of X by
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vX and refer to vX as the incidence vector of X. Thus

v (x)_{o ifrg X 7

where v¥ (2) denotes the value that the function v¥X takes at the point .
Then
Cy(D) = (vP| B € B).

The dimension of Cp,(D) is referred to as the p-rank of D. The rank tends to
vary with p in the general case; for so-called 2-designs it is easily determined
except for those primes dividing the order of the design.

The minimum weight of the code arising from an incidence structure is
clearly at most equal to the cardinality of the smallest block. In general the
minimum weight is strictly less than this cardinality, but for the classical
geometric designs studied in this chapter there is a distinguished prime one
considers, and for these codes we will have equality.

As we will soon see, one of the most widely studied class of binary
codes, the Reed-Muller codes, arises precisely as the class of codes given by
geometric designs over the binary field — although the original presentation
of these codes in 1954 was in the boolean-function context and was given by
electrical engineers.

3 The Reed-Muller codes

The Reed-Muller codes have already been defined in Chapter 1 (Section 13).
For completeness, and in order to establish our notation for this section and
those to follow, we will repeat some of the definitions and results.

3.1 Definitions

Throughout this section F' will denote the field F>. Let V be a vector space
of dimension m over F. We let FV' denote the vector space over F of all
functions from V to F. As a vector space over F, FV has dimension 2™,
the cardinality of the set V. Since FV will be the ambient space for the
Reed-Muller codes we must choose a basis for it and we choose the standard
basis consisting of the characteristic functions of the elements of the set V.
Denoting a typical element of V' by v these basis elements are {vV |v € V},
where we write vV instead of the more cumbersome vV}, Viewing V as F'™,
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it too has a standard basis ey, e, ..., e,,, where

e; = (0,0,...,1,0,...,0).
—
(2
Moreover, any function f € FY can be given as a function of m variables
corresponding to the m coordinate positions: writing the vector x € V as

m
X = (.731,3327 cee 7$m) = ineiv
i=1
then f = f(x1,22,...,%m). The “polynomial” x; is, for example, the linear

functional that projects a vector in V onto its i'" coordinate in the given
basis, its value at (372, z;e;) being ;.

As a function on V, z¥ = z; whenever k > 0, so we obtain all the
monomial functions via the 2" monomial functions:

M= {:c’fx?xfg\zk =0or 1;k=1,2,...,m},

where we write 1 for the constant function 229 ...2% with value 1 at all
points of V; as a code vector it is the all-one vector 1. The linear com-
binations over F' of these 2™ monomials give all the polynomial functions,
since, once again, we can reduce any polynomial in the z; modulo z? — x;,
for i = 1,2,...,m. The set M of 2" monomials is another basis for the
vector space FV; the following lemma indicates how each of our given basis
elements of characteristic functions of the vectors in V' is given as a polyno-
mial, i.e. as a sum of elements of M. This not only proves the assertion but
also shows that the set M is a linearly independent set of vectors in FV.

Lemma 3.1 Set K = {1,2,...,m} and, for w = (w1, we,...,wy,) €V, let
Iy ={i€ K|w; =1}. Then

m
UW:H(SCk+1+wk)= Z Hajj.
k=1 KDJDIw jeJ

Proof: The proof is simple: the first polynomial is easily seen to define the
characteristic function of the vector w; and the expansion of this product is
clearly the sum on the right. O

We repeat the definition of the Reed-Muller codes:
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Definition 3.2 Let V denote the vector space of dimension m over F' = Iy
and let r satisfy 0 <r < m. The Reed-Muller code of order r, denoted
by R(r,m), is the subspace of FV (with basis the characteristic functions of
the vectors of V') that consists of all polynomial functions in the x; of degree
at most r, i.e.

R(r,m) = <H:Ui|IC {1,2,...,m},0 < |I| <7~>.

i€l

Example 3.3 The first-order Reed-Muller code R(1,m) consists of all lin-
ear combinations of the monomials z; and 1 and hence each codeword, apart
from 0 and 1, is given either by a non-zero linear functional on V or by 1
plus such a functional. Since any non-zero linear functional has 2™~ zeros,
every vector of R(1,m), apart from 0 and 1, has weight 2~ 1. A generator
matrix for R(1,m) using the basis x1,x2,...,Zm,, 1 can be written so that
the first 2™ — 1 columns and m rows are the binary representations of the
numbers between 1 and 2 — 1, whereas the last column is all 0, apart from
a final row where all entries are equal to 1. This is clearly a generator matrix
for the orthogonal of the extended Hamming code, i.e. R(1,m) = (Hm)t
where C denotes the code obtained from C by adding an overall parity check.

)

As an immediate consequence of the definition and the linear indepen-
dence of the functions in M, we have that

dim(R(rm) = (3) + (7) + (3) + -+ (7).

T

In particular, dim(R(1,m)) =1+ m.

The trivial cases include the repetition code, R(0,m) = F1, R(m,m) =
FV and the code R(m — 1,m), which is of codimension 1 in FV" and equal
to (F1)*. The Reed-Muller codes are a nested sequence of codes. That is,

R(r,m) C R(s,m)

whenever 0 < r < s < m.

We mentioned above that the orthogonal of R(0,m) = F1is R(m—1,m).
This is a special case of the following result, which was proved in Chapter 1:

Theorem 3.4 For any m > 1 and any r such that 0 < r < m,

R(r,m)t =R(m —r —1,m).
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We will, in fact, reprove this result in Section 5 when we give its straight-
forward generalization to generalized Reed-Muller codes, Theorem 5.8.

Example 3.5 From Theorem 3.4 we get immediately that
R(1,m)*t = Hyp = R(m — 2,m).
Thus, extended Hamming codes are Reed-Muller codes.

In the next subsection we will see the connection between the Reed-
Muller codes and the codes of the designs of points and flats in affine space
over Fy. The codes of the analogous designs from projective spaces over Fb
arise as punctured Reed-Muller codes:

Definition 3.6 For 0 < r < m the punctured Reed-Muller code of
order r, R(r,m)*, is the code obtained from R(r,m) by puncturing at the
vector 0 € V.

One could puncture at any vector of V and get an isomorphic code
since the set of polynomial functions is invariant under translation in V/;
i.e. if f is a polynomial in the z;’s of degree s then so is g where g =
f(z1+ai,...,zm + an) for any vector a = (ay,...,an) € V, which means
that the automorphism group of any Reed-Muller code acts transitively on
the coordinates.

Example 3.7 If m = 3,r =1, R(1, 3) is a self-dual [8, 4, 4] binary code, and
R(1,3)" is a [7,4, 3] code, viz. the Hamming code Hs3. Example 3.5 gives the
reason for this and shows that Hamming codes are punctured Reed-Muller
codes.

Proposition 3.8 For r < m the punctured Reed-Muller code R(r,m)* is a
2 () (7)o ()

T

binary code.

Proof: This follows easily: the dimension must be that of R(r,m) since
all the vectors in this code are of even weight and the projection cannot,
therefore, have a nontrivial kernel. O

Finally, note that it follows from Theorem 3.4 that
(R(r.m)")* = R(m —r — 1,m)" N (Fy1)*

provided r < m. That is, (R(r,m)*)* consists of the vectors of (R(m —r —
1,m)) with a zero at 0, that coordinate being discarded.
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3.2 Geometries and Reed-Muller codes

The set of vectors V is the point set for any design defined from an affine
geometry AGy,(F»); moreover the binary codes of all the associated designs
of points and flats are subspaces of FV. Similarly, the designs from the
projective geometry PG,,_1(F,) all have point set V* =V — {0} and FV~
is the ambient space of their binary codes. In this section we indicate how
to associate these design codes with the Reed-Muller and punctured Reed-
Muller codes of the last section.

