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Abstract

We continue our earlier investigation of properties of linear codes generated by
the rows of incidence matrices of k-regular connected graphs on n vertices. The
notion of edge connectivity is used to show that, for a wide range of such graphs,
the p-ary code, for all primes p, from an n × 1

2nk incidence matrix has dimension
n or n− 1, minimum weight k, the minimum words are the scalar multiples of the
rows, there is a gap in the weight enumerator between k and 2k− 2, and the words
of weight 2k − 2 are the scalar multiples of the differences of intersecting rows of
the matrix. For such graphs, the graph can thus be retrieved from the code.
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1 Introduction

Linear codes generated by |V |×|E| incidence matrices for several classes of regular graphs
Γ = (V,E) were examined in, for example, [13, 22, 20, 21, 15], and shown to have certain
important common properties. In order to establish this common property more generally,
in [8] it was shown that several properties of these codes for regular connected graphs can
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be derived from properties of the graph involving edge cuts, i.e. the removal of a set S
of edges of the graph Γ and the ensuing properties of the graph Γ − S that excludes
these edges. For a prime p, denote by Cp(G) the p-ary code generated by the rows of a
|V | × |E| incidence matrix G of a regular connected graph Γ. It was shown in [8] that if
Γ satisfies any of an extensive list of conditions, the minimum distance of C2(G) equals
the edge-connectivity λ(Γ) of Γ, i.e., the smallest number of edges whose removal renders
Γ disconnected, and there are no words whose weight is strictly between λ(Γ) and λ′(Γ),
where the restricted edge-connectivity λ′(Γ) is defined as the smallest number of edges
whose removal results in a graph that is disconnected, and in which every component
has at least two vertices. The analogous results for p-ary codes, for p an odd prime, in
that paper included a much smaller class of graphs, even though it had been shown, by
different methods (in [13, 22, 20, 21, 15], for example) that the same results hold for all
primes for all the classes studied. Thus we continue our study here to broaden our results
for the p-ary case where p is odd. The dimension of Cp(G) is well-known to be |V | or
|V | − 1: see Result 1.

In addition it has also been observed for several classes of connected k-regular graphs
that the words of weight 2k − 2 in Cp(G), for any prime p, are the scalar multiples of
the difference of two intersecting rows of the incidence matrix G. Using edge cuts we are
able to prove this generally for a wide class of graphs. These properties of the codes (the
minimum weight, the nature of the minimum words, the gap in the weight enumerator, the
nature of the words of the second smallest weight) from an incidence matrix of a graph
are reminiscent of the properties of the codes from incidence matrices of desarguesian
projective planes, except that in that case only a prime dividing the order of the plane
will produce such properties: see, for example, [1, Chapter 5]. We note also that although
the minimum weight and the nature of the minimum words for the p-ary codes from
arbitrary finite projective planes of order divisible by p have this property, the existence
of the gap and the nature of the words of weight the same as that from the difference of
two rows of an incidence matrix, is not necessarily achieved for non-desarguesian planes:
see [14] for some counter-examples.

Our main results for the codes are then Theorem 11 (in Section 4) for the binary codes,
Theorem 16 (in Section 6) for the bipartite p-ary case, p odd, and Corollaries 30, 31 (in
Section 6) for the non-bipartite p-ary case, p odd. These results are established in the
sections that follow. Background definitions and previous results are given in Section 2.
In Section 7 we give a short summary of what we have broadly achieved.

2 Background and notation

2.1 Codes from designs

For notation on designs and codes we refer to [1]. An incidence structure D = (P ,B,J ),
with point set P , block set B and incidence J is a t-(v, k, λ) design, if |P| = v, every
block B ∈ B is incident with precisely k points, and every t distinct points are together
incident with precisely λ blocks. The code CF (D) of the design D over the finite field F
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is the space spanned by the incidence vectors of the blocks over F . If F = Fp then we
write Cp(D) for CF (D).

All the codes here are linear codes, and the notation [n, k, d]q will be used for a code
C over Fq of length n, dimension k, and minimum weight d, where the weight wt(v) of a
vector v is the number of non-zero coordinate entries. The support, Supp(v), of a vector v
is the set of coordinate positions where the entry in v is non-zero. So |Supp(v)| = wt(v).
The vector all of whose entries are 1 is the all-one vector, denoted by . A generator matrix
for a code C is a k × n matrix made up of a basis for C. We call two codes isomorphic if
they can be obtained from one another by permuting the coordinate positions.

2.2 Graphs and codes

The graphs, Γ = (V,E) with vertex set V , or V (Γ), and edge set E, or E(Γ), discussed
here are undirected with no loops and no multiple edges. The order of Γ is |V |. If x, y ∈ V
and x and y are adjacent, we write x ∼ y, and xy for the edge in E that they define. The
set of neighbours of u ∈ V is denoted by N(u), and the valency or degree of u is |N(u)|,
which we denote by degΓ(u). The minimum and maximum degrees of the vertices of Γ are
denoted by δ(Γ) and ∆(Γ), respectively. The graph is k-regular, where k ∈ N0, if all its
vertices have degree k, and Γ is said to be regular if it is k-regular for some k. If S ⊆ E
then Γ − S = (V,E − S), and Γ[S] is the subgraph induced by S, i.e. the subgraph of Γ
whose vertex set consists of the vertices of Γ that are incident with an edge in S, and
whose edge set is S.

If for some r > 2, xixi+1 for i = 1 to r − 1, are all edges of Γ, and the xi are all
distinct, then the sequence written (x1, . . . , xr) will be called a path in Γ. If also xrx1 is
an edge, then this is a closed path, circuit or cycle, of length r, also written Cr. If for
every pair of vertices there is a path connecting them, the graph is connected. A perfect
matching is a set S of disjoint edges such that every vertex is on exactly one member of
S. The girth g(Γ) of Γ is the length of a shortest cycle in Γ. The distance d(u, v) between
two vertices u and v of a graph Γ is the minimum length of a path from u to v. The
diameter of Γ, denoted by diam(Γ) is the largest of all distances between vertices of Γ,
i.e., diam(Γ) = maxu,v∈V (Γ) d(u, v). A subgraph Γ′ of a graph Γ is isometric if for any two
vertices of Γ′ their distance apart in Γ′ is the same as that in Γ.

A strongly regular graph Γ of type (n, k, λ, µ) is a regular graph on n = |V | vertices,
with valency k which is such that any two adjacent vertices are together adjacent to λ
vertices and any two non-adjacent vertices are together adjacent to µ vertices. If Γ is
strongly regular of type (n, k, λ, µ) then the complement Γc is strongly regular of type
(n, n− k− 1, n− 2k+µ− 2, n− 2k+λ). The parameters for Γ are linked by the equation

(n− k − 1)µ = k(k − λ− 1). (1)

To avoid trivial cases, we require that a strongly regular graph and its complement are
both connected, and so 0 < µ < k < n − 1. Furthermore, we exclude the complete and
the null graphs.
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An adjacency matrix A = [au,v] of a graph Γ = (V,E) is a |V |×|V | matrix with entries
au,v, u, v ∈ V , such that au,v = 1 if u ∼ v and au,v = 0 otherwise. An incidence matrix
of Γ is an |V | × |E| matrix G = [gu,e] with gu,e = 1 if the vertex u is on the edge e and
gu,e = 0 otherwise. We denote the row of G corresponding to vertex v by Gv.

