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Abstract

For n ≥ 2, the graph with vertices the 2n vectors of Fn
2 and two vertices adjacent if

their coordinates differ in precisely one place, is called the n-cube, denoted by Qn.

We examine the binary code obtained from the row span of an adjacency matrix for

Qn over the field F2, and show that when n is even it is a self-dual [2n, 2n−1, n]2
code. For n ≥ 6 and even we obtain 2- and 3-PD-sets of size n2n for permutation

decoding.

Joint work with Pani Seneviratne. [5]

April 27, 2007
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Binary codes of cubic graphs

For n ≥ 2 let Qn denote the n-cube (see [10]) and Dn the symmetric 1-design

obtained by defining the 2n vertices (i.e. vectors in Fn
2 ) to be the points P, and a

block v̄ for every point (vector) v by

v̄ = {w | w ∈ P and w adjacent to v in Qn}.

Then Dn is a 1-(2n, n, n) symmetric design with the property that two distinct blocks

meet in zero or two points and similarly any two distinct points are together on zero

or two blocks.
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We will use the following notation:

for r ∈ Z and 0 ≤ r ≤ 2n − 1, if

r =
n∑

i=1

ri2i−1

is the binary representation of r, let

r = (r1, . . . , rn)

be the corresponding vector in Fn
2 , i.e. point in P.

The complement of v ∈ P will be denoted by vc. Thus

vc(i) = 1 + v(i)

for 1 ≤ i ≤ n, where v(i) denotes the ith coordinate entry of v.

Similarly, for α ∈ F2, αc = α + 1. Clearly vc = v + 2n − 1.
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The binary code Cn of the design Dn is the same as the row span over F2 of an

adjacency matrix for Qn, and for n even and n ≥ 4, it is a [2n, 2n−1, n]2 self-dual

code.

Before showing this, we show why the case for n odd is not of interest.

Proposition 1 For n odd, the binary code Cn of Dn is the full space F2n
.

Proof: For n odd, it can be verified directly that

v(x1,...,xn) = v(x1,...,(xn)c) +
n−1∑
i=1

v(x1,...,(xi)c,...,xn−1,xn)

for all choices of x = (x1, . . . , xn). Thus Cn contains all the vectors of weight 1 and

is the full space. �

Notation: for X ⊆ P, vX is the incidence vector of X.
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The automorphism group of the design and of the code contains (properly, for

n ≥ 4) the automorphism group

TSn = T o Sn

of the graph (see [10]), where T is the translation group of order 2n and Sn is the

symmetric group acting on the n coordinate positions of the points v ∈ P.

For each w ∈ P, write T (w) for the automorphism of Cn defined by the translation

on Fn
2 given by

T (w) : v 7→ v + w

for each v ∈ Fn
2 . The identity map will be denoted by ι = T (0). Then

T = {T (w) | w ∈ P}.
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Lemma 2 The group TSn acts imprimitively on the points of the design Dn for

n ≥ 4 with {v, vc}, for each v ∈ Fn
2 , a block of imprimitivity.

Proof: We need only show that for g ∈ TSn, and any v ∈ Fn
2 , vcg = (vg)c, which

will make the set {v, vc} a block of imprimitivity.

Clearly TSn is transitive on points. For g ∈ Sn the assertion is clear. If g is the

translation T (u), where T (u) : v 7→ v + u, then vcg = vcT (u) = v + 2n − 1 + u =
vT (u) + 2n − 1 = (vg)c. Thus for any g ∈ TSn and any v ∈ Fn

2 , vcg = (vg)c. �
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For each i such that 1 ≤ i < n let ti = (i, n) ∈ Sn, i.e. the automorphism of Cn

defined by the transposition of the coordinate positions. For n ≥ 4 let

Pn = {ti | 1 ≤ i ≤ n− 1} ∪ {ι} (1)

Tn = TPn. (2)

Since the translation group T is normalized by Sn, elements of the form T (w)tiT (u)
are all in Tn, i.e. σ−1T (u)σ = T (uσ), so that for transpositions t, tT (u) = T (ut)t.

http://www.ces.clemson.edu/math/
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Proposition 3 For n even, n ≥ 4, Cn is a [2n, 2n−1, n]2 self-dual code with

I = [0,1, . . . ,2n−1 − 3,2n − 2,2n − 1]

as an information set.

