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Abstract

For integers n ≥ 1, k ≥ 0, and k ≤ n, the graph Γk
n has vertices the 2n vectors of Fn

2 and
adjacency defined by two vectors being adjacent if they differ in k coordinate positions. In
particular Γ1

n is the n-cube, usually denoted by Qn. We examine the binary codes obtained from
the adjacency matrices of these graphs when k = 1, 2, 3, following results obtained for the binary
codes of the n-cube in Fish [6] and Key and Seneviratne [12]. We find the automorphism groups
of the graphs and of their associated neighbourhood designs for k = 1, 2, 3, and the dimensions of
the ternary codes for k = 1, 2. We also obtain 3-PD-sets for the self-dual binary codes from Γ2

n

when n ≡ 0 (mod 4), n ≥ 8.

1 Introduction

In Fish [6] and Key and Seneviratne [12], the binary codes obtained from the row span over F2 of
an adjacency matrix for the n-cube Qn were examined, and the codes in the case of n even found to
be self-dual with minimum weight n. Further, 3-PD-sets were found in [12] for partial permutation
decoding. The n-cubes belong to the class of graphs Γk

n, for n ≥ 1, k ≥ 0 integers and k ≤ n, with
vertices the 2n vectors of Fn

2 and adjacency defined by two vectors being adjacent if they differ in k
coordinate positions. The n-cube is Γ1

n, which is also a Hamming graph, H(n, 2).
In this paper we will examine the binary codes from an adjacency matrix for the graphs Γk

n for
k = 2, 3. We show that for n ≡ 0 (mod 4) the codes from Γ2

n are self-dual and, when the same point
ordering is used, distinct from those from the n-cube Γ1

n = Qn: see Proposition 1, Lemma 3 and
Proposition 8. We obtain the dimensions of these codes, and also those of the ternary codes for
Γ1

n and Γ2
n: see Propositions 6, 7. The automorphism groups of the codes (see Section 2 for our

terminology) contain those of the defining graph and design; we identify the groups of the graphs
and designs in Propositions 3, 4.

We summarize in a theorem what we have found for the dimensions of the binary codes for
k = 1, 2, 3, including the result for the binary codes for k = 1 for completeness (see Result 2). We
also include our results on the ternary codes for k = 1, 2, noting that the ternary codes for k = 3
seem to be quite different and to merit separate study. We include our results on the automorphism
groups of the graphs and designs. In the theorem we have used the same point ordering for the
vectors of Fn

2 for the graphs Γk
n for distinct k in order to compare the codes.
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Theorem 1 For integers n ≥ 1, k ≥ 0, and n ≥ k, let Γk
n denote the graph with vertices the 2n

vectors of Fn
2 and adjacency defined by two vectors being adjacent if they differ in k coordinate

positions. Let Cp(Γk
n) denote the p-ary code obtained by the row span of an adjacency matrix for Γk

n

over Fp where p is a prime. Let Dk
n denote the 1-design with points the vertices of Γk

n and blocks
given by the set of neighbours of each vertex.

1. For p = 2:

(a) C2(Γ1
n) has dimension 2n for n odd, and dimension 2n−1 for n even. Further, the code is

self-dual and has minimum weight n if n is even.
(b)

dim(C2(Γ2
n)) =


2n−1 for n ≡ 0 (mod 4)
2n for n ≡ 2, 3 (mod 4)
2n−1 − 2

n−1
2 for n ≡ 1 (mod 4)

Furthermore, C2(Γ2
n) is self-dual for n ≡ 0 (mod 4), self-orthogonal for n ≡ 1 (mod 4).

For n ≡ 0 (mod 4), n ≥ 8, dim(C2(Γ1
n) ∩ C2(Γ2

n)) = 2n−2 + 2
n
2
−1.