If Γ is regular with valency k, then the 1-(|E|, k, 2) design with incidence matrix G is
called the incidence design of Γ. It was proved in [13] that if Γ is regular with valency k
and G the 1-(|E|, k, 2) incidence design for Γ, then Aut(Γ) = Aut(G). The neighbourhood
design of a regular graph is the 1-design formed by taking the points to be the vertices
of the graph and the blocks to be the sets of neighbours of a vertex, for each vertex, i.e.
regarding an adjacency matrix as an incidence matrix for the design. The line graph of a
graph Γ = (V,E) is the graph L(Γ) with E as vertex set and where adjacency is defined
so that e and f in E, as vertices, are adjacent in L(Γ) if e and f as edges of Γ share a
vertex in Γ.

The code of a graph Γ over a finite field F is the row span of an adjacency matrix A
over the field F , denoted by CF (Γ) or CF (A). The dimension of the code is the rank of
the matrix over F , also written rankp(A) if F = Fp, in which case we will speak of the
p-rank of A or Γ, and write Cp(Γ) or Cp(A) for the code. It is also the code over Fp of
the neighbourhood design. Similarly, if G is an incidence matrix for Γ, Cp(G) denotes the
row span of G over Fp and is the code of the design with blocks the rows of G, in the case
that Γ is regular.

A graph is bipartite if and only if it does not have an odd cycle.
We denote the complete graph on n vertices byKn, the complete bipartite graph on n+m

vertices whose partite sets have n and m vertices, respectively, by Km,n, and the cycle on n
vertices by Cn. A triangle is the graph K3. The graph obtained from Kn, where n is even,
by removing a perfect matching M , is denoted by Kn−M . We write Cn×K2 and Cn[K2]
for the cartesian product and the lexicographic product, respectively, of Cn and K2. These
graphs are obtained from the disjoint union of two cycles on n vertices, u0, u1, . . . , un−1, u0

and v0, v1, . . . , vn−1, v0 by adding the set of edges {uivi|i = 0, 1, . . . , n−1} for Cn×K2 and
{uivi−1, uivi, uivi+1|i = 0, 1, . . . , n − 1} for Cn[K2]. We denote by Mn the Mobius ladder
with n rungs, i.e., the graph obtained from Cn × K2 as defined above by replacing the
edges un−1u0 and vn−1v0 by un−1v0 and vn−1u0. The square of the cycle Cn, denoted by
C2
n, is the graph obtained from the cycle u0, u1, . . . , un−1, u0 by adding the edges uiui+2 for

i = 0, 1, . . . , n−1. All subscripts are to be taken modulo n. A graph is said to be triangle-
free or C4-free if it does not have a subgraph isomorphic to a K3 or C4, respectively.

2.3 Edge-cuts in graphs

If Γ = (V,E) is a connected graph, then an edge-cut of Γ is a subset S ⊆ E such that
removing the edges in S renders the new graph Γ−S disconnected. The edge-connectivity
of Γ, denoted by λ(Γ), is the minimum cardinality of an edge-cut of Γ. A bridge of a
connected graph is an edge whose removal disconnects the graph. So Γ has a bridge if
and only if λ(Γ) = 1.

If Γ − S has only nontrivial components, i.e., components with at least two vertices,
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then S is a restricted edge-cut. The minimal cardinality of a restricted edge-cut is the
restricted edge-connectivity, denoted by λ′(Γ).

Now assume that Γ = (V,E) is connected k-regular, k > 2.

• For x ∈ V , if S = {xy | y ∈ N(x)}, then S is an edge cut, so λ(Γ) 6 k.

• For xy ∈ E, if S = {xz | z ∈ N(x)}∪ {yz | z ∈ N(y)}−{xy}, then S is a restricted
edge-cut, so λ′(Γ) 6 2k − 2.

• Γ is maximally edge-connected if λ(Γ) = k, and Γ is super-λ if λ(Γ) = k and every
minimal edge-cut consists of the edges incident with some vertex.

• Γ is maximally restricted edge-connected if λ′(Γ) = 2k − 2, and Γ is super-λ′ if
λ′(Γ) = 2k − 2 and every minimal restricted edge-cut consists of the edges incident
with some edge.

• If a graph is super-λ′, then it is also super-λ (see Hellwig and Volkmann [18]).

In [8], a bipartition set of a non-bipartite graph Γ = (V,E) was defined to be a set
S ⊆ E such that Γ − S contains a bipartite component. The minimum cardinality of a
bipartition set of Γ is denoted by λbip(Γ).

A restricted bipartition set is a bipartition set S ⊆ E such that Γ− S has a nontrivial
bipartite component, i.e., a component that is bipartite and contains more than one
vertex. So Γ − S may contain isolated vertices, but at least one of the components of
Γ − S is a connected bipartite graph on at least two vertices. The minimum cardinality
of a restricted bipartition set of Γ is denoted by λ′bip(Γ).

Suppose Γ is connected, non-bipartite, k-regular k > 2.

• For x ∈ V , if S = {xy | y ∈ N(x)}, then S is a bipartition set, so λbip(Γ) 6 k.

• If |V | > 3 and xy ∈ E, if S = {xz | z ∈ N(x)} ∪ {yz | z ∈ N(y)} − {xy}, then S is
a restricted bipartition set, so λ′bip(Γ) 6 2k − 2.

• Γ is super-λbip if λbip(Γ) = k and every minimum bipartition set consists of the edges
incident with some vertex.

• Γ is super-λ′bip if λ′bip(Γ) = 2k − 2 and every minimum restricted bipartition set
consists of the edges incident with some edge.

• The minimum number of edges of Γ whose removal renders the graph bipartite is
denoted by b(Γ).

The concept of super edge-connectivity was first introduced by Bauer, Suffel, Boesch,
and Tindell [4] in 1981, and it has been studied extensively since. For G an incidence
matrix of a connected graph Γ, C2(G) is also known as the cut space of Γ, and was
examined for majority-logic decoding in [16, 17].
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3 Previous results

First we state the results from Dankelmann, Key, Rodrigues [8] that give the first answers
to the general questions about the codes from the incidence matrices of regular connected
graphs.

The first result is well-known and quoted in [8, Result 1]:

Result 1. Let Γ = (V,E) be a connected graph, G an incidence matrix for Γ, and Cp(G)
the row-span of G over Fp. Then dim(C2(G)) = |V | − 1. For odd p, dim(Cp(G)) = |V | if
Γ is not bipartite, and dim(Cp(G)) = |V | − 1 if Γ is bipartite.

The results from [8] for binary codes and that we now wish to extend to p-ary codes
are as follows, starting with the minimum weight and words, and then referring to a list
from the literature of such graphs that are super-λ, (see [8, Result 2]):

Result 2. (Dankelmann, Key, Rodrigues [8, Theorem 1]) Let Γ = (V,E) be a connected
graph, G a |V | × |E| incidence matrix for Γ. Then

1. C2(G) is a [|E|, |V | − 1, λ(Γ)]2 code;

2. if Γ is super-λ, then C2(G) = [|E|, |V | − 1, δ(Γ)]2, and the minimum words are the
rows of G of weight δ(Γ).