Consider the generating elements of R(r,m): the polynomial z; as a
codeword has value 1 at a point x in V if the vector x has a 1 in the
coordinate position i and value 0 otherwise. Thus 1+ 2; = v, where H
is the hyperplane with the equation X; = 0. Also, z; is the characteristic
function of the complement of this hyperplane, i.e. the (m — 1)-flat with
equation X; = 1. Similarly, (1 + x;)(1 + z;), for i # j, is the characteristic
function of the intersection of two hyperplanes, a subspace of dimension
m — 2. In general, all the elements of M are the incidence vectors of flats
in the affine geometry and R(r,m) is spanned by the incidence vectors of
these (m — s)-flats, for 0 < s < r. In order to show that R(r,m) is the
binary code of the design of points and (m — r)-flats of AG,,(Fz), which
is our aim, we need to show that the vectors given by the (m — r)-flats
span R(r,m). Notice that we already have this result for the first-order
Reed-Muller codes, since the linear equations certainly define (m — 1)-flats
and, furthermore, R(1, m) has precisely 2(2™ — 1) such vectors, the number
of (m — 1)-flats in AG,,,(F3). Thus, if A is the affine design of points and
(m — 1)-flats, we have that

R(1,m) = Cy(A).

The general case is almost as easy. First of all we have that the flats are
in the Reed-Muller code:

Proposition 3.9 The incidence vectors of the (m — r)-flats of AG,(F»)
are all in R(r,m).

Proof: Any (m —r)-flat T in AG,,(F3) consists of all the vectors (points of
the affine space) x = (z1, z2, ..., x,,) that satisfy r linear equations,

m
Zain]‘ :bi, fori:1,2,...,7“,
7=1
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where all the a;; and b; are in F>. The polynomial,

H (bz +1+ Zaijxj) ,

j=1

has degree at most r and thus is in R(r,m). Moreover it is clearly the
characteristic function v* of 7. O

In fact the degree of the polynomial is exactly » when the equations are
independent and the proof actually shows that all the (m — s)-flats are in
R(r,m) provided s < r.

Theorem 3.10 Let A be the design of points and r-flats of the affine ge-
ometry AGp,(Fs), where 0 < r < m. Then the binary code C2(A) is the
Reed-Muller code R(m —r,m). Its dimension is

o)+ () e+ ()

Let P be the design of points and r-dimensional subspaces of the pro-
jective geometry PG,—1(F») where 1 < r < m — 1. Then the binary code
C2(P) is the punctured Reed-Muller code R(m —r — 1,m)*. Its dimension

o)+ () e o)

Proof: The characteristic function of any (¢ + 1)-flat is the sum of the
characteristic functions of two ¢-flats contained in it and thus the binary
code of the design of points and (m —r)-flats contains, by a trivial induction,
the characteristic function of every (m — s)-flat for 0 < s < r and hence the
code of this design is R(r,m). Reversing the roles of r and m — r gives the
first part of the theorem.

For the second part of the theorem, notice first that the code of the
design is contained in the punctured Reed-Muller code. Extend the code
of the design by an overall parity check and note that this extended code
is a subcode of R(m — r — 1,m) and that incidence vectors of the (r + 1)-
dimensional subspaces of V' generate this extended code. Now every (r+2)-
dimensional subspace of V' has an incidence vector that is the sum of all the
incidence vectors of the (r + 1)-dimensional subspaces it contains. But, over
Fy, an (r + 1)-flat that is not a subspace consists of an (r + 2)-dimensional
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subspace from which the points of an (r + 1)-dimensional subspace, the
subspace of which it is a coset, have been removed. Thus, in the code of
the design it is the sum of the incidence vectors of an (r + 2)-dimensional
subspace and an (r + 1)-dimensional subspace. It follows that all the (r +
1)-flats of V are in the extended code of the design and it is, therefore,
R(m—r—1,m). O

In the proof the essential new point is that subspaces alone generate
the Reed-Muller codes because flats can be obtained from subspaces, a fact
which makes the discussion of the binary case very easy. We record this as

Corollary 3.11 The Reed-Muller code R(m—r,m) is generated by the char-
acteristic functions of the r-dimensional subspaces of F3" or, indeed, by the
r-flats containing any fived point of F3".

The characteristic functions of the r-flats are vectors of weight 2" and are
precisely the minimum-weight vectors of R(m—r, m), as we shall soon prove.
Before doing so, we introduce two exact sequences that arise naturally from
the geometric nature of the Reed-Muller and punctured Reed-Muller codes.

Lemma 3.12 Any embedding of PGy,—1(F3) into PG, (Fy) gives rise to
the following two short exact sequences whenever 0 < r < m:

(1)) 0 = R(m—r—1,m)" - R(m—r,m+1)* — R(m —r,m) — 0;
(ii)) 0 = R(m—r—1,m) - R(m—r,m+ 1)* - R(m —r,m)* — 0.

Proof:

Let W be the (m+1)-dimensional vector space defining PG,,,(F3). Then
an embedding of PGy,—1(F2) in PGy, (F3) is given by a hyperplane H of W
and, moreover, the complement of H in W, H = W — H, is a copy of
AG,(F3), as we explained in Section 2.2.

Let D be the design of points and r-dimensional subspaces of PGy, (F3).
Using PG(H) we form the design D; of r-dimensional subspaces in
PG,—1(F), and from AG(H) we form the design Dy of r-flats in AG,, (Fy).
By Theorem 3.10, C3(D) = R(m —r,m + 1)*, Co(D1) = R(m —r — 1,m)*
and C2(D3) = R(m —r,m).

Any block of the design D is either in H or meets it in an (r — 1)-
dimensional (projective) subspace. The intersection with H is thus empty or
an r-flat; clearly every r-flat of AG(H) arises in this way. Thus C = Cs(D)
projects onto Ca(D2), and C2(D;) is in the kernel. Thus dim(Cs(D;)) <
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dim(C2(D)) — dim(C2(D2)), and using the formula for the dimension of the
Reed-Muller codes, we have

m—r—1 m m—r m+1 m—r m
(=507 -%0)
=0 =0 =0

Using the identity (™) = (7")+(,”,) repeatedly, shows that this is actually
an equality, and hence that Cy(D) is the whole kernel. This yields the short
exact sequence (7).

To obtain the second sequence we use the same embedding but now
project C onto the coordinate positions corresponding to the points of
PG(H). Let £ be the design of points and (r — 1)-dimensional subspaces of
PG,,—1(F3), and &; the design of points and (r+1)-flats of AG,,,(F3). Then
C3(E2) =R((m —1) — (r —1),m)*, and C2(€1) = R(m —r — 1,m). Cer-
tainly C projects onto Cy(E2) since every r-dimensional projective subspace
of PG(W) meets H in an (r — 1)-dimensional subspace — or is contained
in H — and every (r — 1)-dimensional subspace arises in this way. Two
r-dimensional subspaces of PG(W) that meet PG(H) in the same (r — 1)-
dimensional subspace have disjoint intersections in H and thus form two
cosets of the same r-dimensional subspace of AG(H). Together they form
an (r + 1)-dimensional space. It follows immediately that the kernel of the
projection is C9(€1) and thus yields the sequence (iz). O

We next draw out the consequences of Lemma 3.12 and in so doing
prove that the minimum weights of the Reed-Muller codes are as we have
indicated and, more importantly, determine the nature of the minimum-
weight vectors.

Theorem 3.13 For 0 < r < m the minimum weight of R(m — r,m) is
2" and the vectors of minimum weight are the incidence vectors of the r-
flats of AGy,(F»). For 1 < r < m the minimum weight of R(m — r,m)* is
2" — 1 and the vectors of minimum weight are the incidence vectors of the
(r — 1)-dimensional subspaces of PG,—1(F3).

