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Abstract. Since the publication in 1992 of “Designs and their Codes” significant progress has
been made in the general area of codes coming from designs. This article reviews this progress and
presents some of the results — including confirmation of certain conjectures made and answers to
some of the questions raised in the book.
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1. Introduction

“Designs and their Codes” [3] described the association of linear error-correcting
codes with designs and collected together many of the significant known results.
Recall that the linear p-ary code associated with a design D is equivalent to the
row space over the finite field Fp (where p is a prime) of an incidence matrix
for D with rows indexed by the blocks of D and columns indexed by the points.
Various classes of designs were discussed in the book and the corresponding results
concerning the codes were described and established. A second printing — with
corrections but substantially unchanged — appeared in 1993; here we will review
some of the classes of designs discussed in the book — updating the results —
and also examine further cases not covered there. We arrange this survey into the
following ten sections:

1. Introduction

2. Basic definitions and terminology

3. Projective and affine planes

4. Oval designs

5. Hadamard designs

6. Unitals

7. Steiner triple systems
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8. Finite geometries and rigidity theorems

9. Dual structures and the “point” code of a design

10. Strongly regular graphs and their p-ranks

Notice that the survey is restricted to results related to codes associated with de-
signs; thus there are some notable omissions concerning progress in design theory,
in particular with respect to difference sets, where there have been important de-
velopments. (See [18] and [72] for a survey of recent results concerning difference
sets.) We have, moreover, included nothing concerning the theory of Reed-Muller
and generalized Reed-Muller codes, the subject of Chapter 5 of [3], since we have
already prepared an updated version of that chapter which is available as a report
[5] and will appear in The Handbook of Coding Theory — which is to be published
by Elsevier.

2. Basic definitions and terminology

Our notation is quite standard and we refer the reader to the Glossary of [3]. We
recall, however, some of the definitions we need.

An incidence structure D consisting of a block set B on a point set P of size v is a
t-(v, k, λ) design — or t-design for short — if every block is incident with precisely k
points and any set of t distinct points are together incident with precisely λ blocks.
When |B| = |P|, t is at most 2 and, when t = 2, we refer to the symmetric design as
a (v, k, λ) design. It follows (see [3], Chapter 1) that a t-design is also an s-design
for any s < t; we denote the number of blocks incident with s points by λs. The
order of a t-design, where t ≥ 2, is n = λ1 − λ2. Because of the statistical origins
of the theory, λ1 is frequently denoted by r and λ0 by b. We take the incidence
matrix of an incidence structure to be the |B| × |P| matrix of 0s and 1s where the
entry indexed by (B, x) is 1 if and only if the block B is incident with the point x.

For any field F , FP is the vector space of functions from P to F with basis given
by the characteristic functions of the singleton subsets of P. If D is an incidence
structure, the code CF (D) of D over F is the subspace of FP spanned by the
characteristic functions, vB with B in B, of the blocks of D. Viewed concretely
this code is simply the row space of an incidence matrix of the incidence structure.
If F = Fp we write Cp(D), or sometimes merely C(D) if p is understood, and the
dimension of Cp(D) is referred to as the p-rank of D. It is a well-known result,
stated and proved in [3], Theorem 2.4.1, that the prime p must divide the order
of the 2-design for the p-ary code of the design to be of any use or interest in any
characterization. We wish to emphasize, however, that recent results indicate that
in some cases, in particular in the case of Steiner triple systems, the column space
of the incidence matrix — i.e. the code of the dual structure (see below) — is of
interest for any prime p.

In considering the code C associated with a structure, it is necessary also to
consider the orthogonal code C⊥, where, in this update, the orthogonal is always
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taken with respect to the standard inner product, namely (u, w) =
∑

x∈P u(x)w(x)
for u, w ∈ FP . Thus

C⊥ = {u |u ∈ FP and (u, w) = 0 for all w ∈ C}.

Recall that for a design D and a field F , the following codes, closely related to
CF (D), sometimes play an important role

CF (D) ∩ CF (D)⊥ = HullF (D) = HF (D),

CF (D) + CF (D)⊥ = HullF (D)⊥ = BF (D),

and

〈vB − vC |B,C ∈ B〉 = 〈vB − vB0 |B ∈ B〉 = EF (D),

where B0 is some fixed vector in B. If F is Fp, then Hp, Bp, and Ep have the
obvious meaning.

Also of interest is the code of the dual structure Dt where, if D has block set B
and point set P, then Dt has block set P and point set B with a “block” x incident
with a “point” B precisely when B was incident with x in D. Concretely it is the
column space of an incidence matrix for D which is the same as the row space of an
incidence matrix for Dt since these matrices are transposes of one another. Even
when D is a symmetric design the codes CF (D) and CF (Dt) may not be isomorphic
although they do, of course, have the same block length and dimension.

Recall that the weight of a vector is the number of non-zero coordinates. Clearly
the code of a design will have minimum weight at most the block size k and the
code of the dual structure will have minimum weight at most λ1 = r.

3. Projective and affine planes

Finite projective planes of order n are symmetric designs with parameters (n2 +n+
1, n + 1, 1) and finite affine planes are designs with parameters 2-(n2, n, 1), where
again n is the order of the plane.

The basic general results concerning codes of planes are developed in [3], Chap-
ter 6, and we state here the main results.

Theorem 1 Let Π be a projective plane of order n and let p be a prime dividing
n. Set H = Hullp(Π) and B = H⊥. If k is the dimension of Cp(Π), then B is an
[n2 + n + 1, n2 + n + 2 − k, n + 1] code and the minimum-weight vectors of B are
precisely the scalar multiples of the incidence vectors of the lines of Π. Moreover,
Hullp(Π) = Ep(Π).