For the gap in the weight-enumerator, and referring to the list in [8, Result 4]:

Result 3. [8, Theorem 4] Let Γ = (V,E) be a connected k-regular graph with |V | > 4, G
an incidence matrix for Γ, λ(Γ) = k and λ′(Γ) > k. Let Wi be the number of codewords of
weight i in C2(G). Then Wi = 0 for k+1 6 i 6 λ′(Γ)−1, and Wλ′(Γ) 6= 0 if λ′(Γ) > k+1.

We had similar results for bipartite connected graphs for p odd:

Result 4. [8, Theorem 2] Let Γ = (V,E) be a connected bipartite graph, G a |V | × |E|
incidence matrix for Γ, and p an odd prime. Then

1. Cp(G) is a [|E|, |V | − 1, λ(Γ)]p code;

2. if Γ is super-λ, then Cp(G) = [|E|, |V | − 1, δ(Γ)]p, and the minimum words are the
non-zero scalar multiples of the rows of G of weight δ(Γ).

Result 5. [8, Theorem 5] Let Γ = (V,E) be a connected bipartite k-regular graph with
|V | > 4, G an incidence matrix for Γ, λ(Γ) = k and λ′(Γ) > k. Let Wi be the number of
codewords of weight i in Cp(G) where p is odd. Then Wi = 0 for k + 1 6 i 6 λ′(Γ) − 1,
and Wλ′(Γ) 6= 0 if λ′(Γ) > k + 1.

For non-bipartite graphs for the p-ary case to match Result 2 we had:

Result 6. [8, Theorem 3] Let Γ = (V,E) be a connected graph that is not bipartite, p be
an odd prime, and G be an incidence matrix for Γ. Then
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1. Cp(G) is a [|E|, |V |, λbip(Γ)]p code;

2. if Γ is super-λbip then Cp(G) = [|E|, |V |, δ(Γ)]p, and the minimum words are the
non-zero scalar multiples of the rows of G of weight δ(Γ).

For the previous result we used the following result, which we will use again in this
paper in order to extend Result 8 below:

Result 7. [8, Proposition 1] Let Γ = (V,E) be a connected graph that is not bipartite.
Then

λbip(Γ) > min{λ(Γ), b(Γ)}.

1. If Γ is k-regular, b(Γ) > k and λ(Γ) = k, then λbip(Γ) = k.

2. If Γ is k-regular and super-λ, and if b(Γ) > k then Γ is super-λbip.

Using the two previous results, for the non-bipartite p-ary case we had:

Result 8. [8, Corollary 3] Let Γ = (V,E) be a connected k-regular graph that is not
bipartite on |V | = n vertices, G an n× nk

2
incidence matrix for Γ, and p an odd prime. If

1. k > (n+ 3)/2 and n > 6, or

2. Γ is strongly regular with parameters (n, k, λ, µ), where
(a) n > 7, µ > 1, 1 6 λ 6 k − 3, or (b) n > 11, µ > 1, λ = 0,

then the code Cp(G) has minimum weight k, and the minimum words are the non-zero
scalar multiples of the rows of G.

In [8] we did not consider the nature of the words of weight 2k − 2, thus all cases for
that consideration are new to this paper.

The following conditions for a connected k-regular graph Γ to be super-λ′ can be found
in the literature. Firstly we state the results for non-bipartite graphs, but note that in
many cases the original paper contains more general statements.

Result 9. Let Γ = (V,E) be a k-regular connected graph on |V | = n vertices which is not
bipartite.
(a) Γ is super-λ if one of the following holds:

1. Γ is vertex-transitive and has no complete subgraph of order k (Tindell [27]);

2. Γ is edge-transitive and not a cycle (Tindell [27]);

3. Γ has diameter at most 2, and in addition Γ has no complete subgraph of order k
(Fiol [11]);

4a. Γ is strongly regular with parameters (n, k, λ, µ) with λ 6 k − 3, µ > 1 (from 3
above);
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4b. Γ is distance regular and k > 2 (Brouwer and Haemers [6]);

5. Γ is k-regular and k > n+1
2

(Kelmans [19]);

6. Γ has girth g, diam(Γ) 6 g−1 if g is odd and diam(Γ) 6 g−2 if g is even. (Fàbrega
and Fiol [10]).

(b) Γ is super-λ′ if one of the following holds:

1a′. Γ is vertex-transitive, has girth at least 5, and is not a cycle (Wang, [29]);

1b′. Γ is vertex-transitive and

(i) not contained in {Kn, Cn, Cm[K2], Cm ×K2, C
2
2m,Mm} where m = n

2
;

(ii) not a 4-regular vertex-transitive graph in which every vertex is contained in
exactly two triangles;

(iii) does not contain a (k−1)-regular subgraph with ` vertices where k 6 ` 6 2k−3;

(iv) does not contain a (k−1)-regular subgraph with 2k−2 vertices and n > 2k+1;

(v) does not contain a (k − 1)-clique and is not isomorphic to a (k + 1)-clique.

(Yang et al. [30]);

2′. Γ is edge-transitive, Γ /∈ {K6−M,Cn} and Γ is not the line graph of a triangle-free
3-regular edge-transitive graph (Tian and Meng [25]);

3a′. any two non-adjacent vertices of Γ have at least three neighbours in common, and
|V | > 13 (Wang et al. [28]);

3b′. any two non-adjacent vertices of Γ have at least two neighbours in common, any two
adjacent vertices have at most one neighbour in common, and |V | > 10 (Wang et
al. [28]);

4′. Γ is strongly regular with parameters (n, k, λ, µ) with either µ > 3 and n > 13, or
with λ 6 1, µ > 2 and n > 10 (from 3a′, b′ above);

5′. Γ is k-regular and k > 1
2
n+ 1 (Ou and Zhang [24]);

6′. Γ has girth g, and diam(Γ) 6 g − 3 (Balbuena, Lin, Miller [3]).

The similar results for bipartite graphs:

Result 10. Let Γ = (V,E) be a k-regular connected bipartite graph on n vertices.
(a) Γ is super-λ if one of the following holds:

1. Γ is half-vertex-transitive, i.e., its automorphism group acts transitively on each
partite set (Tian, Meng and Liang, [26]);

2. Γ is edge-transitive and not a cycle (Tindell [27]);
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3. Γ has diameter 3 (or equivalently, any two vertices in the same partite set have a
neighbour in common) and k < n

4
(Balbuena, Carmona, Fàbrega and Fiol [2]);

4. Γ is k-regular and k > bn+2
4
c+ 1 (Fiol [11]).

(b) Γ is super-λ′ if one of the following holds:

1′. Γ is half-vertex-transitive, Γ /∈ {Cn, Cn/2 ×K2,Mn/2}, and Γ contains no Kk−1,k−1

(Tian, Meng, and Liang [26]);

2′. Γ is edge-transitive, Γ 6= Q3 (hypercube with n = 8, k = 3), and Γ is not of girth 3
with k = 4 and n > 6 (J.-X. Zhou [32]);

3′. Γ has a perfect matching and any two vertices in the same partite set have at least
three common neighbours (Yuan et al. [31]);

4′. 4(k − 1)2 > k(n − 4) − 2 if n is odd, 4(k − 1)2 > k(n − 4) − 1 if n is even, and
n > 22 (Meierling and Volkmann [23]);

5′. Γ has girth g, and diam(Γ) 6 g − 3 (Balbuena, Lin, Miller [3]).

