List of Errors in Second Printing **DESIGNS AND THEIR CODES** (1993 Paperback Edition, ISBN 0-521-45839-0) **E. F. Assmus, Jr** and **J. D. Key**

Page	Line	
22	-13, -8, -2	for " $Tac(\mathcal{P})$ " read " $Tac(\mathcal{B})$ "
22	-12	for " $Tac(\mathcal{B})$ " read " $Tac(\mathcal{P})$ "
23	6	for " $Tac(\mathcal{B})$ " read " $Tac(\mathcal{P})$ "
23	18	for " $Tac(\mathcal{P})$ " read " $Tac(\mathcal{B})$ "
53	-2	for "13" read "14"
86	2	for " $W_C^{\perp}(Z) = B_i Z^i$ " read " $W_{C^{\perp}}(Z) = \sum_i B_i Z^i$ "
86	7	for " $W_C^{\perp}(Z)$ " read " $W_{C^{\perp}}(Z)$ "
91	-7	for " $0 \le k$ " read " $0 < k$ "
214	13	This exercise is not correct. Words of weight $q + 4$ may exist.
274	17	for "p" read " $p (q+1)$ "
286	5, 4	move " 42_D^{32} to line 4, replace " 32_D^{42} " by " 32_C^{42} "
290	8	for " D " read " D_1 "
304	16, 18	for " $\sqrt{(n^3 - 2n^2 - 1)/2}$ " read " $\frac{1}{2}(1 + \sqrt{(2n^3 - 6n^2 + 9)})$ "
304	20	for " $\sqrt{(2^{3m} - 2^{2m+1} - 1)/2}$ " read " $\frac{1}{2}(1 + \sqrt{(2^{3m+1} - 2^{2m+1}3 + 9)})$ "
311	21	In the last line of the proof, before the final sentence, insert:
		"If p divides $m - 1$ and does not divide $m + 1$ then summing all the
		blocks shows that $\boldsymbol{\jmath} \in C_p(\mathcal{I})$. Further, summing all the blocks through
		any two distinct points x and y, gives a vector with entry $m + 1$ at x
		and y and 1 elsewhere. Since $m + 1 \equiv 2 \pmod{p}$, this implies that
		$v^{\{x\}} + v^{\{y\}} \in C_p(\mathcal{I})$. Taking a third point z gives $v^{\{x\}} - v^{\{y\}}$, and hence
		$v^{\{x\}}$, in $C_p(\mathcal{I})$ for any x , since $p \neq 2$."
321		[62]: read "Z."

May 21, 2005