(c) For n ≥ 2,

dim(C2(Γ3
n)) =


2n−1 for n ≡ 0 (mod 4), C2(Γ3

n) = C2(Γ1
n)

2n−1 − 2
n−1

2 for n ≡ 1 (mod 4), C2(Γ3
n) = C2(Γ2

n)
2n−2 − 2

n−2
2 for n ≡ 2 (mod 4), C2(Γ3

n) ⊂ C2(Γ1
n)

2n for n ≡ 3 (mod 4)

2. For p = 3:

(a)

dim(C3(Γ1
n)) =

{
2
3(2n − 1) if n is even
2
3(2n + 1) if n is odd

(b)

C3(Γ2
n) =


C3(Γ1

n) for n ≡ 0 (mod 3)
C3(Γ1

n)⊥ for n ≡ 1 (mod 3)
F2n

3 for n ≡ 2 (mod 3)

Furthermore C ∩ C⊥ = {0} for C any of these ternary codes.

3. If T denotes the translation group on the vector space Fn
2 , T ∗ the subgroup of T of translations

of even weight vectors, and Sn is the symmetric group of degree n, then Aut(Γ1
n) = T o Sn,

and, for n ≥ 6,
Aut(D1

n) = Aut(D2
n) = Aut(Γ2

n) = (T ∗ o Sn) o S2,

and for n ≥ 8,
Aut(D3

n) = Aut(D1
n), Aut(Γ3

n) = Aut(Γ1
n).

The proof of the theorem follows from the propositions in the following sections. In addition, as
in [6, 12], we obtain 2- and 3-PD-sets for the self-dual binary codes from Γ2

n in Proposition 5.
Sections 2 and 3 give the necessary background material and definitions. Sections 4 and 5 give the

results for the binary codes of Γk
n for k = 1, 2. Section 6 finds the automorphism groups of the designs

and graphs. In Section 7 we find 3-PD-sets for the self-dual binary code of Γ2
n when n ≡ 0 (mod 4).

Sections 8 and 9 deal with the ternary codes for Γk
n for k = 1, 2, and the final sections look at the

dual codes in the binary and ternary cases.
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2 Background and terminology

The notation for designs and codes is as in [1]. An incidence structure D = (P,B,J ), with point
set P, block set B and incidence J is a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident
with precisely k points, and every t distinct points are together incident with precisely λ blocks. The
design is symmetric if it has the same number of points and blocks. The code CF (D) of the
design D over the finite field F is the space spanned by the incidence vectors of the blocks over F .
If Q is any subset of P, then we will denote the incidence vector of Q by vQ. If Q = {P} where
P ∈ P, then we will write vP instead of v{P}. Thus CF (D) =

〈
vB |B ∈ B

〉
, and is a subspace of FP ,

the full vector space of functions from P to F . If F = Fp then the p-rank of the design, written
rankp(D), is the dimension of its code CF (D), which we usually write as Cp(D).

All the codes here are linear codes, and the notation [n, k, d]q will be used for a q-ary code C of
length n, dimension k, and minimum weight d, where the weight wt(v) of a vector v is the number
of non-zero coordinate entries. The distance d(u, v) between two vectors u, v is the number of
coordinate positions in which they differ, i.e., wt(u − v). If u = (u1, . . . , un) and v = (v1, . . . , vn),
then we write u ∩ v = (u1v1, . . . , unvn). A generator matrix for C is a k × n matrix made
up of a basis for C, and the dual code C⊥ is the orthogonal under the standard inner product (, ),
i.e. C⊥ = {v ∈ Fn|(v, c) = 0 for all c ∈ C}. A code C is self-dual if C = C⊥ and, if C is binary,
doubly-even if all codewords have weight divisible by 4. A check matrix for C is a generator
matrix for C⊥. The all-one vector will be denoted by , and is the vector with all entries equal
to 1. Two linear codes of the same length and over the same field are isomorphic if they can be
obtained from one another by permuting the coordinate positions. An automorphism of a code C
is an isomorphism from C to C. The automorphism group will be denoted by Aut(C). Any code
is isomorphic to a code with generator matrix in so-called standard form, i.e. the form [Ik |A]; a
check matrix then is given by [−AT | In−k]. The first k coordinates in the standard form are the
information symbols and the last n− k coordinates are the check symbols.