4 Words of weight 2k − 2 in the binary codes

Results 2 and 3 tell us about the minimum weight, the nature of the minimum words
and the gap in the weight enumerator, in the binary codes C2(G). We now establish the
nature of the words of the next weight, i.e. 2k − 2, for the k-regular connected graphs
that are super-λ′. We take k > 3 to avoid trivial cases.

Theorem 11. Let Γ = (V,E) be a k-regular, connected, super-λ′ graph. Let G be an
incidence matrix for Γ. Let Wi be the number of codewords of C2(G) of weight i. Then
Wi = 0 for i ∈ {1, 2, . . . , k − 1} ∪ {k + 1, k + 2, . . . , 2k − 3}. Moreover,

(i) Wk = |V | and the words of weight k are the rows of G;

(ii) W2k−2 = |E| and every word of weight 2k − 2 is a difference of two rows of G
corresponding to two adjacent vertices.

Proof. The nature of the minimum words and the gap in the weight enumerator follow
from Results 2 and 3, since Γ is also super-λ, as noted in Section 2.3.

Now let w be a word of weight 2k − 2, and S = Supp(w). Then, as shown in [8,
Theorem 1], Γ− S is disconnected, so S is an edge-cut. Suppose the components are W
and V −W . All the edges in S are between W and V −W , and since |S| = 2k − 2, W ,
and V −W must have at least two vertices, and thus S is a restricted edge-cut. Since its
size is λ′(Γ) and Γ is super-λ′, S must consist of all the edges through a pair of adjacent
vertices, x and y, excluding the edge xy. Thus w = Gx −Gy.
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Now the list of regular connected super-λ′ graphs in Result 9 can be consulted to see
which graphs this result applies to.

Example 12. In [12] uniform subset graphs were looked at and some properties deduced
that we can use here. For n > k > r > 0, define Γ = G(n, k, r) to be the graph
with vertex set Ω{k}, the set of k-subsets of a set Ω of size n, and adjacency defined
by the rule that a, b ∈ Ω{k} are adjacent if |a ∩ b| = r. The valency is ν =

(
k
r

)(
n−k
k−r

)
.

The graphs are edge-transitive (see, for example, [12]) and hence by a result quoted
in [8, Result 4(2)], for them λ′(Γ) = 2ν − 2. If they are super-λ′ then they will satisfy
Theorem 11. By Result 9(2′), this will be so if ν 6= 2, 4. The graphs with ν = 2, 4 are:
L(K3) = T (3) = G(3, 2, 1), L(K4) = T (4) = G(4, 2, 1) = K6 −M , i.e. triangular graphs,
and the odd graph O3 = G(7, 3, 0)1. Of these, T (3) has valency 2, so we exclude it; T (4)
has more words of weight 6 in C2(G); O3 does satisfy the conclusions of the theorem, as
does O2, the Petersen graph. Computations are with Magma [5, 7].

Example 13. For strongly regular graphs, Result 9 (4′) can be applied. For the Paley
graphs P (q) Theorem 11 will apply for q > 9. For q = 9, P (9) has parameters (9, 4, 1, 2)
and thus is not covered by that result, although it is covered by Result 2 for the minimum
words and the gap in the weight enumerator. In fact there are six words of weight
2k − 2 = 6 in C2(G) (where G is an incidence matrix for P (9)) that are not from the
difference of two intersecting rows. These are the words

∑
x∈∆ Gx where ∆ is any of the

six triangles of points in P (9).

5 Gap in the weight enumerator for p odd

Notice that from Result 5, we need only establish the gap in the weight enumerator for
the non-bipartite graphs for the p odd case.

In analogy to Results 3 and 5 we now have the following:

Theorem 14. Let Γ = (V,E) be a connected k-regular graph with λ(Γ) = k which is not
bipartite, G an incidence matrix for Γ, λbip(Γ) = k and λ′bip(Γ) > k. Let p be an odd
prime, and let Wi be the number of codewords of Cp(G) of weight i. Then Wi = 0 for
i = k + 1, k + 2, . . . , λ′bip(Γ)− 1, and Wi > 0 for i = λ′bip(Γ).

Proof. Let d be the minimum weight of Cp(G). By Result 6 we have d = k. It suffices to
show that for every nonzero word x ∈ Cp(G) we have wt(x) = k or wt(x) > λ′bip(Γ), and
that Cp(G) contains a word of weight λ′bip(Γ).

Fix a nonzero word x =
∑

v∈V µvGv, and for any scalar α define Vα to be the set of
all vertices v with µv = α. Let Γx = Γ(V,E − Supp(x)).

Consider a vertex v ∈ Vα where α 6= 0. For every neighbour w of v in Γx we have
vw /∈ Supp(x), and so µv + µw = 0, i.e., µw = −α. For every neighbour u of a neighbour
w of v in Γx, we have uw /∈ Supp(x) and so µw + µu = 0, i.e., µu = α. Repeating this
argument we obtain that the component of Γx containing v is bipartite, where the partite

1Frequently denoted O4 in the literature.
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set containing v is contained in Vα, and the partite set not containing v is contained in
V−α. So each component of Γx is either fully contained in Vα ∪ V−α for some α 6= 0 and
bipartite, or is contained in V0.

Case 1: Every nontrivial component of Γx is contained in V0.

Since x is not the zero-word, we have V − V0 6= ∅. If V − V0 contains only one vertex, v
say, then x has weight k and is a multiple of Gv. If V − V0 contains at least two vertices,
v and w say, then each of these vertices forms a component of Γx, and so every edge
incident with v or w is in Supp(x). Since at most one edge is incident with both, v and
w, we have |Supp(x)| > 2k − 1 > λ′bip(Γ), and so wt(x) > λ′bip(Γ), as desired.

Case 2: Γx contains a nontrivial component which is not contained in V0.

Then S = Supp(x) is a restricted bipartition set and so wt(x) = |S| > λ′bip(Γ), as desired.
To see that there exists a word of weight λ′bip(Γ) consider a minimum restricted bipar-

tition set S, and let Γ1 be a non-trivial bipartite component of Γ− S, and let V1 and V2

be the partite sets of Γ1. Let x =
∑

v∈V αvGv, where αv is defined as follows:

αv =


1 if v ∈ V1,
−1 if v ∈ V2,
0 if v ∈ V − (V1 ∪ V2).

Since no proper subset of S is a bipartition set, S contains exactly those edges that join
either two vertices of Γ1 in the same partite set, or a vertex in Γ1 to a vertex not in Γ1.
Hence S = Supp(x), and so wt(x) = |S| = λ′bip(Γ).

Recall that it has been shown by Hellwig and Volkmann [18] that if a graph is super-
λ′, then it is also super-λ. The following lemma shows that a similar statement holds for
super-λ′bip graphs.

Lemma 15. Let Γ be a connected, non-bipartite, k-regular graph, where k > 3.

(i) If λ′bip(Γ) > k then λbip(Γ) = k.