Thus the plane can be retrieved from the minimum-weight vectors of Cp(Π) and
hence different planes must have different codes. There has been little progress
in the main outstanding conjectures in this area, in particular the Hamada-Sachar
conjecture (see [3], Conjecture 6.9.1):
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Conjecture 1 Every projective plane of order pt, p a prime, has p-rank at least(
p+1
2

)t
+ 1 with equality if and only if it is desarguesian.

The Hamada-Sachar conjecture remains the most important conjecture; its truth
would imply that the only planes of prime order are the desarguesian planes since,
in the prime case, the p-rank of any projective plane of prime order p is

(
p+1
2

)
+1.

Concerning the orthogonal code, the general result is

Theorem 2 If Π is a projective plane of order n and p is a prime dividing n, then
the minimum weight of Cp(Π)⊥ is at least n + 2. If the minimum weight is n + 2
then n is even, p = 2 and the minimum-weight vectors are all incidence vectors of
ovals in Π.

There are projective planes of even order — namely certain non-translation planes
of order 16 — containing no ovals1 (see [55]). Of course, the classical desarguesian
planes always have ovals, namely those coming from conics, but for orders greater
than 8 there are others and there has been progress both in producing and classi-
fying these (see, for example, [53]). Moreover we know that the ovals generate the
dual of the plane in this case: see Theorem 9 below.

The general situation for affine planes is outlined in the following theorem:

Theorem 3 If π is an affine plane of order n and p is a prime dividing n, then
the minimum weight of B = Hullp(π)⊥ is n and all minimum-weight vectors are
constant 2. Further,

Hullp(π) = 〈vL − vM | L and M parallel lines of π〉.

We are left with the question concerning the nature of the minimum-weight vec-
tors of Cp(π), where π is an arbitrary affine plane. We know that the scalar multiples
of the incidence vectors of the lines of π are among the minimum-weight vectors and
that they are the only minimum-weight vectors when π is of prime order; moreover,
when π is desarguesian these vectors are, again, the only minimum-weight vectors
(see Theorem 5 below). Gordon Royle [59] has found a way to isolate the vectors
of weight 9 in the ternary codes of each of the six non-desarguesian affine planes of
order 9 and has determined that only the scalar multiples of the incidence vectors
of lines occur. Knowledge of the Baer subplanes in each of these planes confirms
this, since, by Corollary 6.4.2 of [3], page 211, any weight-9 vector in the ternary
code of the plane must be the incidence vector of a line or a Baer subplane. It
might thus be tempting to conjecture that the minimum-weight vectors of the code
of any affine plane of order the square of a prime must be scalar multiples of the
incidence vectors of the lines but we are not aware of any further evidence for this.
The general case is still undecided. It is perhaps worth mentioning here that none
of the weight distributions of the ternary codes of the seven affine planes of order
nine has been computed. Here are the known results in the desarguesian case:
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Theorem 4 Let p be any prime, q = pt, and Π = PG2(Fq). Then Cp(Π) is a
generalized Reed-Muller code and has dimension

(
p+1
2

)t
+ 1. The minimum-weight

vectors of Cp(Π) are the scalar multiples of the incidence vectors of the lines. Fur-
ther, Hullp(Π) has minimum weight 2q with the minimum-weight vectors the scalar
multiples of the differences of the incidence vectors of distinct lines of Π. The
minimum weight d⊥ of Cp(Π)⊥ satisfies

q + p ≤ d⊥ ≤ 2q,

with equality at the lower bound if p = 2.

For affine planes we have

Theorem 5 If π = AG2(Fq), then Cp(π) is a generalized Reed-Muller code and
has dimension

(
p+1
2

)t
. The minimum weight of Cp(π) is q, and the minimum-weight

vectors of Cp(π) are the scalar multiples of the incidence vectors of the lines of π.
Further, Hullp(π) has minimum weight 2q, with the minimum-weight vectors the
scalar multiples of the differences of the incidence vectors of distinct parallel lines
in π. The minimum weight d⊥ of Cp(π)⊥ satisfies

q + p ≤ d⊥ ≤ 2q,

with equality at the lower bound when p = 2.

Question 1 If D is a finite projective or affine plane of order n, and p is a prime
dividing n, what is the minimum weight of Hullp(D) and what is the nature of the
minimum-weight vectors?

We believe that the minimum weight is 2n, but we have no idea how one might
prove this. A projective plane with the property that the only minimum-weight
vectors are the vectors vL− vM where L and M are lines, was called “tame” in [3].
Desarguesian planes are tame and it is possible that only the desarguesian planes
are tame, but we have no evidence for this.

The enumeration of translation planes has been pushed to order 49 by Rudi
Mathon and Gordon Royle, [44]. All the 7-ranks have been computed and, curiously,
all are odd. None meets the bound, namely 1135, given in Theorem 6.8.1 of [3].
We are indebted to Gordon Royle for the table of ranks, Table 1.

There have been some interesting developments in the study of the codes of
desarguesian planes and we now turn to these. In a paper primarily devoted to nets,
Moorhouse [47] established a basis for the affine desarguesian plane of prime order
p, and hence also for the projective desarguesian planes of prime order. Dougherty
[26] extended Moorhouse’s results concerning nets. Notice that in the prime case
the hull of the plane is equal to the orthogonal code for both the projective and
affine cases.

Theorem 6 Let π denote the desarguesian affine plane AG2(Fp) of prime order
p. A basis for the code Cp(π) can be found by taking the incidence vectors of the
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Table 1. The translation planes of order 49

7-rank Number 7-rank Number

785 1 919 1
855 1 921 7
897 1 925 4
899 2 927 4
901 1 929 5
905 1 931 12
907 5 933 4
911 2 935 18
913 1 937 25
915 5 939 179
917 4 941 1064

following lines: all the p lines from any one parallel class; any p− 1 lines from any
other parallel class; and so on, until a single line is chosen from one of the final
two parallel classes, and no lines are chosen from the remaining class. This gives

p + (p− 1) + (p− 2) + · · ·+ 1 =
1
2
p(p + 1) =

(
p + 1

2

)
lines, whose incidence vectors form a basis for Cp(π).