Proof: Using the natural ordering for the points and blocks, the incidence matrix

for Qn has the form

Bn =


Bn−2 I2n−2 I2n−2 0

I2n−2 Bn−2 0 I2n−2

I2n−2 0 Bn−2 I2n−2

0 I2n−2 I2n−2 Bn−2

 (3)

where Bn−2 is the incidence matrix of the graph Qn−2. It is easy to prove that the

matrix has rank 2n−1 and it can be shown by induction that the minimum weight is

n. That the code is self-dual follows from the earlier observation that blocks meet

in 0, 2 or n points.

http://www.ces.clemson.edu/math/
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To show that I is an information set, let B∗
n be the first 2n−1 rows of Bn. Clearly

B∗
n has rank 2n−1 and generates the same code as Bn.

We want to switch the column indexed by 2n−1 − 2 with that indexed by 2n − 2,

and the column indexed by 2n−1 − 1 with that indexed by 2n − 1.

Notice that 2n−1 − 2 ∈ 2n−1 − 1, so the 2×2 submatrix of B∗
n from the (2n−1−2)th

and (2n−1− 1)th rows and columns has the form

 0 1

1 0

, while the corresponding

2 × 2 submatrix from the same rows but the last two columns is just I2. Thus the

column interchanges described will give the information set I. �

http://www.ces.clemson.edu/math/
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0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[0,0,0,0] 0 1 1 1 1

[1,0,0,0] 1 1 1 1 1

[0,1,0,0] 2 1 1 1 1

[1,1,0,0] 3 1 1 1 1

[0,0,1,0] 4 1 1 1 1

[1,0,1,0] 5 1 1 1 1

[0,1,1,0] 6 1 1 1 1

[1,1,1,0] 7 1 1 1 1

[0,0,0,1] 8 1 1 1 1

[1,0,0,1] 9 1 1 1 1

[0,1,0,1] 10 1 1 1 1

[1,1,0,1] 11 1 1 1 1

[0,0,1,1] 12 1 1 1 1

[1,0,1,1] 13 1 1 1 1

[0,1,1,1] 14 1 1 1 1

[1,1,1,1] 15 1 1 1 1

Figure 1: Adjacency matrix for Q4
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If I is as in the proposition, the corresponding check set is C. We will write

I1 = [0,1, . . . ,2n−1 − 3] (4)

C1 = [2n−1,2n−1 + 1, . . . ,2n − 3] (5)

I2 = [2n − 2,2n − 1] (6)

C2 = [2n−1 − 2,2n−1 − 1] (7)

and

a = 2n − 2 = (0, 1, . . . , 1, 1) , b = 2n − 1 = (1, 1, . . . , 1, 1) (8)

A = 2n−1 − 2 = (0, 1, . . . , 1, 0) , B = 2n−1 − 1 = (1, 1, . . . , 1, 0) (9)

Notice that the points a and b are placed in I in order to have points and their

complements in I since under any automorphism g ∈ TSn of the design, if vg = w

then vcg = wc, by Lemma 2. Thus we have ac = 1 and bc = 0, Ac = 1 + 2n−1,

Bc = 2n−1, and v + vc = b for any vector v ∈ P.

http://www.ces.clemson.edu/math/
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I1 I2 C1 C2

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0

0 1 2 3 4 5 a b 8 9 10 11 12 13 A B

0 1 2 3 4 5 14 15 8 9 10 11 12 13 6 7

[0,0,0,0] 0 1 1 1 1

[1,0,0,0] 1 1 1 1 1

[0,1,0,0] 2 1 1 1 1

[1,1,0,0] 3 1 1 1 1

[0,0,1,0] 4 1 1 1 1

[1,0,1,0] 5 1 1 1 1

[0,1,1,0] 6 1 1 1 1

[1,1,1,0] 7 1 1 1 1

Figure 2: Generator matrix for the [16, 8, 4]2 self-dual code from Q4
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Permutation decoding

Permutation decoding was first developed by Jessie MacWilliams [7] following also

Prange [9]. It can be used when a code has sufficiently many automorphisms to

ensure the existence of a set of automorphisms called a PD-set. See MacWilliams

and Sloane [8, Chapter 16, p. 513] and Huffman [3, Section 8].