Proof: Clearly the minimum weights are at most 2" and 2" — 1 by Theo-
rem 3.10. Now we use the short exact sequences and induction on m, the
result being trivial for m = 1. Assume the result true for m and all r < m.
Thus we assume that R(m — s,m) has minimum weight 2° for m —s <m
and R(m — s, m)* has minimum weight 2° — 1 for m — s < m and that the
minimum-weight vectors are as announced.
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Since, for r = 0, the result is trivial for any m we may assume r > 0
and consider dimension m + 1. If » = m the results are easy, for then we
have R(1,m + 1), a case we have already discussed. We suppose 0 < 1 < m
and use the notation of Lemma 3.12. Thus D is the design of points and
r-dimensional subspaces of PG,,(F3). Let v be a minimum-weight vector
of C = Cy(D), so that wt(v) < 27! — 1. If v is zero at the coordinates
corresponding to H = W — H, then v can be viewed in Co(D;), from the
short exact sequence (i), and hence v has weight 2"+! —1 and is the incidence
vector of an r-dimensional subspace of H (and hence of W), by the induction
hypothesis. If v is zero at the coordinates corresponding to H, then v can
be viewed in C3(€1) = R(m — (r + 1),m), from the short exact sequence
(i), and thus has weight at least 2" 7! which is not possible. Thus v can
be taken to have support meeting both H and H. Again by the induction
hypothesis, the weight is at least 2" + 2" — 1 = 2"t! — 1, using the last
non-zero terms of the short exact sequences, and hence has exactly this
weight. Furthermore, restricted to PG(H), v is the incidence vector of an
(r — 1)-dimensional subspace. To show that v is the incidence vector of an
r-dimensional subspace of PG,,(F2), construct an r-dimensional subspace
of PG,,(F2) whose incidence vector w coincides with v on PG(H) and that
contains at least one point in H in common with the support of v. Then
the weight of v — w is easily seen to be less than 2"*! — 1 and hence v = w.
This gives the projective result for projective dimension m from which the
affine result for dimension m + 1 follows since the Reed-Muller codes are
invariant under translation in V' — as we remarked in the last section —
which means it is sufficient to consider only those minimum-weight vectors
of the Reed-Muller code with a 1 at 0. O

It should be noted that the code of any projective-geometry design is
cyclic due to the existence of Singer cycles (as already mentioned in Sec-
tion 2.1) and hence the punctured Reed-Muller codes are cyclic.

We summarize the results obtained on the properties of the Reed-Muller
codes and finite geometries over the field Fb:

Theorem 3.14 Let m be any positive integer.

(1) If A is the design of points and r-flats of the affine geometry AG,(F»),
where 0 < r < m, then the binary code C = C(.A) is the Reed-Muller
code R(m —r,m). It is a 2™, (7) + (7) + -+ (,,",),2"] binary
code and the minimum-weight vectors are the incidence vectors of the



3 THE REED-MULLER CODES 21

(2)

r-flats. Further, C contains the incidence vectors of all t-flats for
r<t<m.

For v > 0 the orthogonal, C+, is the Reed-Muller code R(r — 1,m),
which is the binary code of the design of points and (m — r + 1)-flats
of the affine geometry AG,(F).

If D is the design of points and r-dimensional subspaces of the pro-
jective geometry PG, (F3), where 0 < r < m, then the binary code
C = C3(D) is the punctured Reed-Muller code R(m — r,m + 1)*. It
is a [2mF — 1 () + (™) + -+ (0FD), 27 — 1] binary cyclic code
and the minimum-weight vectors are the incidence vectors of the r-
dimensional subspaces. Further, C contains the incidence vectors of

all t-dimensional subspaces for r <t < m.

The code orthogonal to R(m — r,m + 1)* is R(r,m + 1)* N (F1)+,
which is the even-weight subcode of the binary code of the design of
points and (m — r)-dimensional subspaces of PG, (F»).

Example 3.15 (1) The code of the design of points and lines in AG4(F5)

is R(3,4), which is the even-weight subcode of FV. Its orthogonal is
F1 ="7R(0,4). The code of the design of points and planes is R(2,4),
of dimension 11, with orthogonal the code from the design of points
and hyperplanes, of dimension 5, i.e. R(1,4).

The code of the design of points and lines in PG3(F3) is R(2,4)%,
of dimension 11 and minimum weight 3; it is, of course, a binary
Hamming code.

A basis consisting of the incidence vectors of lines in PGy, (F3) for the
code R(m — 2,m)* = H,, can be found as follows (as described in
Key and Sullivan [32]): take any line and include its incidence vector;
take any point off the line, and include the three incidence vectors of
the three lines joining the new point to the points on the first line.
Continue in this way: at each stage, if there is a point not yet incident
with a chosen line then simply take all the incidence vectors of the
lines joining that point to the points already obtained. These incidence
vectors are clearly linearly independent and, as is easily seen, are equal
in number to the dimension; hence they yield a basis. The successive
dimensions are

1,1+3=4,4+7=11,11+15=26, 26 + 31 = 57, ...
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Moreover, the incidence vectors chosen that have a point in common
with a fixed point of the first line form a collection of parity checks (of
the simplex code that is dual to the Hamming code) that are “focused
on” that fixed point — see Section 3.3 — and can be used for majority-
logic decoding.

The group AGL,,(F»), in its natural action on V = FJ", yields a group
of automorphisms of every Reed-Muller code R(r, m) and PG Ly, (F2), in its
natural action on V* =V — {0}, yields a group of automorphisms of every
punctured Reed-Muller code R(r,m)*. That PGL,,(F») is the full group
of automorphisms of R(r, m)* whenever 0 < r < m — 1 follows from Theo-
rem 3.13 and the fundamental theorem of projective geometry, Theorem 2.3.
;From this it follows that AGL,,(F») is the full group of automorphisms of
R(r,m) whenever 0 < r < m — 1. One must be careful here and note that
it is not the entire projective space that must be preserved, but only part of
it, to ensure that the automorphism comes from the general linear group.

3.3 Decoding

One of the attractions of Reed-Muller codes is the simple and easily im-
plemented decoding scheme that is available, with decoding decisions made
by majority vote, just as with the repetition code — which is, of course,
the simplest Reed-Muller code, R(0,m). Since the scheme is related to
the geometric nature of these codes we describe it here. The scheme dates
from the very beginning of coding theory and is due to Reed [46]. It was
Reed’s algorithm that prompted the investigation of majority-logic decoding
and the rather peculiar definition of so-called Euclidean-geometry codes as
maximal cyclic subspaces of duals of the codes generated by certain flats in
AG,,(Fs). We begin by describing majority-logic decoding.

Let C' be an arbitrary linear code contained in the ambient space Fj'.
Recall that a parity check is simply a code vector in the orthogonal code,
C*, and that the support of a vector in F. o 1s the set of coordinate positions
in which it has non-zero entries. Suppose we are given J parity checks and a
coordinate position, ¢ say, such that the intersection of the supports of any
two of the given parity checks is precisely the singleton set {i}. If a received
vector has been perturbed by t or fewer errors during transmission, where
2t < J, then, clearly, at least half of the parity checks will give zero (i.e.
check) when applied to the received vector unless the symbol at coordinate 4
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is in error. Moreover, had we normalized the given parity checks so that each
had a 1 at coordinate 7, then, in the event that one of the t or fewer errors
had occured at coordinate ¢, at least half of the parity checks would record
that error. Thus a majority “vote” of the values of the parity checks corrects
the entry at coordinate ¢. This is the essence of majority-logic decoding.

Such a collection of parity checks is said to be focused on . Note that
if each of the coordinates of C' has a collection of J parity checks focused
on it, then the code will necessarily correct ¢ or fewer errors — where again
2t < J — and therefore C must have minimum weight at least 2¢ + 1.
Indeed, it is very easy to see that if there is a set of J parity checks focused
on a coordinate 7, then any code vector with a non-zero entry at i must
have weight at least J + 1 in order to satisfy the J parity checks. Note also
that any code with a transitive automorphism group (and, in particular, a
cyclic code) will have minimum weight at least J+ 1 provided that one, and
hence all coordinates, has a collection of J parity checks focused on it. In
the cyclic case majority-logic decoding, when it is available, is particularly
simple.