Thus we have

Corollary 1 With notation as in the theorem, a basis for Cp(π)⊥ that consists of
minimum-weight vectors can be found by taking the difference of pairs of incidence
vectors of lines chosen as follows: choose any one line from each of the parallel
classes chosen as in the theorem; for each class take the pair consisting of the
chosen line and each other line chosen for the basis. This gives

(p− 1) + (p− 2) + · · ·+ 1 + 0 =
1
2
p(p− 1) =

(
p + 1

2

)
− p

vectors that form a basis.

Since the code of the projective plane can be found by simply adding the line at
infinity and its points, the following is immediate:

Corollary 2 Let Π denote the desarguesian projective plane PG2(Fp) of prime
order p. A basis for the code Cp(Π) can be found by taking the incidence vectors of
the following lines: choose any one line L; then take all the other p lines through
any one point; any p− 1 lines from a second point on L; and so on, until a single
line is chosen from one of the final two points, and no lines are chosen through the
last point. This gives

1 + p + (p− 1) + (p− 2) + · · ·+ 1 =
1
2
p(p + 1) + 1 =

(
p + 1

2

)
+ 1
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lines, whose incidence vectors form a basis for Cp(Π).
Further, a basis for Cp(Π)⊥ that consists of minimum-weight vectors can be found

by taking all the differences of the incidence vectors of each line chosen as above,
starting from the second line, with the first, L. This gives

p + (p− 1) + (p− 2) + · · ·+ 1 =
1
2
p(p + 1) =

(
p + 1

2

)
vectors that form a basis.

Recently Blokhuis and Moorhouse [7] found a basis of minimum-weight vectors
for PG2(Fp) (and hence for the affine case as well), involving any conic in the plane.

Theorem 7 Let Π denote the desarguesian projective plane PG2(Fp) of prime
order p, and let C denote a conic in Π. Then a basis for the code Cp(Π) can be
found by taking the incidence vectors of all nonsecants to C, i.e. all tangents and
exterior lines.

A basis for Cp(Π)⊥ can be found by taking the complements of the incidence
vectors of the secants.

The basis for C⊥ given in the theorem is not in terms of minimum-weight vectors,
but that can be found again quite simply by taking all the differences vL − vL0 ,
where L0 is some chosen tangent or exterior line. Similarly it is easy to get a basis
in the affine case using a conic.

This paper has more to say about generators in the general case:

Theorem 8 Let Π denote the desarguesian projective plane PG2(Fq) of order q, a
power of a prime p. If C is a conic in Π, then Cp(Π) is spanned by the nonsecants
(i.e. tangents and exterior lines) of C, and Hp(Π) is spanned by the complements
of the secants, and also by the complements of the nonsecants.

In the case of p odd, all arcs of q + 1 points are conics, by a theorem of Segre
[60]; however, in the case p = 2, there are non-regular ovals whenever q ≥ 16.
Computations with Cayley [9] by Carpenter [16] using non-regular ovals in cases
up to q = 64 lead us to believe that Theorem 8 is true for any (q+1)-arc for q = 2m,
all m. Note in this case Pott [58] has shown that the incidence vectors of ovals span
the orthogonal code, so that a basis of minimum-weight vectors could be found in
this case also:

Theorem 9 Let Π be a finite projective plane of even order with an abelian group
G acting regularly. If Π has ovals then the incidence vectors of the orbit of a oval
under G span the orthogonal code C2(Π)⊥.

The result of Pott answers the query posed in [3], Section 6.6, page 219. In fact,
the only planes known with regular abelian groups are the desarguesian planes.
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4. Oval designs

There is a well-known class of Steiner systems (i.e. designs with λ = 1) which,
following Wertheimer [70], we will call oval designs. Bose and Shrikhande first
described these designs in [8]. Recall that by an oval in a projective plane of even
order n we mean a set of n + 2 points that meets each line of the plane in 0 or 2
points.

Definition. Let Π be a projective plane of order n = 2k and let O be an oval of
Π. The oval design W (Π,O) is the incidence structure with points the lines of Π
exterior to O and blocks the points of Π not on the oval O; incidence is given by
the incidence in Π.

That this is a Steiner system is easy to show:

Proposition 1 The incidence structure W (Π,O) is a 2-(2k2 − k, k, 1) design of
order n = 2k.

In [3], Chapter 8 the following result concerning the 2-rank of an oval design is
proved:

Theorem 10 Let Π be a projective plane of even order n and let O be an oval of
Π. Let W (Π,O) be the associated oval design. Then

rank2(W (Π,O)) ≤ rank2(Π)− (n + 1).

If Π = PG2(2m), we have that rank2(W (Π,O)) ≤ 3m − 2m.

In the desarguesian case rank2(Π) = 3m+1 which yields the last inequality above.
If Π is desarguesian with n = 2m, then regular ovals (consisting of the n + 1

points of a conic plus its nucleus) always exist, and the adopted notation for the
oval design from a regular oval is then W (2m), following [13], due to the association
with Witt: see [13], Section 2.6 for an outline of the history of these designs.

In answer to a conjecture in Mackenzie [41] (see also [3], Section 8.4, page 304)
Carpenter [16] has shown the following, using the result of Blokhuis and Moorhouse:

Theorem 11 If Π is desarguesian with n = 2m, and O is any regular oval then

rank2(W (Π,O)) = rank(W (2m)) = 3m − 2m.

