DESIGNS AND THEIR CODES

(1992 Hardback Edition, ISBN 0-521-41361-3)

E. F. Assmus, Jr and J. D. Key

Page

Line

```
    -12 for "simply a complete graph" read
        "a partition of the 6-set into 2-subsets"
    -11 delete "also"
    16 for " }r-\lambda=2m" read " r+\lambda=2m
-13, -8, -2 for "Tac(\mathcal{P})" read "Tac(\mathcal{B})"
    -12 for " Tac(\mathcal{B})" read " Tac(\mathcal{P})"
    6 for " }\operatorname{Tac}(\mathcal{B})" read "Tac(\mathcal{P})
    18 for " Tac(\mathcal{P})" read " Tac(\mathcal{B})"
    -16 for "occured" read "occurred"
    6 remove space before comma
    2 for " }\mathcal{B}\mathrm{ that is" read " }\mathcal{B}\mathrm{ ; that is"
    12 insert space between " }\mathcal{P}\mathrm{ " " and "there"
    -2 for " 13" read " 14"
    -3 for "precisely the" read "a"
    -1 remove "precisely the set of"
    -2 for "by the" read "by"
    -12 remove fullstop at end of display
    2 remove first occurrence of "matrix"
    20 read "parity-"
    4 insert fullstop at end of sentence
    15 for "quadratic-" read "quadratic"
    5-6 insert another line with the entry " }\mp@subsup{A}{25}{}=1379700
    -6 for " }37\mathrm{ " read " }36\mathrm{ "
    -4 for "codes" read "code"
    2 for " }\mp@subsup{W}{C}{\perp}(Z)=\mp@subsup{B}{i}{}\mp@subsup{Z}{}{i}\mathrm{ " read " }\mp@subsup{W}{\mp@subsup{C}{}{\perp}}{}(Z)=\mp@subsup{\sum}{i}{}\mp@subsup{B}{i}{}\mp@subsup{Z}{}{i}\mathrm{ "
    for " }\mp@subsup{W}{C}{\perp}(Z)\mathrm{ " read " }\mp@subsup{W}{C}{\perp}(Z)
    13 remove "or"
    -7 for " 0\leqk" read " 0<k"
    16 for " }x\mathrm{ ' }\in\mp@subsup{Q}{}{\prime}\mathrm{ " read " }\mp@subsup{y}{}{\prime}\inQ'\mathrm{ '"
    17 for " }y-y\mathrm{ '" read " }y\mathrm{ ' - y" (twice)
    9,10 for "a (q+" read "an ( n+"
    10 for "fixed" read "a fixed"
    -2 read "Furthermore"
    14 for "Fix (g)" read " }|\operatorname{Fix}(g)|
    13 quote marks wrong
    -15 for "the the" read "the"
    18 for "the Lemma" read "Lemma"
    -4 read "projective-"
    -4 read "geometry"
    -1 read "projective-"
```

Page
Line

135
135
143
149
154
156
158
166
171
171
172
173
173
173
173
173
174
176
177
180
180
181
187
189
189
192
192
192
194
194
194
194
201
203
212
214
215
215
218
221
222
222
227
229
232