An instructive example is the dual C of a binary Hamming code, fre-
quently referred to as a simplex code. It has the classical Steiner triple
system, namely the lines of the projective geometry, among its parity checks
and the pencil of lines through a point of the geometry fulfills the require-
ments for a collection of parity checks focused on the given point; if the
Hamming code is of block length 2 — 1, then J = 2™~ — 1. Indeed, C has
minimum weight 2™~ and ¢t = 22 — 1 errors can be corrected. A simpler,
but still important, case is the following:

Example 3.16 The repetition code of length n over Fj has, clearly, n —1
parity checks of weight 2 focused on any given coordinate and, for odd n,
one simply uses a majority vote to determine the symbol sent, obtaining the
correct symbol provided at most ”T_l errors occurred during transmission.

To use majority logic to correct many errors one must have many parity
checks focused on each coordinate, which entails that the minimum weight
d* of C* be small; in fact, in order to have J parity checks focused on a given
coordinate we must have (d+ —1)J < n — 1. The examples above have the

2Unfortunately the term “orthogonal on 3” is the terminology of most of the coding
literature. Blahut, recognizing the problem with that terminology, used “concurrent on
¢” in [7], but that does not seem to have been adopted. We here make another attempt
at change.



3 THE REED-MULLER CODES 24

smallest possible minimum weights for their duals and allow error-correction
via majority logic to correct up to the full error-correcting capacity of the
code. In the coding literature such codes are said to be “completely orthog-
onalizable”.

Consider next the Reed-Muller code C' = R(r,m) where r < m. A
basis for C' is the set of monomials of degree r or less. The idea of Reed’s
decoding scheme is to determine first the “information bits” corresponding
to monomials of degree r, thus reducing the problem to decoding in the Reed-
Muller code R(r — 1,m). Let K be a subset of {1,2,...,m} of cardinality
r and let L be the complement of K. Now the monomial of degree r,

H Tk,

keK

as an element of C' = R(r, m), is the characteristic function of the (m—r)-flat
S given by the equations
Xpy=1keK.

[

leL

Also

is the characteristic function of the r-flat T" given by
X;=11lelL

and, moreover, is an element of R(r — 1,m)*. Each of the 2™~ translates
of T meets the flat S precisely once, but any other (m — r)-flat given by a
different monomial of degree r evenly. (To see this the reader may wish to
think of subspaces of the relevant dimensions; in one case the intersection
is the zero vector and S is a transversal to the 2™~" translates of T’; in the
other the intersection is a subspace of positive dimension and S meets a
translate of T" either in a flat of that dimension or not at all.) Thus, a ma-
jority vote of the parity checks corresponding to these 2™~" translates will
record only the information bit corresponding to [[.cx = provided fewer
than 2™~"~! — 1 errors have been made in transmission. Note that one
retrieves the information bit directly by majority vote and that, after deter-
mining those information bits corresponding to the (") monomials of degree
r, the received vector is adjusted and decoding proceeds in R(r — 1,m) via
precisely the same method.

Finally, we make contact, briefly, with so-called L-step majority-logic
decoding. In our discussion of Reed’s algorithm we used parity checks which
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were not in the dual of the code in question: the r-flat T above has a
characteristic function in R(r — 1,m)* but not in R(r,m)*. However, if
T’ is any tranlate of T' then T"UT" is an (r + 1)-flat whose characteristic
function is in R(r,m)*. Moreover, the 2™~ — 1 flats of this form (namely,
TUT', where T' is a distinct translate of T') are focused on T in the sense
that the intersection of the supports of any two of them is precisely the
set T'. Thus, provided sufficiently few errors were made in transmission, a
majority vote using these parity checks will give the sum of the error bits
contained in the coordinate positions corresponding to the flat 7. Such a
“divide and conquer” technique using majority or threshold circuitry was
thoroughly investigated early in the history of coding theory and was the
subject of Massey’s thesis, [41]. For a fuller discussion of the decoding of
Reed-Muller and Generalized Reed-Muller codes and L-step majority-logic
decoding the reader may wish to consult [40] or a textbook on error control,
for example, 7] or [36].

4 The group-algebra approach

We have not, so far, taken full advantage of the fact that the coordinate
set of the codes in question is, itself, endowed with structure. We did, of
course, use that structure in defining the Singer cycles — where the co-
ordinate set was given the structure of a field — and, moreover, we used
the additive structure to discuss the minimum-weight vectors and the auto-
morphism groups of the Reed-Muller codes. But, for example, we have not
yet explicitly shown how to get the generator polynomials of the punctured
Reed-Muller codes although we know they are cyclic. In fact, of course, there
are many Singer cycles and the codes are therefore cyclic in many ways —
which is another way of saying that one must specify explicitly how a code is
cyclic before one can compute the generator polynomial. The group-algebra
approach allows one to naturally specify the roots of the generator polyno-
mial without actually choosing the Singer cycle and it is this intrinsic nature
of the approach which makes the group-algebra setting so attractive.

We follow Charpin [14] but Landrock and Manz [34] have also given
an expository account; the original source of this approach was Berman’s
seminal paper, [6]. One exploits the modular group algebra of an elementary
abelian® group, the additive group of the field that labels the coordinates,

3The group, in fact, need not be elementary abelian nor even abelian and the general
case has been treated; see, for example, the chapter by Ward in this Handbook. But, if one
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as the ambient space for the codes.

4.1 Elementary results and Berman’s theorem

We proceed in full generality but the reader interested only in Berman’s
result and the Reed-Muller codes can take G below to be F3* and F' to be
.

Let ¢ = p™ and set G equal to the additive subgroup of the field Fj.
We will very soon regard G as F,, but for the moment it is merely an
elementary abelian p-group® of order p™. Let F be any subfield of F, and
set R = F[G], the group algebra of G over the field F. Recall that the
elements of R are simply functions from G to F and therefore, when G and
F are taken as suggested above, R is the ambient space of the Reed-Muller
codes. We choose, however, to formulate things a bit differently and view
the group algebra in a polynomial way — as one frequently does with group
algebras given by abelian monoids®. Thus a typical element of R is a formal
sum Y e ¥ X7 where the xy are elements of F' and, as a function, it is
simply the one that assigns x4 to the element g of G. Addition and scalar
multiplication are component-wise and the multiplication is given by the
addition in G. Thus,

Z rg X9 + Z yg X9 = Z(xg +yg) XY

geG geG geG

and, for c € F,

(D wgX9) =) (cag) XY

geG geG

using the “polynomial” multiplication X9 X" = X9t" gives the usual mul-
tiplication formula in the group algebra:

(Z ngg)(Z ynX") = Z xgythM = Z(Z T—nyn) X"

geCG heG g,heCG keG heG

Notice that XY is the unit element of the commutative ring R; i.e. X%a = a
for every a € R. The augmentation map R — F' given by > cq 2, X9 —

restricts oneself to p-groups, a result of Faldum’s [20] shows that one might as well restrict
oneself to the elementary abelian case — as far as producing “good” codes is concerned.
4That is, G is an abelian group all of whose non-identity elements have order p or, in
other words, a vector space over the field F},. Since the group operation is being written
additively “order p” means simply that pg = 0 for every g € G.
5The paradigm is the ordinary polynomial ring where the monoid in question is the set
of non-negative integers under addition.
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>_geG Tg 1s clearly a linear transformation of the vector space structure of R
onto F'; moreover, it is an algebra homomorphism — as one can easily check
from the multiplication formula. We denote the kernel of this augmentation
map by M; it is, of course, an ideal of R, but much more is true: since we
are in characteristic p we have the Frobenius homomorphism, a — a?, at
our disposal and the fact that G is an elementary abelian p-group gives

(Z zg XI)P = Z ngO = (Z :):g)XO = (Z z,)P X0,

9€G g€eG geG geG

which shows that every element not in M is invertible in R and hence that
M is the unique maximal ideal of R.