Conjecture 2 If Π is desarguesian with n = 2m, and O is any oval then

rank2(W (Π,O)) = 3m − 2m.

Carpenter [16] has verified this conjecture for all the ovals in the desarguesian
planes of orders less than 64 — and for some ovals in the desarguesian plane of
order 64. There still does not seem to be a coding-theoretic way of distinguishing
a regular oval from a sporadic oval — as there is in the case of unitals, where the
hermitian unitals do distinguish themselves by being contained in the code of the
containing plane: see [3], Theorem 6.7.1, page 226 — and this lends at least some
meager support to the conjecture.
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5. Hadamard designs

The following question was posed in [3], Section 7.11, page 284 and until very
recently no counter-example had been found:

Question 2 Does the binary code of a 3-(2m, 2m−1, 2m−2−1) design always contain
a copy of the first-order Reed-Muller code, R(1,m)?

Many classes of Hadamard designs yield codes that do contain copies of the first-
order Reed-Muller code and recently Carpenter [16], [17] has found this to be true
for a class of designs related to regular ovals. We will discuss these classes first and
then exhibit the example yielding a negative answer in the general case.

Any oval O in a projective plane of even order n can be used to define a Hadamard
2-design E in the following way: for the points of E take the n2 − 1 exterior points
to O; for each point x of E define a block Bx to be the set of points

Bx = {y | y is an exterior point and xy is a secant to O} ∪ {x}.

This construction gives a 2-(n2−1, 1
2n2−1, 1

4n2−1) Hadamard design that extends
uniquely to a 3-(n2, 1

2n2, 1
4n2 − 1) design. (A more general way to construct the

Hadamard designs is described in [3], Section 7.12; alternatively this design can be
described using the block graph of the Steiner 2-design. See also Maschietti [42] for
further descriptions.)

L. L. Carpenter [16], [17] has now confirmed that the designs obtained from
regular ovals in the desarguesian planes of even order contain copies of the first-
order Reed-Muller code:

Theorem 12 Let Π be the desarguesian projective plane of order 2m, where m ≥ 1,
and let O be a regular oval. If T is the Hadamard design constructed as described
above from W (Π,O) = W (2m), then C2(T ) contains a copy of the first order Reed-
Muller code R(1, 2m). Futhermore, sets of 4(2m − 1) blocks of T can be found that
generate R(1, 2m) and are thus common to T and a copy of the affine-geometry
design of points and hyperplanes in AG2m(F2).

For the first non-trivial case, i.e. m = 2, C2(T ) is R(1, 4), but this never occurs
again for regular ovals: see [42].

A further conjecture, raised in Mackenzie [41] and quoted in [3], Section 7.12,
page 292, concerns the rank of these designs:

Conjecture 3 If T is the Hadamard design constructed by the method described
above from W (2m) then rank2(T ) = 2m−1m + 1.

Tom Norwood [49] recently used a classification by Jackson [34] of Hadamard
designs with SL2(Fq) acting transitively to prove this conjecture.

Returning now to Question 2, the following construction has recently been shown,
through computational results of Gordon Royle, to yield a counter-example: let
D be the hermitian unital on 28 points, a 2-(28, 4, 1) design. The block graph
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of this design yields a Hadamard 2-design E with parameters 2-(63, 32, 16). The
complementary design E extends to a Hadamard 3-(64,32,15) design, T with 2-
rank 15. We claim that C2(T ) 6⊃ R(1, 6). The binary code C2(E) is an even-weight
code of dimension 14, and was found to have 7497 vectors of weight 32. The
search for the even-weight subcode of the punctured code in C2(E) was done by
first collecting the 7497 vectors of weight 32 and observing that under the action
of the automorphism group PΓU3(F9) they fall into two orbits of length 3024, and
one each of length 1008, 378 and 63 (the blocks). Searching then for six vectors
that generate the even-weight subcode of R(1, 6)∗ was computationally possible,
and the search failed.

The weaker question

Question 3 Is the binary code of a 3-(2m, 2m−1, 2m−2− 1) design always inside a
copy of R(m− 2,m)?

has not been negated and may still have a positive answer.
A further question that was posed in [3], Question 7.10.1, page 282 is also still

unanswered:

Question 4 Does the binary code of a

(22m, 22m−1 − 2m−1, 22m−2 − 2m−1)

design contain the all-one vector?

We mention that all the designs of these parameters that can be constructed from
any oval design in a plane of even order in the manner described in [3], Section 7.12
do contain the all-one vector.

Designs with parameters (22m, 22m−1 − 2m−1, 22m−2 − 2m−1) are intimately con-
nected with bent functions (see [3], Section 7.9) and a theorem of Dillon and Schatz,
[3], Theorem 7.10.4, which characterizes those designs with 2-rank 2m + 2 and bi-
nary code containing the all-one vector. Recently Deirdre Smeltzer [63] has shown
that if a difference set D in an elementary abelian 2-group is given by a bent
function on the 2m variables x1, . . . , xm, y1, . . . , ym of the form

m∑
i=1

xiyi + h(x1, . . . , xm),

where h is any cubic, and if C is the code over F2 of the development, D, of D (see
[3], Theorem 7.10.3) then E2(D) is isomorphic to the first-order Reed-Muller code
R = R(1, 2m). It follows, of course, that the dimension of C is 2m + 2 and that
the all-one vector is in the code. Therefore the Dillon-Schatz Theorem applies, as
pointed out by Dillon [24]. Thus D has the symmetric difference property. Dillon
also showed that D is, in fact, isomorphic to the development of the difference set
given by the quadratic bent function q =

∑m
i=1 ziwi — which is the same as the

design given by the minimum-weight vectors of R ∪ (q + R).
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Another result concerning codes of Hadamard designs is due to T. S. Michael who
shows in [46] that the incidence matrix of a (4n− 1, 2n− 1, n− 1) design from any
skew Hadamard matrix has maximal p-rank, namely 2n, when p divides n. The
proof involves only elementary linear algebra. The result shows, in particular, that
a Hadamard matrix cannot have a skew form unless its p-rank is 2n for all odd
primes p dividing n (see [3], Theorems 7.4.1 and 7.4.2).