(ii) If λ′bip(Γ) > k then Γ is super-λbip.

(iii) If Γ is super-λ′bip, then Γ is also super-λbip.

Proof. Let S ⊂ E(Γ) be a minimum bipartition set and let Γ1 be a bipartite component
of Γ− S of largest order. We first note that if Γ− S is connected, then S is a restricted
bipartition set, and so λ′bip(Γ) = |S| = λbip(Γ) 6 k.
(i) Let λ′bip(Γ) > k. If Γ−S is connected, then it follows from the above that λbip(Γ) = k,
so we may assume that Γ − S is disconnected. If Γ1 consists of a single vertex, then S
contains the edges incident with this vertex, and so we have λbip(Γ) = |S| > k, and if Γ1

is a nontrivial component, then S is a restricted bipartition set, and so |S| > λ′bip(Γ) > k.
Since always λbip(Γ) 6 k, we have λbip(Γ) = k in all cases.
(ii) Since λ′bip(Γ) > k, it follows from the above that Γ − S is disconnected. Then Γ1
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consists of a single vertex, since otherwise S is a restricted bipartition set and we obtain
λbip(Γ) = |S| > λ′bip(Γ) > k, contradicting λbip(Γ) 6 k. Let v be the vertex in Γ1. Then
since S is a minimal bipartition set, it follows that only the edges incident with v are in
S. Since S is an arbitrary minimal bipartition set, this implies that Γ is super-λbip.
(iii) This statement is a direct consequence of (ii), since for every k-regular super-λ′bip
graph with k > 3 we have λ′bip(Γ) > k.

6 Words of weight 2k − 2 for p odd

Now we show that the words of weight 2k − 2 in the p-ary case for p odd are also, for a
wide variety of connected regular graphs, as expected. Notice that in the bipartite case
we can prove the following in precisely the same way as in Theorem 11 for the binary
case:

Theorem 16. Let Γ = (V,E) be a k-regular, bipartite, connected, super-λ′ graph. Let
G be an incidence matrix for Γ, p an odd prime. Let Wi be the number of codewords of
Cp(G) of weight i. Then Wi = 0 for i ∈ {1, 2, . . . , k − 1} ∪ {k + 1, k + 2, . . . , 2k − 3}.
Moreover,

(i) Wk = (p−1)|V | and the words of weight k are the scalar multiples of the rows of G;

(ii) W2k−2 = (p − 1)|E| and every word of weight 2k − 2 is a scalar multiple of the
difference of two rows of G corresponding to two adjacent vertices.

Consulting the list of families of graphs that are k-regular, bipartite, connected, and
super-λ′, will tell us which families satisfy the theorem. Some of these can be found in
Result 10.

Thus from now on we concentrate on the non-bipartite, p odd, case.

Lemma 17. Let Γ be a connected non-bipartite graph and let S be a minimum restricted
bipartition set. Then Γ− S contains exactly one bipartite component.

Proof. Let Γ1 be a non-trivial bipartite component of Γ− S. Suppose by way of contra-
diction that Γ − S has another bipartite component, Γ2 say. Since S is minimal, every
edge of S is incident with a vertex Γ1. Since Γ is connected it follows that there exists
an edge e ∈ S joining a vertex in Γ1 to a vertex in Γ2. We claim that S ′ = S − {e} is
a restricted bipartition set. Clearly, (Γ1 ∪ Γ2) + e is a nontrivial component of Γ − S ′.
This component does not contain an odd cycle since neither Γ1 nor Γ2 contain an odd
cycle, and there is no cycle containing e since e is a bridge of (Γ1 ∪ Γ2) + e. Hence it
is also bipartite, and so S ′ is a smaller restricted bipartition set, a contradiction to the
minimality of S.
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Theorem 18. Let Γ = (V,E) be a k-regular, connected, non-bipartite, super-λ′bip graph.
Let G be an incidence matrix for Γ. Let p be an odd prime, and let Wi be the number
of codewords of Cp(G) of weight i. Then Wi = 0 for i ∈ {1, 2, . . . , k − 1} ∪ {k + 1, k +
2, . . . , 2k − 3}. Moreover,

(i) Wk = (p−1)|V | and the words of weight k are the scalar multiples of the rows of G;

(ii) W2k−2 = (p − 1)|E|, and every word of weight 2k − 2 is a scalar multiple of a
difference of two rows of G corresponding to two adjacent vertices.

Proof. (i) It follows from [8, Theorem 3] that W1 = W2 = . . . = Wk−1 = 0 and the words
of weight k are the scalar multiples of rows of G. Hence we have Wk = (p− 1)n.

(ii) It follows from Theorem 14 and the fact that λ′bip(Γ) = 2k−2 that Wk+1 = Wk+2 =
. . . = W2k−3 = 0 and W2k−2 > 0. Consider a word x ∈ Cp(G) of weight 2k − 2. We use
the same notation as in the proof of Theorem 14. If every nontrivial component of Γx is
contained in V0, then, as in the proof of Theorem 14, w(x) either equals k or is at least
2k−1, so this case cannot occur. Hence Γx has a nontrivial component Γ1 not contained in
V0. As in the proof of Theorem 14, Γ1 is bipartite, i.e., Supp(x) is a restricted bipartition
set of cardinality wt(x) = 2k− 2. Since Γ is super-λ′bip, this implies that Supp(x) consists
of the edges incident with the vertices of an edge uv, except the edge uv itself, and that
Γ1 contains only the vertices u and v.

By Lemma 17, Γ1 is the only bipartite component of Γx. Therefore, µw = 0 for all
vertices w not in Γ1, and furthermore µu = −µv. Hence x = αGu − αGv for some scalar
α 6= 0, and so x is a scalar multiple of the difference of two rows of G corresponding to
adjacent vertices.

We will frequently make use of the following proposition in order to show that a graph
is super-λbip.

Proposition 19. Let Γ be a connected, k-regular graph that is not bipartite. Then

(a) λ′bip(Γ) > min{λ′(Γ), b(Γ)}.

(b) If λ′(Γ) = 2k − 2 and b(Γ) > 2k − 2, then λ′bip(Γ) = 2k − 2.

(c) If Γ is super-λ′ and b(Γ) > 2k − 2, then Γ is super-λ′bip.

Proof. (a) Let S be a set of cardinality λ′bip(Γ) such that Γ − S contains a nontrivial
bipartite component Γ1. If Γ1 contains all vertices of Γ, then Γ − S is bipartite, and
so |S| > b(Γ) > min{λ′(Γ), b(Γ)}. Hence we may assume that Γ1 does not contain all
vertices of Γ. By Lemma 17, Γ − S contains no bipartite component other than Γ1, and
in particular no trivial component. Hence every component of Γ − S is non-trivial, and
so S is a restricted edge-cut, implying that |S| > λ′(Γ). Hence (a) follows.
(b) The statement in (b) is a direct consequence of (a).
(c) Let S be as in (a). Since |S| = λ′bip(Γ) 6 2k − 2 < b(Γ), as above, S is a restricted
edge-cut, and S contains at most 2k− 2 edges. Since Γ is super-λ′, we have |S| = 2k− 2,
and S consists of the edges incident with an edge of Γ. Hence Γ is super-λ′bip.
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We now give sufficient conditions for a graph to be super-λ′bip or super-λbip.
We first consider conditions on the vertex degrees. In [8, Corollary 3] it was shown

that for a k-regular non-bipartite graph on n > 6 vertices with k > n+3
2

we always have
λbip(Γ) = k. Below we show that k > n+5

2
guarantees the non-bipartite graph to be

super-λ′bip. In the proof we use the well-known fact that a bipartite graph on n vertices

has at most n2

4
edges.