The graphs, Γ = (V,E) with vertex set V and edge set E, discussed here are undirected with no
loops. A graph is regular if all the vertices have the same valency. An adjacency matrix A of a
graph of order n is an n×n matrix with entries aij such that aij = 1 if vertices vi and vj are adjacent,
and aij = 0 otherwise. The neighbourhood design of a regular graph is the 1-design formed by
taking the points to be the vertices of the graph and the blocks to be the sets of neighbours of a
vertex, for each vertex. The code of a graph Γ over a finite field F is the row span of an adjacency
matrix A over the field F , denoted by CF (Γ) or CF (A). The dimension of the code is the rank of
the matrix over F , also written rankp(A) if F = Fp, in which case we will speak of the p-rank of A
or Γ, and write Cp(Γ) or Cp(A) for the code.

Permutation decoding, first developed by MacWilliams [14], involves finding a set of auto-
morphisms of a code called a PD-set. The method is described fully in MacWilliams and Sloane [15,
Chapter 16, p. 513] and Huffman [10, Section 8]. In [11] and [13] the definition of PD-sets was
extended to that of s-PD-sets for s-error-correction:

Definition 1 If C is a t-error-correcting code with information set I and check set C, then a PD-
set for C is a set S of automorphisms of C which is such that every t-set of coordinate positions is
moved by at least one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set of
coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding is given in [10] and requires that the generator matrix is
in standard form. Thus an information set needs to be known. The property of having a PD-set will
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not, in general, be invariant under isomorphism of codes, i.e. it depends on the choice of information
set. Furthermore, there is a bound on the minimum size of S (see [8],[18], or [10]):

Result 1 If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r = n− k, then

|S| ≥
⌈
n

r

⌈
n− 1
r − 1

⌈
. . .

⌈
n− t+ 1
r − t+ 1

⌉
. . .

⌉⌉⌉
.

This result can be adapted to s-PD-sets for s ≤ t by replacing t by s in the formula.

3 The graphs Γkn and designs Dkn
The graph Γk

n, for n, k integers, n ≥ 1, k ≥ 0, and k ≤ n, has vertices the 2n vectors of Vn = Fn
2 and

adjacency defined by two vectors being adjacent if they differ in k coordinate positions. Thus x is
adjacent to y in Γk

n if and only if wt(x+y) = k where wt(v) denotes the weight of v ∈ Vn. Let Dk
n be

the neighbourhood design for Γk
n, i.e. the 1-design with point set Vn and whose block set, denoted by

Bk
n, is given by the rows of an adjacency matrix for Γk

n, i.e. the neighbours of the vertex defined by
each row. This is a symmetric 1-(2n,

(
n
k

)
,
(
n
k

)
) design unless n = 2k, in which case there are repeated

blocks. We will denote the block of the design Dk
n defined by x ∈ Vn by x̄k, so that

x̄k = {y | y ∈ Vn, wt(x+ y) = k}.

The adjacency matrix for Γk
n is an incidence matrix for the design Dk

n (including repeated blocks in
the n = 2k case). For k = 1, Γ1

n is also the Hamming graph H(n, 2) and the n-cube Qn.
We will use the following notation: for r ∈ Z and 0 ≤ r ≤ 2n − 1, if r =

∑n
i=1 ri2

i−1 is the
binary representation of r, let r = (r1, . . . , rn) be the corresponding vector in Fn

2 . We will also use
e1, e2, . . . , en to denote the standard basis for Vn, so that ei = 2i−1, for 1 ≤ i ≤ n, in our notation.