6. Unitals

A unital, or unitary design, is a Steiner 2-design with parameters 2-(m3+1,m+1, 1).
Apart from one with m = 6 constructed by Mathon [43] and independently by
Bagchi and Bagchi [6], all other known unitals have m a prime power. There are
two known that have a regular cycle acting on points, one of which is the design
with m = 6; the other has m = 4 and is one of the cyclic designs in [6]. Shobe
[61] has examined the codes associated with these cyclic designs. The order of a
unitary design is m2 − 1, so the prime p over which the code is defined must have
p dividing m− 1 or m + 1. In fact we know of no example where p dividing m− 1
and not m + 1 (and thus p 6= 2) gives a code that is not the full space. For the two
classes of 2-transitive unitals this is known to be the case: see Mortimer [48]; hence
in these “classical cases” one takes p dividing m + 1. For the cyclic unitals found
in [6], the 2-(217, 7, 1) design has 7-rank 214; the 2-(65, 5, 1) design has 5-rank 63.

In [3] it was mentioned that more concerning the p-ary codes of the hermitian
unitals on q3 + 1 points, where p divides q + 1, was expected to be announced.
A complete general theory has not been established, but Geck [29] has published
some results on the Brauer characters of the unitary group, and Hiss [32] has
communicated some partial results to us. Using Magma [15] we have computed the
p-ranks of the hermitian unitals for all q such that q ≤ 13, and we have found that
all these codes, for p dividing q + 1, have dimension b/q = (q2 − q + 1)q, where
b is the number of blocks of the unital. This is the formula suggested originally
by Andriamanalimanana [1] based on computations up to and including q = 5.
The further computations up to q = 13 now lead us to formally state this as a
conjecture, which is also born out by the results mentioned in [29] and [32]:

Conjecture 4 Let H be the hermitian unital on q3 + 1 points. If p is any prime
dividing q + 1, then the p-rank of H is (q2 − q + 1)q.

Magma also leads us to the following conjecture:

Conjecture 5 Let H be the hermitian unital on q3 + 1 points, where q is odd. Let
C = C2(H) . Then

Hull2(H) =
{

C⊥ if q ≡ 3 (mod 4)
<  > if q ≡ 1 (mod 4)

where  is the all-one vector.
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Magma has verified this for q ≤ 13. Similarly, this conjecture does not contradict
indications coming from the study of the modular characters of unitary groups, as
indicated in [32].

We note here also another property — possibly related to the observations above
— that a search with Magma has brought out. Whenever q is odd there is the
so-called Hölz design with parameters 2-(q3 +1, q +1, q +2) whose blocks consist of
all the blocks of the unital together with the intersections of all Baer subplanes of
the ambient plane of order q2 that meet the unital in q+1 points; the computations
concern the binary codes of these associated Hölz designs (discovered by Hölz [33]
and discussed in [3], Section 8.3). Looking at the binary codes of the Hölz designs
with Magma we found, for odd q between 3 and 13, that the code is the same as that
of the unital when q ≡ 3 (mod 4), and larger (probably 〈j〉⊥) when q ≡ 1 (mod 4).

The unitals with m = 3, namely the 2-(28, 4, 1) designs, have received a great
deal of attention, partly because of the existence of two such designs having a
doubly-transitive automorphism group when m is any odd power of 3 (see [3],
pps. 301-302 and [2]), but also because they are small enough to examine in full.
Brouwer [11] had already produced many such designs and had investigated when
they could be embedded in projective planes of order nine. Gordon Royle [54] has
since determined that precisely 17 of these unitals can be so embedded, one of these
in two distinct planes. (There are precisely four projective planes of order nine.)
As far as we know there has been no progress in characterizing the Ree unital on
28 points as the one of smallest 2-rank; its 2-rank is 19.

7. Steiner triple systems

A Steiner triple system is a 2-(v, 3, 1) design. Doyen, Hubaut and Vandensavel [27]
proved the following result giving a lower bound for the p-rank of any Steiner triple
system, and showing that only p = 2 or p = 3 need be considered, when looking at
the code.

Theorem 13 Let D be a 2-(v, 3, 1) design and let p be a prime. Then

(1) rankp(D) = v if p ≥ 5;

(2)
rank2(D) = v − dP − 1 ≥ v − log2(v + 1),

with equality if and only if D is the design of points and lines of the projective
geometry PGd(F2), where v = 2d+1 − 1;

(3)
rank3(D) = v − dA − 1 ≥ v − log3(v)− 1,

with equality if and only if D is the design of points and lines of the affine
geometry AGd(F3), where v = 3d.
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(Here dP and dA are the projective and affine dimensions, respectively, of D: see
Teirlinck [65].)

This theorem is in itself in the nature of a rigidity theorem, in that it characterizes
the designs associated with finite geometries through the p-ranks of their incidence
matrices. Since perfect linear single-error-correcting codes over any field are unique
up to a monomial transformation, the binary code of the design of points and lines
of a projective space over F2 characterizes this design. But more is true as was
shown by Key and Sullivan [40] for the binary case, and by Key [37] for the ternary
case. Here are the relevant results.

Theorem 14 Let D be a 2-(v, 3, 1) design with v ≥ 7. Let d satisfy 2d − 1 ≤ v <
2d+1 − 1. Then C2(D) contains a subcode C that can be shortened (by removing
v− (2d − 1) coordinate places where all the codewords of C are zero) to a code that
is isomorphic to the binary Hamming code Hd. In particular, if v = 2d − 1 then
C2(D) ⊇ Hd.