In the binary case, with the interpretation suggested above, M is the
Reed-Muller code R(m — 1, m); we shall shortly see that the powers of the
ideal M give precisely the Reed-Muller codes.

Observe that in our present notation the characteristic function of a sub-
set S of G is given by the element > g X7 of the group algebra. Consider
next the element X9 — X% = X9 — 1 of the ideal M, where we have set
X0 =1 since it is the unit element of R. Provided g # 0,

(Xg _ 1)p—1 — pz_:l(_l)p—l—z‘ (p _ 1) Xig —_ (_1)p—1pz_:1Xig — Z Xh
=0

i=0 v helU

where U = (g) = {ig |0 < i < p} is the subspace over F}, spanned by g. We
have here used the fact that (—1)?~! = 1, even when p = 2, and the fact that
* ;1) = (—1)* since we are working in a field of characteristic p. Moreover,
if we are given a set of linearly independent elements of G, g1, ga, - . ., gr say,
then one checks easily that [[[_; (X9 — 1)P~1 = >_gev X, where now U
is the subspace spanned by {g1,92,...,9-}. In fact, we have the following

more precise statement:

Lemma 4.1 Let S be a non-empty subset of G. Then

[I(x9—1)pt =

0 otherwise
ges

{ > oge(sy X9 if S is a linearly independent set

Proof: We have already remarked on the case of a linearly independent set
S, so suppose S is linearly dependent. We wish to show that the product
is zero. If 0 € S, that result is immediate; otherwise, let S’ be a linearly
independent subset of S with the property that there is a g9 € S — 5’
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contained in (S’). Then the product in question is ([[eg (X9—1)P71) (X% —
1)?~!a where a is an element of R.
By the first part of the lemma,

(H(Xg ) )(Xgo_ — ZXg ZXh Z ZXngh

ges’ ge(s’) he{go) he(go) ge(S’)

Since g + h runs through (S’) as g does for every h € (go), this latter sum is
Dohelgo) 2oge(sty X9 =D ge(sry X9 =0 and we have the result. U

Now since the ideal M is generated linearly over the field F' by the
elements X9 — 1, the ideal M" is generated linearly by elements of the
form [[,cg(XY — 1) where S is a subset of G of cardinality r. Moreover,
in characteristic 2, the subsets S can be taken to be linearly independent
subsets of the vector space G over Fj, by the above Lemma. Hence in this
binary case M" is generated linearly by the characteristic functions of the r-
dimensional subspaces of the vector space G over Fs. Because of the simple
result (Corollary 3.11) that R(m — r,m) is generated by the characteristic
functions of subspaces of dimension 7, we have proved Berman’s theorem:

Theorem 4.2 In the group algebra F[G|, where G is an m-dimensional
vector space over Fy, the Reed-Muller code R(m —r,m) = M", where M is
the unique maximal ideal of F>[G].

Remark: The theorem is even true for » = 0 provided we define M° = R,
as is customary, it being the ideal generated by 1. Observe that for r = m
we have the repetition code and, indeed, [],c5(X9 — 1) =1 for every basis
B of G.

4.2 Isometries of the group algebra

If R = F[G] is the group algebra of any group G, abelian or not, then any
automorphism o of the group G induces an automorphism of R, which we
also denote by o, via

O'(Z g X9) = Z :ngX"(g)

geG geqG

as one can easily check. Moreover, in the basis given by X9, the coding-
theory basis we have chosen, such an automorphism is weight preserving
— i.e. it is also an isometry preserving the Hamming metric. If o is any
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automorphism of the algebra R that is weight preserving, then it must be
given monomially; i.e. ¢(X9) must be of the form aX" for some h € G
and a € F*; for G an elementary abelian p-group we have — since auto-
morphisms preserve the unit element — o(X?) = o((X9)P) = a? X = X0,
which implies that @ = 1, since F' is of characteristic p, and that the auto-
morphism is given by a coordinate permutation. But now one easily checks
that setting h = o(g) defines an automorphism of G that induces the given
isometry. In the case of an elementary abelian p-group G, the automorphism
group is simply GL(G) where G is viewed as a vector space over the field
F,. In the case at hand we can choose a basis for G and then GL,,(F}),
where |G| = p™, is precisely the group of isometric automorphisms of our
group algebra. We record this fact with

Proposition 4.3 The group of isometric automorphisms of the group al-
gebra F[G], where G is an elementary abelian p-group and F a field of
characteristic p, is GL(G) = Aut(Q) in its natural action on the coordinate

set G.

A group algebra, F[G], comes canonically equipped with an involutory
anti-automorphism induced by the map G — G which sends a group ele-
ment to its inverse. When G is abelian this canonical map is an involutory
automorphism and clearly isometric. We denote this canonical involution
by z — T; in GL(G) it is represented by the map g — —g. As we shall see
this canonical automorphism plays an important role when discussing the
orthogonal of a code viewed in R. It is the analogue of taking the “reverse”
when computing orthogonals to cyclic codes.

The ideal M of R is intrinsically defined since it consists of the nilpotent®
elements of R. It follows that every automorphism fixes M and hence
all powers of M; in particular, isometric automorphisms fix M" for all r.
There are isometries not given by automorphisms, of course. For example,
multiplication by X9 yields an isometry of R; such an isometry is clearly
given by a translation in the vector space G. Since any ideal of R is fixed by
such a multiplication, all the powers of M are fixed. We thus have AGL(G)
acting as a group of isometries of R and fixing the ideals that are here of
interest. We have now explained in our new language — but in a more
general setting — what we already know about the Reed-Muller codes.

5An element of a ring is nilpotent if some power of it is 0; in our case the generators of
M, viz. X9 — 1, are 0 when raised to the p'" power and it follows easily that all elements
of M are nilpotent. M is the Jacobson radical of the ring R.
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In the early history of coding theory there was great interest in deciding
which extended cyclic codes were “affine invariant” and Kasami, Lin and
Peterson [29] settled the question. Because of the historic interest and the
motivation it will provide for the rest of this chapter, we discuss and prove
their result. We are here, as in all of this section, following Charpin [14].

First of all it must be emphasized that “affine invariant” refers not to
the group of isometries discussed above but to a smaller group; a more
precise name would be “translation-invariant extended cyclic codes”. The
point is that one does not demand invariance under the group AGL(G), but
only under the subgroup AGL(Fy), where now we are viewing G as the
field Fj;,. There are many more codes invariant under this smaller group,
even if one insists that the codes be self-dual: see, for example, [17] where
all binary, affine-invariant self-dual codes of block length at most 512 have
been found and where evidence is presented to suggest that the number goes
to infinity with the admissible block length. On the other hand, the only
binary codes invariant under the larger group are the Reed-Muller codes
(see Theorem 4.17 below).

We shall see in a moment how to extend the cyclic codes in question so
that they will lie in the ideal M, but let us note first that a linear subspace
of R invariant under translation is simply an ideal of R. Our aim, therefore,
is to characterize those ideals invariant under the isometric automorphisms
given by X9 — X" where u is a non-zero field element and where we have
identified G with Fj,.

4.3 Translation-invariant extended cyclic codes

We prove here the theorem of Kasami, Lin and Peterson characterizing
“affine-invariant” cyclic codes.