The complement of v ∈ Vn will be denoted by vc. Thus vc(i) = 1 + v(i) for 1 ≤ i ≤ n, where v(i)
denotes the ith coordinate entry of v. Similarly, for α ∈ F2, αc = α+ 1. Clearly vc = v+ 2n − 1, i.e.
vc = v + n, where n is the all-one vector of Vn. Then note that

(xc)k = {y | y ∈ Vn, wt(x+ y + n) = k}
= {y | y ∈ Vn, wt(x+ y) = n− k} = x̄n−k,

so Dk
n = Dn−k

n .
In this paper we will concentrate on k = 1, 2, 3. For these cases, for n > 2, D1

n is a 1-(2n, n, n)
symmetric design with the property that two distinct blocks meet in zero or two points and similarly
any two distinct points are together on zero or two blocks. Similarly, for n > 4, D2

n is a 1-(2n,
(
n
2

)
,
(
n
2

)
)

symmetric design. We will show in Lemma 3 that any two distinct blocks meet in zero, six or 2(n−2)
points and dually for any two distinct points. For n > 6, D3

n is a 1-(2n,
(
n
3

)
,
(
n
3

)
) symmetric design.

We will show in Lemma 5 that any two distinct blocks meet in zero, 20, 6(n− 4) or (n− 2)(n− 3)
points and dually for points.

For the adjacency matrices for the graphs we will always (with the exception of Section 7) use
the natural ordering of the vectors in Fn

2 according to the ordering of the numbers between 0 and
2n − 1, in increasing order. With this ordering we denote the adjacency matrix of Γk

n by M(n, k),
for n ≥ 1, k ≥ 0 and n ≥ k. Thus M(n, 0) = I, the identity matrix, and M(n, n) is the matrix with
entries 1 on the reverse diagonal. Using block matrices, we have, for k ≥ 1, n ≥ 2,

M(n, k) =
[

M(n− 1, k) M(n− 1, k − 1)
M(n− 1, k − 1) M(n− 1, k)

]
.
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Lemma 1 For any n ≥ 1, 0 ≤ k, l ≤ n, the matrices M(n, k) and M(n, l) commute over any field.

Proof: This is true for n = 1 and all 0 ≤ k, l ≤ n. Suppose it is true for some n and all 0 ≤ k, l ≤ n.

We use block matrices and the easily verified fact that if X =
[
X1 X2

X2 X1

]
and Y =

[
X3 X4

X4 X3

]
,

and all the Xi commute, then so do X and Y . Thus for k, l ≤ n we have M(n+ 1, k) and M(n+ 1, l)
commuting by induction. For l = n+ 1 we have

M(n+ 1, k)M(n+ 1, n+ 1) =
[

M(n, k) M(n, k − 1)
M(n, k − 1) M(n, k)

] [
M(n, n+ 1) M(n, n)
M(n, n) M(n, n+ 1)

]
=[

M(n, k) M(n, k − 1)
M(n, k − 1) M(n, k)

] [
0 M(n, n)

M(n, n) 0

]
,

and all the blocks commute, by induction. �

For any prime p, integers n, k, Cp(Dk
n) = Cp(Γk

n) = Cp(M(n, k)). A different ordering of the
vectors of Vn (points of the design) will give an isomorphic code. We have a specific ordering as
defined above so that we can use inductive procedures on the matrices to deduce the rank. We only
consider p = 2, 3 in this paper but other primes could give interesting codes.

4 Binary codes for Γ2
n

We will write An = M(n, 1), Bn = M(n, 2) and I for the identity matrix of the appropriate size.
Then, for n ≥ 2,

An =
[
An−1 I
I An−1

]
and Bn =

[
Bn−1 An−1

An−1 Bn−1

]
. (1)

In [6, 12] the following result was obtained:

Result 2 For n ≥ 1, C2(Γ1
n) is [2n, 2n, 1]2 for n odd, and [2n, 2n−1, n]2 and self-dual for n even.

We now look at the binary codes for Γ2
n, i.e. the row span of Bn over F2. Thus in this section all

the matrices will be over F2. From Lemma 1, AnBn = BnAn for all n.