Proposition 20. Let Γ = (V,E) be a connected non-bipartite k-regular graph with |V | = n
and k > n+5

2
and n > 13. Then Γ is super-λ′bip.

Proof. We note that Γ is super-λ′ by Result 9(3a′), so, by Proposition 19(c) it suffices to
show that b(Γ) > 2k − 2.

Since a bipartite graph on n vertices has at most n2

4
edges, we have

b(Γ) > |E(Γ)| − 1

4
n2 =

1

2
kn− 1

4
n2 > 2k − 2.

It is easy to verify that the last inequality holds provided k > n+5
2

and n > 13.

Note that the condition k > n+5
2

is best possible to guarantee that Γ is super-λ′bip. To
see this let n be even and let Γ be the graph obtained from a complete bipartite graph
Kn/2,n/2 with partite sets U and W by adding the edges of two cycles, one through the
vertices of U , and the other through the vertices of W . Then Γ is k-regular with k = n+4

2
.

It is easy to verify that λ′bip(Γ) = b(Γ) = n = 2k − 4.

We note further that the condition k > n+3
2

given in [8] is best possible to guarantee
that λbip(Γ) = k. To see this let n ≡ 0 (mod 4) and let Γ be the graph obtained from a
complete bipartite graph Kn/2,n/2 by adding the edges of a perfect matching. Then Γ is
k-regular with k = n+2

2
. It is easy to verify that λ′bip(Γ) = b(Γ) = n

2
= k − 1.

We now give lower bounds on b(Γ) which will be needed when we consider strongly
regular graph, edge-transitive graphs and vertex transitive graphs. While several results
for upper bounds on b(Γ) are known (usually stated as lower bounds on the maximal
number of edges in a bipartite subgraph of Γ), little appears to be known regarding lower
bounds on b(Γ).

Lemma 21. Let a > 3 be odd, and let Γ be a graph of order n containing a cycle of length
a.

(i) If Γ is k-regular graph and every edge of Γ is on the same number of cycles of length
a, then b(Γ) > nk

2a
.

(ii) If every vertex of Γ is on the same number of cycles of length a, then b(Γ) > n
a
.

Proof. (i) Let each edge of Γ be contained in t cycles Ca, where t > 0. Then the total

number of cycles Ca in Γ equals |E|t
a

= nkt
2a

. Now removing an edge destroys at most t
cycles Ca. Hence, if S ⊆ E is a set of b(Γ) edges such that Γ − S is bipartite, |S|t is at
least the total number of cycles Ca. Hence |S|t > nkt

2a
and thus b(Γ) = |S| > nk

2a
.
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(ii) Let each vertex of Γ be contained in t cycles of length a, where t > 0. Then the
total number of cycles Ca in Γ equals nt

a
. Consider an arbitrary edge uv. Each cycle

through uv also goes through u, so there are at most t cycles through uv, i.e., removing
uv destroys at most t cycles Ca. As above, |S|t > nt

a
and thus b(Γ) = |S| > n

a
.

Now consider strongly regular graphs.

Theorem 22. Let Γ = (V,E) be a strongly regular graph with parameters (n, k, λ, µ) that
is not bipartite. Then Γ is super-λ′bip if one of the following conditions hold:
(i) λ > 1, µ > 3, n > 13; (ii) λ = 1, µ > 2, n > 10; (iii) λ = 0, µ > 2, n > 19.

Proof. Under the conditions given in the statement Γ is super-λ′ by Result 9(4′). Hence,
by Proposition 19 it suffices to show that b(Γ) > 2k − 2.

First suppose λ > 1. Then every edge is on exactly λ > 1 triangles. Applying
Lemma 21 (i) with a = 3, we get that b(Γ) > nk

6
> 2k − 2, i.e. nk > 12k − 12, which is

true for n > 11, and thus for n > 13 to give (i).
If λ = 1 and µ > 2, then Γ still has triangles, so if n > 11 the conditions are satisfied.

If n = 10 then by Equation (1), (9 − k)µ = k(k − 2) and there are no solutions with
0 < µ < k < 8 of this, so (ii) is proved.

If λ = 0 then it is easy to show that Γ has 5-cycles, and that every edge is on the same
number of 5-cycles. Hence, by Lemma 21 we have b(Γ) > nk

10
> 2k− 2, i.e. nk > 20k− 20

true for n > 19, and thus (iii) is proved.

It was noted in [8] that for vertex transitive graphs λbip(Γ) does not necessarily equal
k, and the same holds true for edge-transitive and arc-transitive graphs. Below we show
that under very mild additional assumptions vertex- or edge-transitive graphs do not only
satisfy λbip(Γ) = k, but are also super-λ′bip.

We first consider edge-transitive graphs. In the proof of the following theorem we
make use of the well known fact that a shortest odd cycle in a graph is always a geodesic
subgraph, i.e., the distance between two vertices in such a cycle is equal to the distance
between the two vertices in the graph Γ. We further use bounds on the radius of graphs.
The radius, rad(Γ), is defined as the smallest among the eccentricities of the vertices,
where the eccentricity of a vertex v is the largest of the distances between v and all other
vertices in Γ.

The following bound can be found in [9].

Result 23. Let Γ be a connected graph of order n and minimum degree δ. If Γ contains
no 4-cycle, then rad(Γ) 6 5n/2(δ2 − 2bδ/2c+ 1).

Lemma 24. Let Γ be a connected k-regular, edge-transitive, triangle-free graph which is
not bipartite. Then
(a) if k > 5 then b(Γ) > k; (b) if k > 7 then b(Γ) > 2k − 2.
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Proof. Let C be an odd cycle of shortest length, g0 > 5. We first derive a lower bound on
n in terms of g0 and k. Let S = ∪v∈V (C)N(v). Every vertex of Γ is adjacent to at most
two vertices of C since a vertex adjacent to three or more vertices of C would produce
a triangle or a shorter odd cycle. Hence no vertex of Γ is in more than two sets N(v),
v ∈ V (C), and so

n > |S| > 1

2

∑
v∈V (C)

|N(v)| = 1

2
g0k.

Applying Lemma 3 we get

b(Γ) >
nk

2go
>
k2

4
.

The right hand side of the last inequality is greater than k if k > 5, and greater than
2k − 2 if k > 7.

Theorem 25. Let Γ = (V,E) be a connected k-regular (k > 3), edge-transitive graph
which is not bipartite, nor a line graph of a 3-regular, triangle-free, edge-transitive, 2-
path-transitive graph. Let |V | = n.