Set n = p™ — 1 and suppose C' C F" is a cyclic code. Now C' is specified
completely by the n'® roots of unity that are roots of its generator polyno-
mial. We shall assume that 1 is not a root for we wish to extend C' by an
overall parity check and we wish to avoid trivial cases. Let a be a primitive
n*™ root of unity, i.e. a primitive element of F,, where ¢ = p™. Then the
set of roots of the generator polynomial are specified by that subset T of
{1,2,...,n — 1} where o' is a root if and only if i € T. We shall refer to T'
as the defining set of the cyclic code C'. We embed C in R as follows:

n—1

n—1 ]
(Co,Cl, R ,Cnfl) — (— Z Ci)Xo + Z CiXal.
=0 =0
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Clearly the image, which we denote by 6, is invariant under the map

D@ X9 ) me X

geG geG

and, indeed, any linear subspace of R invariant under this map comes from
a cyclic code. Since a is a generator of F the image is invariant under the
maps given by X9 — X" for all non-zero u € F;. We have, by our choice
of a;, embedded all cyclic codes over F'in M.

Consider next the following F-linear maps ¢, of R into the space G = Fy:

S(Z 1y X9) = Z T49°,

geG geG

where 0 < s < n. With the proviso that 0° = 1, the map ¢q is simply the
augmentation map with kernel M. Observe that if ¢ is in the defining set of
a cyclic code C, then the image, C, of C has the property that ¢;(c) = 0 for
all c e C. Moreover, for any embedded cyclic code, ¢g(c) = 0 for all ¢ € C.
Thus, we “extend” T to T = T U {0} and note that the image of the cyclic
code is defined by T in the sense that ¢ € C if and only if ¢;(c) = 0 for all
i € T. Hence we abuse the terminology and refer to T as the defining set
of C.

Unlike ¢, ¢s is not an algebra homomorphism for s > 0. It does,
however, have an important multiplicative property which we now explain.
Let N ={0,1,...,n} and define a partial order on N by k =< [ if and only
if k, <1, for all v, where k = Y7 ' k,p” and I = "' 1,p¥ are the p-ary
expansions of k and I. We give k < [ the obvious meaning: k <[ but k # [.
Then

Proposition 4.4 For all x,y € R,

du(ay) =3 (f) 61 (@)6s-i(y).

1=<s

Proof: Setting = >  cq 2y X9 and y = } yp X" and writing out the
definition of ¢s(zy) yields

bl =Y (j)«zsi(xm_i(y)
0

1=
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and an application of Lucas’s theorem? gives the result. O

We have immediately the following

Corollary 4.5 If I is an ideal of R and ¢s(x) = 0 for all x € I, then
¢i(x) =0 forallz € I andi < s.

Proof: Since £ X9 € [ for all z € I the formula above yields

duleX?) =Y () bi(2)g"~ =0

i=<s

for all ¢ € G* and unless the ¢;(z) = 0 for all i < s we would have a
non-zero polynomial, 3, - (f) ¢i(x) 257, of degree less than n with n roots,
namely the elements of G*. O

The discussion above and the corollary yield the theorem of Kasami, Lin
and Peterson:

Theorem 4.6 A cyclic code of block length p™ — 1 has an extension which
18 translation invariant if and only if its defining set T does not contain 0
and has the property that s € T implies i € T for all i < s.

Proof: Clearly an extended cyclic code that is translation invariant is an
ideal and hence its defining set has the required property. On the other hand
if an extended cyclic code has a defining set with the required property the
formula shows that ¢(cX9) = 0 for all ¢ € C and all s € T or, in other
words, that ¢ € C implies ¢ X9 € C for all g € G or that C is translation
invariant. O

The powers of M are, of course, extended cyclic codes that are trans-
lation invariant since they are invariant under the larger group AGL(G).
Thus we should be able to determine their generator polynomials. The
reader should observe that these polynomials will depend on the choice of
«, but the defining sets are intrinsic to R since they are given by the ap-
propriate ¢;’s. This intrinsic nature of the group-algebra approach has been
exploited in diverse directions by Charpin and her students. The interested
reader may wish to consult [16, 17]. In the following section we give the
promised defining sets for the Reed-Muller codes and look briefly at their
p-ary analogues.

"Lucas’s theorem states that (f) =TI, (:Z) modulo p. Hence (f) is non-zero if and

only if i < s.
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4.4 The generator polynomials of punctured Reed-Muller
codes and their p-ary analogues

We will in fact determine the defining set of R(r,m). If that set is T =
T U{0} and a is the chosen n'"-root of unity then the generator polynomial
of R(r,m)* is simply [L;er(Z — o). Now R(r,m) = M™ " and we are
interested in the case where r < m. For r = m— 1 we know that T' = () since
M is, clearly, annihilated only by ¢g and, of course, R(m —1,m)* = Fgmfl,

the whole ambient space. Since the dimension of R(r,m) is k = >2i_ (V)
we know that |T| = 2™ — 1 —k = 77" (") — 1 and that therefore
IT| = 75 " (). This is the cardinality of the set of integers less than n

whose binary expansions have fewer than m — r entries equal to 1. As the
next proposition will show, T is precisely this defining set and therefore the
generator polynomial of R(r,m)* is

H (Z — o)

0<wta(i)<m—r
where wtg is the function given by the following more general

Definition 4.7 For any integers, k > 0 and q > 1, the g-weight of k,
written wty(k), is

(o]
wig(k) = ky,
v=0
where k = Y02 o kuq” is the g-ary expansion of k.

Proposition 4.8 The defining set of the ideal M" in F3[G], where G is the
elementary abelian 2-group of order 2™, is that subset of {0,1,...,2™ — 2}
whose elements have binary expansions containing fewer than t entries equal
to 1. That is, the defining set is {i|0 <i < 2™ — 1 and wta(i) < t}.

Proof: We use induction on t. We have the result for ¢ = 1 since 0 is the
only integer k with wta(k) = 0. Suppose the result true for ¢ and consider
t + 1. Now, a typical generating element of M is of the form z(X9 — 1)
where € M. By the nested nature of the ideals we know, of course, that
M is annihilated by all ¢, with wta(s) < t and we need only show that
it is annihilated by those ¢s with wty(s) = ¢. For such an s we have that

b@(X9—1) = ¥ () Bi(w)goi (X9~ 1)

=<8
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S

- ¢s(x)¢0(Xg - 1) + Z <>¢z(x)¢s—z(Xg - 1)'
1<s t

But the first summand on the right side is 0 since X9 — 1 € M and the

second summand is 0 since i < s implies wto(i) < wta(s) = t. Since we

know the dimension of the ideal, we must have precisely the defining set. O

The above proof is due to Charpin [13]; observe that it does not depend
on the fact that we are in characteristic 2 and, therefore, proves more. We
have, in fact, proved the following

Proposition 4.9 Let R = F[G| where G is an elementary abelian p-group
and F a field of characteristic p. Then the ideal M*, where M is the ideal
of nilpotent elements of R, is annihilated by all ¢, with wty(s) < t.

In the event that the field F' is not a subfield of G one must take an overfield
of both in order to have a target for the functions ¢, but this does not effect
the proof.

Of course M is an extended cyclic code invariant under translation,
but since we have not yet computed its dimension, we cannot assert that
we have its defining set — as we did in the binary case. The proposition
does, however, show that the dimension is at most equal to [{i|0 < i <
p™ — 1, wt,(i) > t}| since we are in the presence of an extended cyclic code
— which means that dimp(M?) = p™ — |T)|, where T is the defining set
of M. We will soon exhibit linearly independent elements that will give
us not only this dimension but also the so-called “Jennings® Basis” of the
algebra F[G].