We extend the definition of PD-sets to s-PD-sets for s-error-correction [4] and [6]:

Definition 1 If C is a t-error-correcting code with information set I and check set

C, then a PD-set for C is a set S of automorphisms of C which is such that every

t-set of coordinate positions is moved by at least one member of S into the check

positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every

s-set of coordinate positions is moved by at least one member of S into C.

Specifically, if I = {1, . . . , k} are the information positions and C = {k+1, . . . , n} the

check positions, then every s-tuple from {1, . . . , n} can be moved by some element

of S into C.

http://www.ces.clemson.edu/math/
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Algorithm for permutation decoding

C is a q-ary t-error-correcting [n, k, d]q code; d = 2t + 1 or 2t + 2.

k × n generator matrix for C: G = [Ik|A].
Any k-tuple v is encoded as vG. The first k columns are the information symbols,

the last n− k are check symbols.

(n− k)× n check matrix for C: H = [−AT |In−k].
S = {g1, . . . , gm} is a PD-set for C, written in some chosen order.

Suppose x is sent and y is received and at most t errors occur:

� for i = 1, . . . ,m, compute ygi and the syndrome si = H(ygi)T until an i is

found such that the weight of si is t or less;

� if u = u1u2 . . . uk are the information symbols of ygi, compute the codeword

c = uG;

� decode y as cg−1
i .

http://www.ces.clemson.edu/math/
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Why permutation decoding works

Result 1 Let C be an [n, k, d]q t-error-correcting code.

Suppose H is a check matrix for C in standard form, i.e. such that In−k is in the

redundancy positions.

Let y = c + e be a vector, where c ∈ C and e has weight ≤ t.

Then the information symbols in y are correct if and only if the weight of the syndrome

HyT of y is ≤ t.

http://www.ces.clemson.edu/math/
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3-PD-sets

Theorem 4 For n even and n ≥ 8, let

Tn = {T (w)ti | w ∈ Fn
2 , 1 ≤ i ≤ n},

where T (w) is the translation by w ∈ Fn
2 , ti = (i, n) for i < n is a transposition in

the symmetric group Sn, and tn is the identity map.

Then Tn is a 3-PD-set of size n2n for the self-dual [2n, 2n−1, n]2 code Cn from an

adjacency matrix for the n-cube Qn, with the information set

I = [0,1, . . . ,2n−1 − 3,2n − 2,2n − 1].

http://www.ces.clemson.edu/math/


18/27 P�i?
22333ML232

Proof: Let T = {x, y, z} be a set of three points in P. We need to show that there

is an element in Tn that maps T into C.

We consider the various possibilities for the points in T .

If T ⊆ C then use ι.

Thus suppose at least one of the points is in I and, by using a translation, suppose

that one of the points, say z, is 0. If T ⊆ I, then T (2n−1) will work. Now we

consider the other cases.

http://www.ces.clemson.edu/math/
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1. x ∈ I1, y ∈ C1

Then there are ix, iy such that 2 ≤ ix, iy ≤ n− 1 such that x(ix) = y(iy) = 0.

If ix = iy = i, then T ti ⊆ I, unless yti ∈ {A,B}, so tiT (2n−1) will work

unless yti ∈ {A,B}. If yti = A, then y(1) = y(i) = 0, y(j) = 1 otherwise. If

x(1) = 0, then t1T (2n−1) will work. If x(1) = 1, then take any j 6= 1, i, n, and

use T (2j−1)tiT (2n−1). If yti = B, then y(i) = 0 and y(j) = 1 otherwise. Here

we can take any j 6= 1, i, n, and use T (2j−1)tiT (2n−1).

If x and y have no common zero, then if y = xc, so that x + y = b, we can use

T (x)T (2n−1). If x(i) = y(i) = 1, where 1 ≤ i ≤ n − 1, then tiT (2n−1 − 1)
can be used.