1. If Γ contains triangles then
(i) if n > 7 then Γ is super-λbip; (ii) if n > 11 then Γ is super-λ′bip.

2. If Γ is triangle-free, then
(iii) if k > 5 then Γ is super-λbip; (iv) if k > 7 then Γ is super-λ′bip.

Proof. First use Result 9(2′) to show that Γ is super-λ′: if Γ is triangle-free then it cannot
be K6 −M , nor a line graph, since for k > 3 the line graph will have triangles; if Γ has
triangles and n > 7 then Γ is not K6−M , and is not the line graph of a 3-regular graph as
described in Result 9(2′), in which case k = 4. Since this family is excluded, Result 9(2′)
is satisfied, and so by Result 7 and Proposition 19 it suffices to show that b(Γ) > k for (i)
and (iii), and b(Γ) > 2k − 2 for (ii) and (iv).

If Γ contains triangles, then every edge is on the same number of triangles. Hence, by
Lemma 21 we have b(Γ) > nk

6
, and thus b(Γ) > k for n > 6 and b(Γ) > 2k− 2 for n > 11,

implying (i) and (ii).
If Γ is triangle-free, that b(Γ) > k and b(Γ) > 2k− 2 for the stated values of k follows

from Lemma 24.

The above theorem shows that regular edge-transitive graphs of sufficiently large
vertex-degree are always super-λ′bip. That this is not necessarily the case for edge-transitive
graphs with small vertex-degrees, even if we assume arc-transitivity, can be seen from the
following examples of 4- and 6-regular arc-transitive graphs for which λ′bip(Γ) < 2k − 2.

Example 26. Let n > 3 be an odd integer, and let a ∈ {2, 3}. Consider the graph
Γ = Cn[Ka], i.e., the graph with vertex set

⋃n
i=1 Ui, where the Ui are disjoint sets of

cardinality a, with all a2 edges between Ui and Ui+1, where the indices are taken modulo
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n. Hence Γ is edge-transitive and k-regular with k = 2a. It is easy to verify that the set of
all edges between Un and U1 is a minimum bipartition set, so λ′bip(Γ) = a2 < 2k−2 = 4a−2
for a ∈ {2, 3}.

We now consider vertex-transitive graphs.

Lemma 27. Let Γ be a connected k-regular, vertex-transitive graph with no 4-cycles, that
is not bipartite. Then
(a) if k > 7 then b(Γ) > k; (b) if k > 12 then b(Γ) > 2k − 2.

Proof. Let C be an odd cycle of shortest length, go, and let v be a vertex on C. Since Γ
is vertex-transitive, the eccentricity of v equals the radius of Γ. Then the two vertices, u
and w, opposite v in C are at distance go−1

2
from v in C. Since C is an isometric subgraph

of Γ, we have

go − 1

2
= dC(v, w) = dΓ(v, w) 6 rad(Γ) 6

5n

2(δ2 − 2bδ/2c+ 1)

where the last inequality follows from Proposition 23. Dropping the floors in the last
fraction, we obtain that

go 6
5n+ k2 − k + 1

k2 − k + 1
.

Applying Lemma 21, we get

b(Γ) >
n

go
>

n(k2 − k + 1)

5n+ k2 − k + 1
.

The right hand side of the last inequality is increasing in n for fixed k. Since Γ has no
4-cycles, we have n > k2 − 2bk/2c+ 1. (This well-known inequality follows from the fact
that a vertex of Γ, v say, has k neighbours, and the neighbourhoods of any two neighbours
of v have no vertex in common other than v, since otherwise v would be on a 4-cycle. Note
that a neighbour of v may be adjacent to at most one other neighbour of v, which means
that at most 2bk/2c neighbours of v are adjacent to another neighbour of v.) Substituting
this for n yields, after a simple calculation, that b(Γ) > k for k > 7, and b(Γ) > 2k − 2
for k > 12.

Theorem 28. Let Γ be a connected k-regular, vertex-transitive graph with no 4-cycles,
that is not bipartite. Then
(i) if k > 7 then Γ is super-λbip; (ii) if k > 12 then Γ is super-λ′bip.

Proof. For (i), from Result 9(1), Γ is super-λ since Γ does not contain K7 as a subgraph.
By Lemma 27(a), if k > 7 then b(Γ) > k. Hence, by Result 7, Γ is super-λbip.

For (ii), take k > 12 so that by Lemma 27(b), b(Γ) > 2k − 2. If Γ has no triangles
then by Result 9(1a′), Γ is super-λ′. Since b(Γ) > 2k − 2, it follows by Proposition 19(c)
that Γ is super-λ′bip.
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If Γ has triangles, we must use Result 9(1b′). Since k > 12, and Γ has no 4-cycles,
Γ is not in (i) or (ii) of Result 9(1b′). Suppose Result 9(1b′)(iii) or (iv) that Γ has a
(k− 1)-regular subgraph ∆ = (W,F ) on ` vertices where k 6 ` 6 2k− 2. Let u ∈ W and
N be the set of k − 1 neighbours of u. If U = W − (N ∪ {u}), then |U | = `− k 6 k − 2.
Clearly ` = k would imply ∆ = Kk, which we cannot have. So U 6= ∅. Any v ∈ U has
k− 1 neighbours in ∆, at most k− 3 of which can be in U ; uv is not an edge, so v has at
least two neighbours x, y ∈ N . Then (u, x, v, y) is a 4-cycle in Γ, which we have excluded.
Thus Γ is not of this type. That Γ cannot be of type Result 9(1b′)(v) is immediate since a
(k− 1)-clique where k > 12 would have 4-cycles. Hence Γ is super-λ′, and thus super-λ′bip
since b(Γ) > 2k − 2.

We note that for k-regular vertex-transitive graphs the inequality λbip(Γ) > k does
not hold in general if 4-cycles are present, even for arbitrarily large vertex degrees. To
see this consider the following example.

Example 29. Let a, b be integers greater than 1, a even and b odd, and let Γ1,Γ2, . . . ,Γb

be disjoint copies of the complete bipartite graph Ka,a. Let Ui = {ui1, ui2, . . . , uia} and
Wi = {wi1, wi2, . . . , wia} be the partite sets of Γi. Let Γ be the graph obtained from the
union of the Γi by adding the edges uia/2+jw

i+1
j and wia/2+ju

i+1
j , j = 1, 2, . . . , a/2, between

Γi and Γi+1 for i = 1, 2, . . . , b− 1, and the edges uba/2+ju
1
j and wba/2+jw

1
j , j = 1, 2, . . . , a/2

between Γb and Γ1. It is easy to verify that Γ is (a + 1)-regular and vertex-transitive.
Clearly, the graph Γ−{uba/2+ju

1
j , w

b
a/2+jw

1
j | j = 1, 2, . . . , a/2} is bipartite with partite sets⋃

Ui and
⋃
Wi, but Γ is not bipartite. Since removing the set {uba/2+ju

1
j , w

b
a/2+jw

1
j | j =

1, 2, . . . , a/2} renders Γ bipartite, we have b(Γ) 6 |{uba/2+ju
1
j , w

b
a/2+jw

1
j | j = 1, . . . , a/2}| =

a. Hence Γ is (a+ 1)-regular, but λbip(Γ) 6 b(Γ) 6 a.