Lemma 2 For n ≥ 1,

(1) A2
n = nI; (2) B2

n =
{

0 if n ≡ 0, 1 (mod 4)
I if n ≡ 2, 3 (mod 4)

Proof: (1) Use induction. It is true for n = 1. Assume that for n ≥ 2, A2
n−1 = (n − 1)I. Then

A2
n =

[
An−1 I
I An−1

]2

=
[
A2

n−1 + I 0
0 A2

n−1 + I

]
= nI by induction.

(2) B2
n =

[
Bn−1 An−1

An−1 Bn−1

]2

=
[
B2

n−1 0
0 B2

n−1

]
+ (n − 1)I. Since B2

1 = 0, this gives B2
n =

(
n
2

)
I,

which gives the stated result. �

If we write B = Bn−2 and A = An−2, then using elementary row operations over F2 and ∼ to
denote row equivalence, for n ≥ 3,

Bn =


B A A I
A B I A
A I B A
I A A B

 ∼

I A A B
A I B A
A B I A
B A A I

 . (2)
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Proposition 1 For n ≥ 1,

rank2(Bn) =


2n−1 for n ≡ 0 (mod 4)
2n−1 − 2

n−1
2 for n ≡ 1 (mod 4)

2n for n ≡ 2, 3 (mod 4)

Proof: For n ≡ 0 (mod 4), n − 1 ≡ 3 (mod 4), so A2
n−1 = I and B2

n−1 = I, by Lemma 2. Also, by
Lemma 1, Bn−1An−1 = An−1Bn−1, so

Bn =
[
Bn−1 An−1

An−1 Bn−1

]
∼
[

I An−1Bn−1

An−1 Bn−1

]
∼
[
I An−1Bn−1

0 0

]
, (3)

which gives the result for n ≡ 0 (mod 4).
For n ≡ 2, 3 (mod 4), Bn is invertible from Lemma 2, so this follows immediately.
For n ≡ 1 (mod 4), we first show that rank2(Bn) = 2n−2 + 2rank2(Bn−2 + I). Let B = Bn−2,

A = An−2. Using the observation of Equation (2), note that now we have B2 = A2 = I. Thus, using
elementary row operations,

Bn ∼


I A A B
0 0 B + I A+AB
0 B + I 0 A+AB
0 A+AB A+AB 0

 ∼

I A A B
0 B + I 0 A+AB
0 0 B + I A+AB
0 0 0 0

 ,
which proves the first assertion.

Now we show that for n ≡ 3 (mod 4), rank2(Bn + I) = 2n−2 + 2rank2(Bn−2). Here we have
B2 = 0, A2 = I and (B + I)2 = I. Using these and elementary row operations, we get

Bn + I =


B + I A A I
A B + I I A
A I B + I A
I A A B + I

 ∼

I A A B + I
0 B 0 AB
0 0 B AB
0 0 0 0

 ,
as required.

Now we prove the result for n ≡ 1 (mod 4) using induction on n, noting that it is true for n = 5.
Suppose it is true for 5 ≤ k < n, k ≡ 1 (mod 4).

For n ≡ 1 (mod 4), we have n − 2 ≡ 3 (mod 4), and n − 4 ≡ 1 (mod 4) so that, by the above
two deductions, rank2(Bn) = 2n−2 + 2(2n−4 + 2(rank2(Bn−4))) which can be solved as a recurrence
relation or by induction to obtain rank2(Bn) = 2n−1 − 2

n−1
2 .

This completes the proof of the proposition. �

Lemma 3 Let n ≥ 2. For x, y ∈ Vn, if wt(x + y) = 2, x and y are together in 2(n − 2) blocks of
D2

n, and if wt(x + y) = 4, x and y are together in six blocks of D2
n; otherwise they are not together

in any block of D2
n. Further, distinct blocks of D2

n meet in 0, 6 or 2(n− 2) points.
For n ≡ 1 (mod 4), C2(Γ2

n) is self-orthogonal, and for n ≡ 0 (mod 4), C2(Γ2
n) is self-dual.

Proof: First notice that for points x, y ∈ Vn, for the design D2
n, if x, y ∈ z̄2 then wt(x+ y) is 2 or 4.