2. x ∈ I1, y ∈ C2

Since x ∈ I1, x(i) = 0 for some i such that 2 ≤ i ≤ n− 1. If there is a j such

that j 6= i and 2 ≤ j ≤ n− 1 with x(j) = 0, then T (2i−1 + 2n−1) can be used.

If there is no such j, then either x(1) = x(i) = x(n) = 0 and x(j) = 1 for

j 6∈ {1, i, n}, or x(i) = x(n) = 0 and x(j) = 1 for j 6∈ {i, n}. In either case,

take j 6= i, 2 ≤ j ≤ n− 1. Then the map T (2j−1 + 2n−1) can be used.

3. x ∈ I2, y ∈ C1

http://www.ces.clemson.edu/math/
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a) x = a: since y ∈ C1, there is a j such that 2 ≤ j ≤ n − 1 with y(j) = 0.

If y(i) = 1 for i 6= j and 1 ≤ i ≤ n, or if y(1) = 0 and y(i) = 1 for

i 6= j and 2 ≤ i ≤ n, then T (A) will work. If there is an i 6= j such that

y(i) = y(j) = 0 where 2 ≤ i, j ≤ n− 1, then tjT (2n−1) can be used.

b) x = b: this follows exactly as in the x = a case except that in the first two

cases for y use T (B) instead of T (A).

4. x ∈ I2, y ∈ C2

a) x = a, y = A: use T (a)t2T (2n−1).

b) x = a, y = B: use tn−1T (B).

c) x = b, y = A: use tn−1T (B).

d) x = b, y = B: use t1T (1 + 2n−1).

5. x, y ∈ C
a) x, y ∈ C1: if x+y = B then T (B) will work. Otherwise x(i) = y(i) for some

i such that 1 ≤ i ≤ n−1. Again T (B) will work unless x or y are (0, . . . , 0, 1)
or (1, 0, . . . , 0, 1). If x = (0, . . . , 0, 1) then y(i) = 0 for some i such that

2 ≤ i ≤ n− 1. Then tiT (2n−1) can be used unless y(j) = 1 for all j 6= i, or

http://www.ces.clemson.edu/math/
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y(1) = y(i) = 0 and y(j) = 1 for j 6= 1, i; in these cases tiT (2i−1 + 2n−1)
can be used. The same arguments hold if x = (1, 0, . . . , 0, 1).

b) x ∈ C1, y ∈ C2: since x ∈ C1, there is a j such that 2 ≤ j ≤ n − 1 with

x(j) = 0. Then tjT (2j−1 + 2n−1) can be used.

c) x, y ∈ C2: T (2n−2 + 2n−1) will work.

This completes all the cases and proves the theorem. �

Note that this result also shows that the set Tn is a 2-PD-set for Cn for n = 6.

However, this set Tn with this information set I will not give a 4-PD-set, since it is

quite easy to verify that the set of four points {0,2,2n − 2,2n−1 − 1} cannot be

moved by any element of Tn into the check positions.

http://www.ces.clemson.edu/math/
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Discussion

The automorphism group of the symmetric 1-design is much larger than that of the

graph. In particular, it will contain any invertible n × n matrix over F2 with the

property that the sum of any two of its rows has weight 2.

In fact, if v ∈ P has an even number of entries equal to 1, then the matrix A having

for rows the points in v̄, will be be an automorphism of Dn that also preserves the

blocks of imprimitivity.

If v has an odd number of entries equal to 1, it will not be invertible.

http://www.ces.clemson.edu/math/
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There are also other, non-linear, automorphisms, of the design, and that also preserve

these blocks of imprimitivity, as is indicated by computations with Magma [1, 2].

Magma indicates that the automorphism group of the design is the same as that

of the graph Γ2 defined on the same point set P = Fn
2 with two points (vectors)

being adjacent if they differ in exactly TWO coordinate positions, i.e. if their sum

has weight 2.

It is possible to arrange more interchanges so that more instances of a point and its

complement in the information set occur. Thus s-PD-sets for s > 3 seem possible

in general.

http://www.ces.clemson.edu/math/
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.
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