Let {g0,91,--.,9m—1} be a basis of the Fj-space G. For any k =
St kupY, where 0 < k, < p for all v, set Jj, = [[7H (X9 — 1)%. Clearly
Ji. € M" whenever wt,(k) > t. Moreover, these elements are linearly in-
dependent over F', where F' is any field of characteristic p. For suppose
> wt, (k)>t @kJi = 0, where all a; € F. Choose j such that wty(j) is a mini-
mum with a; # 0 and set j = Zf,”:_ol Jup”. Multiplying the linear relation by

(X9 —1)P~170v bearing in mind that (X9 — 1)? = 0 for any g, yields
a; [I7H (X9 — 1)P~! = a;1 = 0 by Lemma 4.1, and hence that a; = 0.
We have thus proved the following

8In fact, this basis first appeared in a paper by Lombardo-Radice, [38]. Lombardo-
Radice goes over the same ground as Jennings did ([28]) but only for abelian groups;
Jennings was aware of the work of Lombardo-Radice and extended that work to arbitrary
p-groups.
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Theorem 4.10 Let G be an elementary abelian p-group of order p™ and
F a field of characteristic p. For any basis {go,...,gm-1} of G, the p™

elements
m—1

H (Xgu _ 1)81/

v=0

where 0 < e, < p form a linear basis for R = F[G]. Moreover,

m—1 m—1
{JI] x* —1)*| Y e, >t,0< e, < p}
v=0 v=0

form a basis of M*, where M ‘s the radical of R.

Such a basis for F[G] was exploited by Jennings [28] and is called a
Jennings basis of the group algebra. It is, as the construction shows, in-
dependent of the coefficient field of the modular algebra and simultaneously
exhibits bases for all powers of the radical.

We note here that the index of nilpotency of the radical is 1 +m(p — 1);
ie.

MHmP-1) _

but M* £ 0 for any smaller k. Just as in the binary case, M™®~1) is the
repetition code generated by []™ )t (X9 — 1)P~! = Ygec X9 =1; it is the
minimal ideal of R, which means that it is contained in every non-zero ideal
of R, a fact that is easily seen using the Jennings basis.

Corollary 4.11 The code M' is a code of block length p™, dimension
HEO < kE < p™, wty(k) < m(p — 1) — t}| and minimum weight (b + 1)p®,
where t = a(p—1)+b with 0 < b < p—1. As an extended cyclic code its
defining set is {i|0 < i < p™ — 1, wt,(i) < t}.

Proof: The dimension is [{k|0 < k < p™, wt,(k) > t}|, of course, but
taking the set of complements, (p™ — 1) — k, gives the above description
— which is sometimes more useful. As for the minimum weight, the BCH
bound implies that the minimum weight is at least as announced, since
k=>"4(p—1)p"+bp® = (b+1)p®—1 is the smallest integer with wt, (k) = ¢.
On the other hand, (X% —1)° [%_, (X9 —1)P~! yields a vector of the given
weight since the product is the characteristic function of the a-dimensional
subspace generated by {gi,...,9.}, and multiplying by (X% — 1)’ merely
takes the sum of b + 1 distinct, weighted translates.O
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Observe that the minimum-weight vectors we have exhibited have their
supports lying in an (a+ 1)-dimensional subspace of GG, namely the subspace
generated by {go,91,--.,9a}- When ¢ is divisible by p — 1 these minimum-
weight vectors are characteristic functions of subspaces — just as in the
binary case.

Corollary 4.12 Ift = a(p — 1) then M" contains the incidence vector of
every a-flat of the affine geometry AG,,(F,) and hence the code over F), of
the design of points and a-flats of AG,,(F}).

Example 4.13 There is a simple formula, easily derived, for the dimension
of M(™m=D@=1 gince it is the number of ways of selecting at most p — 1
objects — repetitions allowed — from a set of m objects. One has then (cf.
Example 5.6) that

dim(M(m=DE=1)y = <m tr- 1)

m

and that among the minimum-weight vectors one finds the characteristic
functions of flats of codimension 1. As we shall see it is the code over F), of
this affine design.

4.5 Orthogonals and annihilators

We have already seen that for the Reed-Muller codes
R(r,m)t =R(m —r —1,m)

for 0 < r < m, or — in the current language — that the Reed-Muller code
(M™ )L is precisely M™™!. Moreover, the same equality is true if we
replace the orthogonal by the annihilator in the group algebra.

More precisely, if S is any subset of R we set

Amn(S) ={z € R|zs =0 for all s € S}.

Then, since M™P~D+1 = [0}, Ann(M?) D M™P~D+1=* and a dimen-
sion argument yields the equality. We explain the entire matter using the
canonical automorphism

T = ngXgH ngX_g: Zx_ng:f

geG geG geG
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introduced in Section 4.2.
In order to eliminate visual confusion we will use the following notation
for the usual inner product:

[x,y] = [Z g XY, Zngg} = ngyg.
Of course, for a code C' C R,
Ct={zcR|[z,c]=0forall ccC}.
We have immediately the following “adjoint” relationship:
@yl = [z,7].

This shows that S~ = S+, where we have set, for S C R, S = {5|s € S}.
Now, since xy = 0 if and only if > ,cqZp—n¥Yn = X neq Th+ny—n = 0 for
all k € G, zy = 0 if and only if [X*z,7] = 0 for all k € G, and we get the
following result — which is the analogue of Theorem 5.23 of Chapter 1 giving
the orthogonals to cyclic codes and, moreover, admits a generalization to a
more general case: Proposition 1.2 of Chapter (Ward).

Proposition 4.14 For an ideal I of R

Ann(I) =1+ = T

The ideals we are concerned with are invariant under all the isometric au-
tomorphisms and, in particular, under the canonical automorphism. Hence
we have

Corollary 4.15 If an ideal I is invariant under the canonical automor-
phism, i.e. if [ = I, then Ann(I) = I't. In particular, in the group algebra
R we have that

Ann(Mt) _ (Mt)J_ — ppmp—1)+1-t

Example 4.16 Taking t = m(p — 1), we have that M = (F,1)* and, in
particular, is of codimension 1 in R, a fact that has emerged in various ways
during our discussion of the group-algebra approach.

Remark: Observe that even if an ideal is not invariant under the canonical
automorphism, the proposition shows that its annihilator and its orthogonal
are equivalent codes.
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4.6 The codes of the designs from AG,,(F),)

We next prove that M"®~1 is the code, when p is prime, of the design
of points and r-flats of the affine geometry AG,,(F}), generalizing what we
already know when the prime is 2 (the Reed-Muller case). This more general
result follows easily from a corollary of a theorem of Delsarte [19] which
characterizes the subspaces left invariant by AGL,,(F,) acting naturally
on the group ring F,[G] where G is the additive group of the field Fym.
The corollary characterizes the codes in the group ring R invariant under
AGL,,(F,) acting naturally on R as precisely the powers of M. A recent
elegant proof of this result by Weidner [54], using the Jennings basis, will
be sketched now, but we will return to this matter in the next section.

Theorem 4.17 Let R be the group ring over F, of an elementary abelian
p-group, G, of order p™ with AGL(G) = AGL,,(F,) — the automorphism
group of the group G — acting naturally on R. Let M be the radical of R.
Then the only subspaces of R invariant under AGL,,(F},) are the powers of
M. In group-theoretical terms R, viewed as a module over AGL,,(F}), is
uniserial® and M'/M'™ is an irreducible GLy,(F,)-module for 0 < t <

m(p—1).

Proof: We know, of course, that the powers of M are invariant under
AGL,,(F,). Any subspace invariant under AG Ly, (F},) is necessarily an ideal
of R and, since M™P~D+1 = (. given any ideal I of R there is a smallest
t with M?* C I and M*' ¢ I — unless, of course, ] = R in which case
we have our assertion since, by convention, R = M". If I # M?, then
there is an o € I which is not in M" and because I is an ideal multiplying
by a suitable element of R insures that = € M1 NI but z ¢ M'. But
then M'~' N T would be a proper AGL,,(F,)-submodule of M*~! strictly
containing M*, an impossibility whenever M*~!/M? is irreducible. Thus
we are reduced to showing that M'/M'* is irreducible as an AG Ly, (F))-
module for all t. In fact we will show that it is an irreducible GL,(F})-
module for all . (A slight change at the end of the argument would, in
fact, show that it is an irreducible SL,, (F},)-module but we do not need this
generality for the purpose at issue.)