Equivalently, C2(D) contains a set of weight-3 vectors whose supports form the
blocks of the design of points and lines of PGd−1(F2).

This result extends to the quadruple systems:

Theorem 15 If E is a Steiner quadruple system, i.e. a 3-(v, 4, 1) design, with
2d ≤ v < 2d+1, then the binary code C2(E) contains a subcode that can be shortened
to the Reed-Muller code, R(d− 2, d). In particular, if v = 2d ≥ 8 then

C2(E)⊥ ⊆ R(1, d) ⊆ R(d− 2, d) ⊆ C2(E).

In the ternary case we need only consider the triple systems, since, by a theorem
of Dehon [19], the ternary code of a quadruple system is the entire ambient space.

Theorem 16 Let D be a 2-(v, 3, 1) design with v ≥ 9. Suppose that d is such
that 3d ≤ v < 3d+1. Then C3(D) contains a subcode C that can be shortened
(by removing v − 3d coordinate places where all the codewords of C are zero) to a
code that is isomorphic to the generalized Reed-Muller code RF3(2(d − 1), d). In
particular, if v = 3d and d ≥ 2, then we always have

C3(D)⊥ ⊆ RF3(1, d) ⊆ RF3(2(d− 1), d) ⊆ C3(D).

Equivalently, C3(D) contains a set of weight-3 vectors whose supports form the
blocks of the design of points and lines of AGd(F3).

There is some interesting work in progress concerning Steiner triple systems and
non-linear binary perfect codes. The problems being discussed go all the way back
to Steiner’s original paper [64]; it was clear early on (see [4]) that any perfect
binary code containing the zero vector yielded an extendable Steiner triple system
and that Steiner’s questions were intimately related to perfect codes. Moreover, it
is still widely believed that every Steiner triple system is extendable and this has
been verified for the 80 systems on 15 points [23]. By the theorem of Doyen et
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al. the Steiner triple systems of smallest possible rank, being classical systems, are
extendable. A bit more can be said with respect to this question: using the codes
of the systems and the results mentioned above, the following proposition is proved
in [38], [39]:

Proposition 2 Let D be a Steiner triple system on v = 2d − 1 (or 3d) points and
suppose that the 2-rank of D is 2d − d (respectively, the 3-rank is 3d − d). Then
D can be extended to a Steiner quadruple system. In the binary case the extension
can be defined in such a way that its binary code is the extended binary code of D.

Thus, not only are the classical systems extendable but also those on a classical
number of points with rank just above the classical rank.

A related question concerning binary perfect codes asks whether every Steiner
triple system on 2m − 1 points can be seen as the set of weight-3 vectors of a
perfect3 binary code containing the zero vector [56]. Progress in showing this for
the 80 systems on 15 points is being made. The number of inequivalent Steiner
triple systems is known rather precisely in an asymptotic sense [71] and Phelps
[57] has produced an asmpytotic lower bound on the number of inequivalent binary
perfect codes (see also Etzion and Vardy [28]). There are more than enough perfect
codes to justify the question. Of course, a given triple system may appear as the set
of weight-3 vectors in many inequivalent perfect binary codes and a given perfect
binary code may yield many (at most 2n−m where n = 2m−1) inequivalent Steiner
triple systems. Indeed, the number of perfect binary codes grows so quickly with
increasing block length that it appears certain that any triple system that does
appear is likely to complete to a perfect code in an enormous number of ways.
One can see the phenomenon even for small lengths and mere extensions of triple
systems; for example, there are two triple systems on 13 points but four quadruple
systems on 14 points and each of the triple systems extends in more than one way
to a quadruple system (see [45]). For the systems on 15 points this phenomenon is
even more striking (see [57]).

8. Finite geometries and rigidity theorems

Hamada’s conjecture from [31] still stands in a weakened form, viz.:

Conjecture 6 If a design has the same parameters as a design of points and fixed-
dimensional subspaces or flats of a projective or affine space over a field of char-
acteristic p, then the p-rank of the design will be at least that of the corresponding
geometric design.

This conjectures that the designs coming from the geometry have the smallest
p-rank, and this has not been shown to be false, although the examples of Tonchev
[66] and of Delsarte and Goethals [30] show that it is possible for designs with the
parameters of a geometric design to have the same p-rank as the geometric design.

The conjecture is most interesting in the hyperplane case and here it is still open
in its stronger form:
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Conjecture 7 A symmetric design with parameters(
qn+1 − 1

q − 1
,
qn − 1
q − 1

,
qn−1 − 1

q − 1

)
where q = ps, p a prime, has p-rank at least(

n + p− 1
n

)s
+ 1

with equality if and only if it is the design of points and hyperplanes of PGn(Fq).

The conjecture has only been proven for q = 2 (see Theorem 17 below).
The symmetric design of points and hyperplanes of a projective geometry has a

doubly-transitive automorphism group acting. All (v, k, λ) designs with a doubly-
transitive group acting and 2k < v are known [36]; besides the projective designs
there is another infinite class with parameters (22m, 22m−1 − 2m−1, 22m−2 − 2m−1)
and two sporadic examples: the unique (11, 5, 2) design and the so-called Higman
design with parameters (176, 50, 14). The designs of the second infinite class occur
among the designs with the symmetric difference property; these designs have been
characterized by Dillon and Schatz [25] and they have the minimum 2-rank, namely
2m+2. In this case there is not, to our knowledge, a rigidity theorem characterizing
the “best” design4 among those with the symmetric difference property and, in fact,
the binary code of a design with the symmetric difference property is a complete
invariant for those designs. The Higman design probably is characterized by its
2-rank, namely 22, but proving that appears to be rather difficult. Zvonimir Janko
[35] has uncovered another (176, 50, 14) design that is closely related to the Higman
design and it has higher 2-rank. For a short discussion of all these matters the reader
may wish to consult the paper by Parker and Tonchev, [50]5

For geometric designs it is well known that the codes, to be of interest, need to
be over a prime field whose characteristic is that of the field of the geometry: see
[3]. The codes of these designs are the Reed-Muller codes, R(r, m), in case F = F2,
or various generalized Reed-Muller codes, as was proved mostly by the work of
Delsarte et al. [20], [21], [22], [30]. These results are described in [3], Chapter 5 and
in [5].