For we have wt(x+ z) = wt(y + z) = 2, so

wt(x+y) = wt(x+z+y+z) = wt(x+z)+wt(y+z)−2wt((x+z)∩(y+z)) = 4−2wt((x+z)∩(y+z)).
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For x 6= y, clearly wt((x+ z) ∩ (y + z)) is 0 or 1, since these are weight-2 vectors. So wt(x+ y) is 2
or 4.

If x, y are adjacent in Γ2
n then wt(x + y) = 2. We show that x and y are together on 2(n − 2)

blocks of D2
n. This follows since, without loss of generality, we take x = (x1, x2, x3, . . . , xn), y =

(x1 + 1, x2 + 1, x3, . . . , xn), since wt(x + y) = 2. If wt(x + z) = wt(y + z) = 2, then z = (x1, x2 +
1, x3, . . . , xi−1, xi + 1, xi+1 . . . , xn) or z = (x1 + 1, x2, . . . , xi−1, xi + 1, xi+1 . . . , xn) for some i in the
range 3 ≤ i ≤ n. This gives 2(n− 2) blocks.

If x, y ∈ Vn and wt(x + y) = 4, then x, y are together on six blocks of D2
n. For let x =

(x1, x2, x3, x4, x5, . . . , xn) and y = (x1 + 1, x2 + 1, x3 + 1, x4 + 1, x5, . . . , xn). If x, y ∈ z̄2 then z can
only differ from x, y in the first four coordinate positions, which gives

(
4
2

)
= 6 possibilities.

Thus two points are together on 0, six or 2(n − 2) blocks and dually any two blocks meet in 0,
six or 2(n − 2) points. Blocks have size

(
n
2

)
which is even if n ≡ 0, 1 (mod 4). Thus in these cases

C ⊆ C⊥, and equality holds for n ≡ 0 (mod 4) since the dimensions of C and C⊥ are the same. �

Note: From Lemma 2, (An + I)2 = 0 for n odd showing that the binary code from An + I is
self-orthogonal. We show in [5] that it is a [2n, 2n−1, n + 1]2 self dual code. Similarly B2

n = 0 for
n ≡ 0, 1 (mod 4), and (Bn + I)2 = 0 for n ≡ 2, 3 (mod 4), implies the codes are self-orthogonal. For
n ≡ 2 (mod 4), Bn + I gives a self-dual code.

5 Binary codes for Γ3
n

Now consider the graph Γ3
n and its design D3

n. For n > 6, the latter is a symmetric 1-(2n,
(
n
3

)
,
(
n
3

)
)

design. Using the natural ordering of the vectors in Vn = Fn
2 , as before, if we denote the adjacency

matrix for Γ3
n by Dn = M(n, 3), we have, for n ≥ 2,

Dn =
[
Dn−1 Bn−1

Bn−1 Dn−1

]
. (4)

With notation as used before for Bn and An we have the following lemma. All the matrices here
are binary, i.e. over F2.

Lemma 4 Over F2, for n ≥ 1 odd, BnAn = Dn; for n ≥ 2 even, Dn = BnAn +An. Further,

D2
n =

{
I if n ≡ 3 (mod 4)
0 if n ≡ 0, 1, 2 (mod 4)

Proof: For the first statement, consider the first row of the productBnAn for n odd. This corresponds
to the row given by 0̄2 multiplied by the columns of An. For this one gets n − 1 for the columns
labelled by the ei, 3 for the columns labelled by the ei + ej + ek, and 0 for the rest. Thus if n is odd
this row gives the first row of the adjacency matrix for the Γ3

n graph, and this clearly follows for the
remaining rows, by transitivity. (This can also be proved by induction, using Equation (4).)

If n is even, then writing B = Bn−1 and A = An−1, we have, since A2 = I,

BnAn =
[
B A
A B

] [
A I
I A

]
=
[
AB +A B +A2

B +A2 AB +A

]
= Dn +An.