$$
\begin{aligned}
& 20 \text { remove space between } 8 \text { and comma } \\
& -5 \text { include name Hall before [117] } \\
& \text {-9 "a generator" } \\
& 11 \text { for " } m-r-1 \text { " read " } m-r \text { " } \\
& 16 \quad q \text { should not be bold-face } \\
& 12 \text { insert } \square \text { at end of line } \\
& 21 \text { for "and the" read "and" } \\
& 11 \text { read "positions" } \\
& -13 \text { for " } \sum_{j=0}^{v-1} \text { " read " } \sum_{j=0}^{v-1} c_{j} Z^{j} \text { " } \\
& -6 \text { for " } \mathcal{N}_{\nu}(m, q) \text { " read " } \mathcal{N}_{E}(\nu, m) \text { " } \\
& 3,5 \text { for " } 8 \text { " read " } 7 \text { " } \\
& -12 \text { for " } \mathcal{N}_{\nu / b}(m, q) \text { " read " } \mathcal{N}_{E}^{b}(\nu, m) \text { " } \\
& -12 \text { for " } \mathcal{N}_{\nu}(m, q) \text { " read " } \mathcal{N}_{E}(\nu, m) \text { " } \\
& -10 \text { for " } \mathcal{N}_{\nu / b}(m, q) \text { " read " } \mathcal{N}_{E}^{b}(\nu, m) \text { " } \\
& -5 \text { for " }(\nu, m) \text { " read " }(\nu, m)^{*} \text { " } \\
& -5 \text { for " }(k b, m) \text { " read " }(k b, m)^{*} \text { " } \\
& 5 \text { for "root } a \text { " read "root } \omega \text { " } \\
& -10,-11 \text { for " }(\nu, m) \text { " read " }(\nu, m)^{*} \text { " } \\
& 8 \text { for " } \mathcal{N}_{(r(q-1)) / b}(m, q) \text { " read " } \mathcal{N}_{E}^{b}(r(q-1), m) \text { " } \\
& 14 \text { for ") of" read ") of" } \\
& \text {-4 for "the the" read "the" } \\
& \text {-6 " } T \text { " too small } \\
& \text {-5 for " } \mathcal{P} \text { " read " } \mathcal{A} \text { " } \\
& \text {-12 for " } \mathcal{R}_{F_{q}} \text { " read " } \mathcal{A}_{F_{q} / F_{p}} \text { " } \\
& \text {-12 remove "(over } E \text {)" } \\
& 13 \text { include space before Bagchi } \\
& 16 \text { for "/ge" read " } \geq \text { " } \\
& \text {-14 insert full stop at end of line } \\
& 1 \text { for "the the" read "the" } \\
& 2 \text { read "preceding" } \\
& 2 \text { add "is" at end of line } \\
& 4 \text { for " }(\nu, m) \text { " read " }(\nu, m)^{*} \text { " } \\
& 2 \text { delete "of" } \\
& 21 \text { for "or" read "of" } \\
& \text {-11 for "the (" read "(the" } \\
& 13 \text { This exercise is not correct. Words of weight } q+4 \text { may exist. } \\
& 13 \text { for "it" read "its" } \\
& 14 \text { for "line" read "lines" } \\
& 18 \text { for "Desargues" read "Desargues'" } \\
& \text {-3 replace comma by full stop at end of line } \\
& -14 \text { for " } P G_{2} \text { " read " } \Pi=P G_{2} \text { " } \\
& -14 \text { for " } C\left(\mathbf{F}_{q^{2}}\right) \text { " read " } C(\Pi) \text { " } \\
& -4,-5 \text { for } " \bmod p \text { " read } " \bmod p \text { " } \\
& 2,4 \text { for "code" read "code-" } \\
& 10 \text { for " } p(s-1) \text { " read " } p(s-i) \text { " }
\end{aligned}
$$

Page Line

3-6 for "The conjecture....16." read
"The sweeping conjecture of Hamada proved false as Tonchev [280] observed and, in fact, Delsarte and Goethals [105] had noticed the counter-example in 1968 - even before the conjecture was made!"
-7 for "Hamadada" read "Hamada"
17 read "code-"
17 for " p " read " $p \mid(q+1)$ "
-1 read "1. However, "
16,17 for "are" read "is"

for " D " read " D_{1} "
16,18 for " $\sqrt{ }\left(n^{3}-2 n^{2}-1\right) / 2$ " read " $\frac{1}{2}\left(1+\sqrt{ }\left(2 n^{3}-6 n^{2}+9\right)\right)$ "
20 for " $\sqrt{ }\left(2^{3 m}-2^{2 m+1}-1\right) / 2$ " read " $\frac{1}{2}\left(1+\sqrt{ }\left(2^{3 m+1}-2^{2 m+1} 3+9\right)\right)$ "
14 for "did is" read "do is"
5 read "prime powers"
21 In the last line of the proof, before the final sentence, insert:
"If p divides $m-1$ and does not divide $m+1$ then summing all the blocks shows that $\boldsymbol{\jmath} \in C_{p}(\mathcal{I})$. Further, summing all the blocks through any two distinct points x and y, gives a vector with entry $m+1$ at x and y and 1 elsewhere. Since $m+1 \equiv 2(\bmod p)$, this implies that $v^{\{x\}}+v^{\{y\}} \in C_{p}(\mathcal{I})$. Taking a third point z gives $v^{\{x\}}-v^{\{y\}}$, and hence $v^{\{x\}}$, in $C_{p}(\mathcal{I})$ for any x, since $p \neq 2$."

Bibliography
[14]: coding-theoretic
[51]: read "Grenzgebiete"
[62]: read "Z."
[85], [90]: read "Grenzgebiete"
[145]: for "Endlichen" read "Endliche"
[272]: for "de" read "di"
Glossary

6 in the right-hand column, delete $"=\sum_{v \in V} "$
Index

8 Hamada-Sachar goes after Hamada-Ohmori
12 line, add 8, 121-2
14 include Mattson-Solomon polynomial, 169
-15 include Mattson-Solomon, 169
21 for "quadriatic" read "quadratic"
May 21, 2005