Rigidity theorems have been established: for Steiner triple systems (see Section 7)
and for some classes of Hadamard designs (see Section 5). The negative answer to
Question 2 described in Section 5 shows that a rigidity theorem similar to the results
for Steiner triple systems (Theorems 14, 15 and 16) will not be found for Hadamard
3-(2m, 2m−1, 2m−2 − 1) designs, although we do have the Hamada-Ohmori rigidity
theorem (Corollary 7.5.1 in [3]):

Theorem 17 The binary code of a 3-(2m, 2m−1, 2m−2 − 1) design has dimension
at least m + 1 and has at least 2m+1 − 2 vectors of weight 2m−1. If either equality
holds so does the other and this occurs if and only if the design is the design of
points and hyperplanes in the affine geometry of dimension m over F2.
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9. Dual structures and the “point” code of a design

Bridges, Hall and Hayden in [10] gave some attention to the linear code generated
by the transpose of an incidence matrix of a design, but they, like most others,
thought that only those codes over fields whose characteristic divided the order
of the design were of interest. It was Tonchev [68] who pointed out that these
codes were of interest even when the prime did not divide the order of the design
and, in an interesting paper, Tonchev and Weishaar [69] examined precisely these
codes for all 80 Steiner triple systems on 15 points and found that the 80 binary
codes of block length 35 were all different — in contrast to the usual codes of block
length 15, where there are only five different codes, one for each dimension k with
11 ≤ k ≤ 15. For lack of a better name we call such a code the point code of
the design; it is merely the code of the dual incidence structure — which is only
a design in the symmetric case. The point code of the design of points and lines
of PG3(F2) distinguishes itself from the other 79 codes not only by its dimension
but also by the fact that it is the only one of these codes that has no vectors of
weight 8 or 11 (and thus none of weight 24 or 27, since  is in the code); it has
minimum weight 7, but there are other codes with this minimum weight. Moreover,
the code is not contained in each of the other 79 (although it is contained in some
of the 79), again in contrast to the usual codes: see Theorem 14. There are, in fact,
numerous containment relations among the 80 codes, all of which were described in
[69]. This was made possible computationally by the following well-known result
[67], Exercise 1.1.17, page 7 — which is not normally stated in coding-theoretic
terms, as below:

Proposition 3 Let 0 < λ < r and suppose given v vectors in Fn
2 , each of weight

r and any two at distance 2(r − λ). Then,

n ≥ r2v

r + λ(v − 1)

with equality if and only if the v vectors form the columns of an incidence matrix
of a 2-(v, k, λ) design, where k = r+λ(v−1)

r .

Although the proposition is well-known its importance does not seem to have
been recognized. It does, for example, show that a 2-design is the solution to an
extremal problem in coding theory, a fact that went unobserved in [3].

Kevin Phelps [56] has conjectured that the binary point code of a Steiner triple
system is a complete invariant; i.e. that two such point codes are isomorphic if and
only if the triple systems are. Even for the 80 triple systems on 15 points the matter
is rather delicate since some of the codes have the same weight distributions. In
the only other case so far considered, the two triple systems on 13 points, the two
binary point codes have different weight distributions; in each case they are [26, 13]
codes since the order of the designs is 5. Because the order of these designs is 5,
rank considerations alone show that the two designs have the same codes, in the
usual sense, for every prime p.
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Of course, in general, the binary point codes of a class of designs with the same
parameters cannot characterize the designs since there are symmetric designs for
which this is patently false (for example, the four projective planes of order nine)
and non-symmetric examples are also available. Curiously, however, the 17 embed-
dable unitals on 28 points [54] are so characterized [59]; we do not know what the
“correct”, most general conjecture might be — if, in fact, Phelps’s conjecture for
the triple systems is true — and the subject probably deserves further investigation.
It is even theoretically possible to have a point code of one design contain the point
code of another design with different parameters, but we lack an example of this.
As far as we know there has been nothing substantial done with point codes except
over the binary field (but see [50]).

10. Strongly regular graphs and their p-ranks

Although codes associated with graphs have not been extensively studied, some
significant results concerning the p-rank of adjacency matrices of strongly regular
graphs have recently been established: see Brouwer and van Eijl [12] and Peeters
[52]. Since these concepts are closely related to certain constructions we have
examined for designs, we will describe here some of the new results.6

Recall that a strongly regular graph Γ with parameters (v, k, λ, µ) is a regular
undirected graph on v vertices with valency k, such that λ is the number of vertices
adjacent to both of two adjacent vertices and µ the number of vertices adjacent to
both of two non-adjacent vertices. An adjacency matrix 7 for Γ is also an incidence
matrix for a quasi-symmetric 1-design (see Shrikhande and Sane [62]) on the v
points with block size k. This quasi-symmetric design is a symmetric (v, k, λ)
design if and only if λ = µ.

Let Γ be a strongly regular graph with parameters (v, k, λ, µ), and let A be an
adjacency matrix for Γ. It is well known (see, for example, Cameron and van Lint
[14], Chapter 2) that A has three eigenvalues, namely k and two others, ρ and σ,
with

ρ, σ =
1
2
(λ− µ±

√
(λ− µ)2 + 4(k − µ).