Of course, the action of GL,,(F),) on R is given once a basis of the
elementary abelian group G is given and then that action is given by the

9A module is “uniserial” if it has only one composition series and “irreducible” if it
has no proper submodules.
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realization of the group via non-singular m X m matrices over Fj,. We slightly
change our notation letting the basis of the elementary abelian group be
91,92, - -, gm- Then, for an element o € GL,,(F},) represented by the matrix
(aij), we have

m
0gi = Zaijgj
j=1
and hence, by definition,
o X% — X099 — XZ;nzl @ij95

Now set z; = X% — 1. A basis for M/M? is given by the images of
T1,%9,..., 2, and a basis for the quotient M? /M is given by the images
of elements of the form foz where 0 < k; < p—1and > k; = t. These
elements are part of the Jennings basis of R given by our choice of the basis
of GG. Moreover, the image of

(I =ro<ki<p—1,>k =t}
=1

in M'/M'! is a basis (over F},) of that GL,(F,)-module. We will sys-
tematically throughout the proof work with these elements and ignore any
elements of M that arise during calculations; this is tantamount to work-
ing in the quotient space. As an example of this caveat we note — since

X9 1= (X9 - 1)+ (X" - 1)+ (X9 - 1) (X" -1)

and since we are working over a prime field — that, modulo M?,
m
0'(1’1) = O‘(Xgi — 1) = Xzaijgj —1= Zaija:j
j=1

when ¢ is given by the matrix (a;;). Of course, since the o are algebra
homomorphisms, we have that

m m

o([T«%) = [T(ows)*.

=1 i=1

It is well-known — and easy to prove — that a p-Sylow subgroup of
GL,(F)) is given by the lower triangular matrices with 1’s on the diagonal
and that any non-zero S-module (when the field is F},) contains a non-zero
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element left fixed by all elements of S.!° Letting S be this p-Sylow subgroup
we investigate the action of S on M!/M'™! which we also denote by V7.
One first shows by induction on m that every non-zero S-submodule,
W, of V; contains the image of the element w; = xzf_l 2P 12b | where
t=a(p—1)+bwith 0 <b<p—1. For m = 1 this is obvious since, in
this case, modulo M1 M?! is generated over F, by zt. Let m > 1 and
let w be an element of M? not in M®*! that represents an element of the

submodule W fixed by all elements of S; write
p—1 '
w = Z w;i Ty,
i=0
where w; € M N (xy,...,2p_1). Set k = max{ijlw; # 0}. For k = 0

the induction on m gives the result. Suppose k # 0. For 1 < i < m define
o; € S by:

P R if j £#m ;
O-Z(x])_{l'm—FZEZ’ 1f]:m
Then
k . k .
oW = ij(xm +x;) = Zvjazﬁn
j=0 Jj=0
for some v; € M (xy,.. ., 2y, 1) With vg_; = wg_1 + kx;wy. On the

other hand o;w = w and hence vy_1 = wi_1 yielding kx;wr = 0. But
k is a positive integer less that p and hence non-zero in F,. So we have
that x;wp, = 0 for 1 <7 < m and it follows that wy is a scalar multiple of
H{”_l xf_l which entails a = m — 1 and b = k. But then, w;, for i < k, is
in M=DE=D+k=i o (3 x4) = 0 and w is a scalar multiple of the
sought w;. Thus, we have the assertion.

Next, setting t' = m(p — 1) — ¢, consider the bilinear map

¢:VixVy — Vm(p—l) %Fp

given by ¢(x,y) = xy. It is invariant under GL,,(F}), i.e. ¢(ox,0y) =
¢(x,y) for all o. Moreover, the form is non-degenerate. Thus there is a
vy € Vi with ¢(vg, wp) = 1. Tt follows that

-1
vt:xg H .

i=m+1l—a

10T other words, over F}, a p-group has only the trivial irreducible representation.
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We claim that v; generates V; as an S-module: let W be the S-submodule
generated by vy and set

Wt ={yeVy|d(w,y) =0 forall we W}

W+ is also an S-submodule because of the invariance and, because wy is
not in W+, W+ =0 — which gives that W = V.

Finally, consider the the element of GL,,(F,) that sends z; to Zp, 41—
for 1 <4 < m. It sends w; to v; which shows that any non-trivial G Ly, (F})-
submodule of V'; must, in fact, be V;. Thus these modules are irreducible. O

Note: Another proof — somewhat more robust since it has something to
say about non-prime fields — of this result due to Mortimer [44] will be
given in Section 5.5.

Now the code generated by the r-flats of the affine geometry AG,,(F})
is clearly invariant under the group AGL,,(F)) and is contained in M r(p=1)
but not in M"®P~D+1L This yields

Theorem 4.18 For any prime p, the code of the design of points and r-flats
of the affine geometry AGy,(F)) is M1,

Since the dimension of M~ D@=1 jg easy to compute we have a proof
of the following important fact:

Corollary 4.19 The dimension of the code over F, of the design of points
and (m — 1)-flats of AGy,(F)) is

)

It is equally easy to compute the dimension of MP~!, which gives us the
following

Corollary 4.20 The dimension of the code over F), of the design of points

and lines of AGy,(Fp) is
m (m +p— 2)
" — .
m
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Proof: The proof consists of observing that, by complementation, one need
only count the number of ways of choosing p — 2 objects from m objects —
repetitions allowed. O

Remark: In both cases the formulas are simple binomial coefficients since
one does not have to worry about the constraint p — 1 on the number of
repetitions allowed.

Although we now know the dimensions and minimum weights of the
codes coming from AG,(F),) we have not yet determined the nature of
the minimum-weight vectors nor have we discussed the codes coming from
PG,,(F,). We postpone that discussion until Section 5.7 where all the rel-
evant facts are established. See, for example, Theorem 5.42 and Theo-
rem 5.44.

5 Generalized Reed-Muller codes

5.1 Introduction

Our description of generalized Reed-Muller codes is based, primarily, on
the now classic paper of Delsarte, Goethals and MacWilliams [18]. We
have, however, reworked the material in several important respects and have
introduced a different notation. The definitions are based on the polyno-
mial codes introduced by Kasami, Lin and Peterson [30, 31]; these authors
introduced the primitive generalized Reed-Muller codes and Weldon [55]
introduced the non-primitive generalized Reed-Muller codes and the single-
variable approach using the Mattson-Solomon polynomial. Our treatment
of that polynomial appears to be new in that we view it in a quotient ring
that is slightly different from the one traditionally used.

Were it not for the complication introduced by moving from a prime
field to Fy, where ¢ is a proper prime power, much of the material in this
section could be avoided. The reader interested only in the prime case will,
however, need to read Section 5.7 and the previous material necessary for
its understanding.

5.2 Definitions

First we describe the so-called m-variable approach. This is entirely anal-
ogous to our approach to the Reed-Muller codes (which are, simply, the
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generalized Reed-Muller codes for ¢ = 2) and the generalization is straight-
forward (the functions involved being Fj-valued — rather than boolean —
and having F-valued variables).
Let ¢ = p', where p is a prime. Set E = F, and let V be a vector space

of dimension m over E. Again we will denote a general vector in V' by v,
and we will take V to be the space E™ of m-tuples, with standard basis
el,...,en, where

e; =(0,0,...,1,0,...,0).

H—/
(2

Our codes will be g-ary codes, i.e. codes over F, and the ambient space will
be the function space EV, with the usual basis of characteristic functions of
the vectors of V. As in Section 3, we can denote the members f € EV by
functions of the m-variables denoting the coordinates of a variable vector in
V,ie. if

x = (21,22,...,2m) €V,

then f € EV is given by
f=flx2e,.. 2m)

and the z; take values in E. Since every element in F satisfies a? = a, the
polynomial functions in the m variables c