For D2
n, note that for n even, D2

n = B2
nA

2
n +A2

n = 0 since A2
n = 0. If n ≡ 1 (mod 4) then B2

n = 0,
so D2

n = 0. If n ≡ 3 (mod 4) then D2
n = B2

nA
2
n = I. �

Recall that the matrices An, Bn and Dn all commute, by Lemma 1.
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Proposition 2 For n ≥ 2,

rank2(Dn) =


2n−1 for n ≡ 0 (mod 4) and Dn ∼ An

2n−1 − 2
n−1

2 for n ≡ 1 (mod 4) and Dn ∼ Bn

2n−2 − 2
n−2

2 for n ≡ 2 (mod 4)
2n for n ≡ 3 (mod 4)

Proof: For n ≡ 3 (mod 4), Dn is invertible by the lemma.
For n ≡ 0 (mod 4), write B = Bn−1, A = An−1 and D = Dn−1. Then n − 1 ≡ 3 (mod 4) so

B2 = A2 = D2 = I and D = AB. Thus

Dn =
[
D B
B D

]
∼
[
I BD
B D

]
∼
[
I A
0 0

]
∼ An.

For n ≡ 2 (mod 4), n−1 ≡ 1 (mod 4), so, with the same notation as above, A2 = I and D = AB.
So

Dn =
[
D B
B D

]
=
[
AB B
B AB

]
∼
[
B AB
0 0

]
,

so that rank2(Dn) = rank2(Bn−1) = 2n−2 − 2
n−2

2 .
If n ≡ 1 (mod 4), then n − 1 ≡ 0 (mod 4), take B = Bn−2, A = An−2, D = Dn−2, where

n− 2 ≡ 3 (mod 4). So B2 = A2 = D2 = I, D = AB, DA = B, and DB = A. Then

Dn =


D B B A
B D A B
B A D B
A B B D

 ∼

I A A B
0 0 A+AB B + I
0 A+AB 0 B + I
0 B + I B + I 0

 ∼

I A A B
0 B + I 0 A+AB
0 0 B + I A+AB
0 0 0 0


which is row equivalent to Bn, from the proof of Proposition 1. �

Thus the only new binary codes we have from Dn are when n ≡ 2 (mod 4). These are self-
orthogonal (as are those from n ≡ 0, 1 (mod 4), as noticed earlier).

Lemma 5 Let n ≥ 6. For x, y ∈ Vn, if wt(x+ y) = 2, x and y are together in (n− 2)(n− 3) blocks
of D3

n; if wt(x + y) = 4, x and y are together in 6(n − 4) blocks of D3
n; if wt(x + y) = 6, x and y

are together in 20 blocks of D3
n; otherwise they are not together in any block of D3

n. Further, distinct
blocks of D3

n meet in 0, 20, 6(n− 4) or (n− 2)(n− 3) points.
For n ≡ 2 (mod 4), n ≥ 6, C2(Γ3

n) is self-orthogonal, doubly-even, C2(Γ3
n) ⊂ C2(Γ1

n), and the
minimum weight of C2(Γ3

n) is at least n+ 2.

Proof: As in the Γ2
n case, it is easier to count the number of blocks through two points. For x, y ∈ z̄3,

x 6= y, wt(x+ y) = 2, 4, 6. A simple count shows that if wt(x+ y) = 6 then they are together on 20
blocks; if wt(x+ y) = 4 they are together on 6(n− 4) blocks; if wt(x+ y) = 2, they are together on
(n− 2)(n− 3) blocks, which gives the result about block intersections.