Corollary 30. Let Γ be a connected, k-regular graph on n vertices that is not bipartite,
and let p be an odd prime. Let G be an incidence matrix for Γ. Then dim(Cp(G)) = n
and if any one of the following holds:

1. k > n+5
2

and n > 13;

2. Γ is strongly regular with parameters (n, k, λ, µ) with
(i) λ > 1,µ > 3, n > 13; or (ii) λ = 1, µ > 2, n > 10; or (iii) λ = 0, µ > 2,
n > 19;

3. Γ is edge-transitive, k > 3 and
(i) Γ contains triangles and n > 11, or (ii) Γ is triangle-free and k > 9;

4. Γ is vertex-transitive, contains no 4-cycles, and k > 12,

then the minimum weight of Cp(G) is k, the words of weight k are precisely the scalar
multiples of the rows of G, there are no words of weight i such that k < i < 2k − 2, and
the words of weight 2k− 2 are precisely the scalar multiples of the differences of two rows
of G corresponding to two adjacent vertices of Γ.
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Proof. Using Theorem 18: (1) follows from Proposition 20; (2) follows from Theorem 22;
(3) follows from Theorem 25; (4) follows from Theorem 28.

These conditions can be weakened somewhat if only the minimum weight and the
nature of the minimum words is required, so that Result 8 could be extended to the
following:

Corollary 31. Let Γ be a connected, k-regular graph on n vertices that is not bipartite,
and let p be an odd prime. Let G be an incidence matrix for Γ. Then dim(Cp(G)) = n
and if any one of the following holds:

1. k > n+3
2

and n > 6;

2. Γ is strongly regular with parameters (n, k, λ, µ) where
(a) n > 7, µ > 1, 1 6 λ 6 k − 3, or (b) n > 11, µ > 1, λ = 0;

3. Γ is edge-transitive, k > 5;

4. Γ is vertex-transitive, k > 7, and Γ contains no complete subgraph of order k,

then the minimum weight of Cp(G) is k and the words of weight k are precisely the scalar
multiples of the rows of G.

Proof. The first two cases are from Result 8.
For (3), if Γ is edge-transitive, and k > 3 then by Result 9 (2) it is super-λ, so using

Result 7, if we can show that b(Γ) > k then we will have Γ super-λbip and hence we can
use Result 6. From Lemma 24 we see this is true if k > 5.

For (4), if Γ is vertex-transitive, with no complete subgraph of order k, then by
Result 9 (1), it is super-λ, so using Result 7, if we can show that b(Γ) > k then we
will have Γ super-λbip and hence we can use Result 6. From Lemma 27 this is true for
k > 7.

Example 32. The Hamming graph H(d, q), where q, d > 2, has for vertices the qd words
of length d over an alphabet of q elements, and where two vertices are adjacent if their
words differ in exactly one position. For all d, q H(d, q) is k-regular with k = d(q − 1),
and it is edge-transitive. It is bipartite if q = 2, and for d > 4 H(d, 2) = Qd will satisfy
Theorem 16, using Result 10(2′). For d = 3, H(3, 2) = Q3 and for all p there are words
of weight 4 that are not from the difference of two intersecting rows. For q > 3, H(d, q)
contains triangles, and so the conclusion of Corollary 30(3) holds for H(d, q) for p odd if
qd > 11, i.e. all d > 2 and q > 3 apart from d = 2, q = 3. Using Magma H(2, 3) was
shown not to satisfy the conclusion for all p. Note that for the binary case it is excluded
by Result 9(2′) since H(2, 3) = L(K3,3).
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Example 33. The square lattice graph L2(m) and the triangular graph T (m) (G(m, 2, 1)
in the notation of Example 12) are edge-transitive, both are line graphs and thus con-
tain triangles, and so the conclusion of Corollary 30(3) holds for these graphs if they
have at least 11 vertices, i.e., for L2(m) if m > 4, and for T (m) if m > 6. Both
graphs are also strongly regular: L2(m) is an (m2, 2(m − 1),m − 2, 2) and T (m) is
(
(
m
2

)
, 2(m − 2),m − 2, 4), and neither L2(3) nor T (5) satisfy the requirements of Corol-

lary 30(2). Notice that for G an incidence matrix for T (5), Cp(G), for any p odd,
has words of weight 10 that are not the difference of two rows. These can be con-
structed from two disjoint 5-cycles, for example c1 = ({1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 1})
and c2 = ({1, 3}, {3, 5}, {5, 2}, {2, 4}, {4, 1}), and then w =

∑
u∈c1 Gu −

∑
u∈c2 Gu has

weight 10 but is not a scalar multiple of the difference of two rows ofG. There are six words
of this type, not counting scalar multiples. Similarly, for G an incidence matrix of L2(3),
Cp(G) has words of weight 6 that are not scalar multiples of the difference of two rows of G.
If the bipartite sets of K3,3 are {1, 2, 3}, {4, 5, 6} then if s1 = {{1, 4}, {1, 5}, {2, 4}, {3, 6}},
s2 = {{1, 6}, {2, 5}, {2, 6}, {3, 4}, {3, 5}}, w =

∑
u∈s1 Gu −

∑
u∈s2 Gu has weight 6 and is

not a scalar multiple of the difference of two rows of G. There are 36 words of this type,
modulo scalar multiples.

Example 34. For the uniform subset graphs G(n, k, r) (see Example 12), since they are
edge-transitive, Corollary 30(3), is applicable. In [12] it was shown that G(n, 1, 0) (i.e.
Kn), which contains triangles for n > 3, satisfies the conclusions of Corollary 30 for n > 9
for p odd, a slight improvement on Corollary 30(3)(i).

Example 35. For P (9) (see Example 13), strongly regular of type (9, 4, 1, 2), C2(G)
(where G is an incidence matrix) has words of weight 6 that are not differences of rows of
G. Similarly Cp(G) is covered by Corollary 31(2) but not by Corollary 30(2), and it has
words of weight 6 that are not differences of rows of G. These can be obtained from a
6-cycle (x1, . . . , x6) that is an isometric subgraph of P (9), in which case w =

∑6
i=1 Gxi−

has weight 6 and Supp(w) = {x1x2, x2x3, x3x4, x4x5, x5x6, x6x1}. An example of such a
cycle is (1, w5, w6, w2, w, w4) where w is a primitive root of the polynomial X2 + 2X + 2
over F3.

7 Conclusion

In this paper we have used the notion of edge-connectivity, and related concepts, and the
vast literature devoted to the study of classes of graphs that have the various connectivity
properties, to show that for a wide range of classes of k-regular connected graphs Γ =
(V,E), the p-ary code, for any prime p, generated by the row span over Fp of a |V | × |E|
incidence matrix G for Γ has dimension |V | or |V | − 1 and the properties:

• the minimum weight is k and the vectors of weight k are the scalar multiples of the
rows of G, i.e. up to scalar multiples, there are |V | words of weight k;
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• there are no words of weight i such that k < i < 2k − 2, and the words of weight
2k − 2 are the scalar multiples of the differences of two rows of G corresponding to
adjacent vertices, i.e. up to scalar multiples, there are |E| words of weight 2k − 2.

In particular, for graphs satisfying these conditions, non-isomorphic graphs give non-
isomorphic codes from their incidence matrices since an incidence matrix of such a graph
can be recovered from the words of minimum weight of the code. The work extends the
results from [8]. Furthermore, if the graph has an edge-transitive automorphism group,
these codes can be used for full error-correction using permutation decoding, as described
in [8, Result 7].
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