Calling, as usual, the multiplicities f and g we have that

v = f + g + 1,

0 = k + fρ + gσ,

and that λ− µ = ρ + σ and µ− k = ρσ. From this it follows that

f, g =
1
2
(v − 1± (v − 1)(µ− λ)− 2k√

(µ− λ)2 + 4(k − µ)
),

respectively. We refer to the case f = g as the half case. In the half case the
parameters are (4t + 1, 2t, t− 1, t), for some t ≥ 1. The following is a consequence
of results proved in [12]:
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Theorem 18 If p is a prime and c is any integer, then the p-rank of the matrix A+
cIv, where A is an adjacency matrix of a strongly regular graph Γ with parameters
(v, k, λ, µ), is completely determined by these parameters except possibly for the
p-ranks of

• A + 1
2 (p + 1)Iv with p dividing v in the half case, and

• A − σIv with p dividing (ρ − σ) where ρ and σ are the eigenvalues of A other
than k and are assumed to be integral,

in which case the p-rank is upper bounded by min{f + 1, g + 1} where f and g are
the multiplicities of ρ and σ.

Notice that if we have a strongly regular graph from a Steiner 2-(v, k, 1) design
D, then ρ = r − 1 − k, σ = −k, f = v − 1 and g = b − v. Furthermore, if M is
an incidence matrix for D and A the adjacency matrix for the block graph Γ of D
using the same ordering of blocks, then

MM t = A + kIb,

and

rankF (M) = rankF (D) = rankF (A + kIb) + dim(HullF (D)) (1)

over any field F .
In [52], Peeters’s aim is to characterize strongly regular graphs by their parameters

and the p-rank for one of the values of p that fall into the exclusions of the theorem
(called the “relevant” p-ranks of Γ). In particular, for the half case he shows

Theorem 19 Let Γ be a strongly regular graph with parameters (4t+1, 2t, t− 1, t)
and adjacency matrix A. If p divides v but p2 does not, then A + 1

2 (p + 1)Iv has
p-rank 2t + 1.

The block graphs of Steiner triple systems are examined by Peeters in [51]; the
theorem of Doyen et al. (Theorem 13) gives the p-ranks of the Steiner 2-(v, 3, 1)
designs, and the above equality gives the rank of A + 3Ib where A is an adjacency
matrix for the block graph. Hence when p ≥ 5 the p-rank of A + 3Ib is v; if p = 2
then from [40], Proposition 2 we know that Hull2(D) = C⊥ if 2 divides the order
n = (v − 3)/2 (and clearly also if not), so that equation (1) above gives the 2-rank
of A + 3Ib as 2 × rank2(D) − v. For p = 3, if 3 does not divide the order n then
also 3 does not divide v, and so rank3(D) = v − 1 and Hull3(D) = {0}, so that
A + 3Ib has 3-rank v − 1. If 3 divides n then the same result from [40] shows that
Hull3(D) = C⊥, and the 3-rank of A + 3Ib as 2× rank3(D)− v, except in the case
where 9 does not divide v and D has exactly three affine hyperplanes (i.e. dA = 1),
in which case it follows that Hull3(D) = 〈〉 and that the 3-rank of A+3Ib is v− 3.
(Note that there is an error in [40], Proposition 2 in the statement for p = 3 in that
it is not true that C3(D)⊥ ⊆ C3(D) in the case where 9 does not divide v and D
has exactly three affine hyperplanes.)
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For example, the Steiner triple systems on 15 points give block graphs on 35
points and matrices A + I35 with 2-rank in the set {7, 9, 11, 13, 15}. By way of an
exercise, we used Magma to obtain the weight distribution of the code of dimension
7 spanned over F2 by the matrix A + I35 for the 2-(15,3,1) design of points and
lines of PG3(F2):

< 0, 1 >,< 15, 28 >,< 16, 35 >,< 19, 35 >,< 20, 28 >,< 35, 1 >

and its hull:

< 0, 1 >,< 16, 35 >,< 20, 28 >

which is the even-weight subcode in this case. The notation here is that used in
Magma: the pair < i,Ai > denotes Ai vectors of weight i. Similar computations
could be made for the other 79 designs: we do not know if they give distinct codes
or not, as in the case of the dual structures mentioned in Section 9.

We mention again that not a great deal seems to be known about the codes
spanned by these matrices. Codes associated with quasi-symmetric designs have
been examined by various authors: see Shrikhande and Sane [62], Chapter X for
some of the available results. Even in the case of an adjacency matrix giving a
symmetric design the code of the design is not well documented. Note, for example,
that it was the hermitian unital on 28 points (with k = 4) that gave a block graph
yielding a code that provided a negative answer to Question 2.
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Notes

1. Ovals are also called hyperovals in the literature

2. A constant vector is a non-zero vector in which all entries are either 0 or a where a is some
non-zero field element.

3. The perfect code will always be non-linear unless the system is the classical one of points and
lines of PGm−1(F2)

4. Namely the one with the doubly-transitive automorphism group.

5. In fact, the subject of this work is the construction of the Higman design via coding theory,
utilizing the binary point codes of the derived or residual designs, but a discussion of all
symmetric designs possessing a doubly-transitive automorphism group is included.

6. See also the last paragraph of this section for a further reference.
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7. An adjacency matrix of a graph is a square zero-one matrix whose rows and columns are both
indexed by vertices with a 1 in a given position if the respective vertices are adjacent; it is
symmetric if the rows and columns are indexed in the same order and, in this case, has 0s on
the diagonal. If the graph is strongly regular any row has k ones and any two distinct rows
have either λ or µ ones in common.
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