If n ≡ 2 (mod 4), D2
n = 0 so the code is self-orthogonal. Further,

(
n
3

)
is even, divisible by 4, so

the code is doubly-even. Since Dn = AnBn + An, DnAn = 0 so C2(Γ3
n) ⊆ C2(Γ1

n)⊥ = C2(Γ1
n). Since

the minimum weight of C2(Γ1
n) for n even is n and n ≡ 2 (mod 4), the minimum weight of C2(Γ3

n)
is at least n+ 2, since it is doubly-even. �
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6 Automorphism groups

We look here at the automorphism groups of the graphs, designs and codes. It is clear that the
group of the graph is a subgroup of that of the design which is a subgroup of that of the code.
We have not, in general, identified the full automorphism groups of the codes. For any n, we write
T for the translation group of order 2n on Vn, and Sn for the symmetric group acting on the n
coordinate positions of the points v ∈ Vn. For each w ∈ Vn, write T (w) for the translation on Vn

given by w, i.e. T (w) : v 7→ v + w for each v ∈ Fn
2 . The identity map will be denoted by ι = T (0).

Then T = {T (w) | w ∈ Vn}. The group TSn = T o Sn acts imprimitively on Vn for n ≥ 4 with
{v, vc}, for each v ∈ Vn, a block of imprimitivity (see [12]). It is the automorphism group of the
graph Qn = Γ1

n (see [3, 9, 17]). It is clear that, for all k such that 1 ≤ k ≤ n, the group TSn is a
subgroup of Aut(Γk

n) and Aut(Dk
n), since, for u ∈ Vn, T (u) has the property that if x, y ∈ z̄k, then

wt(x+ z) = wt(y + z) = k, so wt(xT (u) + zT (u)) = wt(x+ u+ z + u) = wt(y + u+ z + u) = k, so
that xT (u), yT (u) ∈ (z + u)k. Clearly any element in Sn also preserves wt(x+ y). Furthermore, we
clearly always have Aut(Γk

n) ≤ Aut(Dk
n).

Proposition 3 For n ≥ 6,

Aut(D1
n) = Aut(D2

n) = Aut(Γ2
n) = (T ∗ o Sn) o S2

where T ∗ = {T (u) | u ∈ Vn,wt(u) is even}.

Proof: We first show that Aut(D1
n) = Aut(Γ2

n). Two points x, y are together on a block of D1
n if

and only if wt(x+ y) = 2, and any two points are on exactly two blocks or no blocks of D1
n. Thus if

blocks of D1
n are preserved then so are edges of Γ2

n, and conversely, giving the assertion.
Next we show that if σ ∈ Aut(D2

n) and n ≥ 6, then σ ∈ Aut(Γ2
n). For if x and y are on an edge

of Γ2
n then wt(x + y) = 2, so x, y are together on 2(n − 2) blocks of D2

n, by Lemma 3. Thus xσ, yσ
are together on 2(n − 2) blocks of D2

n. So wt(xσ + yσ) is 2 or 4. If wt(xσ + yσ) = 4 then xσ, yσ
are together on six blocks, by Lemma 3. Now 6 < 2(n − 2) for n ≥ 6, so this is impossible, i.e.
wt(xσ + yσ) = 2 and hence they are on an edge of Γ2

n.
Finally, to complete the proof, equality of the first three groups follows from the preceding

statements, since clearly Aut(Γ2
n) ≤ Aut(D2

n). To prove the final equality, note that Γ2
n consists

of two connected components, i.e. the vectors of even weight and those of odd weight. The group
T ∗ o Sn preserves each of these components, and since they can be mapped to one another, the
wreath product with S2 will also act. Equality follows from a result to be found in [7]. �

Note: The group (T ∗oSn) oS2 also acts imprimitively on the points of the graphs and designs, with
the same blocks of imprimitivity as the smaller group T o Sn.

Proposition 4 For n ≥ 8,
(1) Aut(D3

n) = Aut(D1
n); (2) Aut(Γ3

n) = Aut(Γ1
n).

Proof: We first prove (1). For n ≥ 6, Aut(D1
n) = Aut(D2

n) = Aut(Γ2
n), from Proposition 3.

Suppose that σ ∈ Aut(D1
n). Then σ permutes the points of D3

n. If x, y are distinct points on a
block of D3

n, then wt(x + y) = 2, 4, 6, and conversely, any two points whose sum has weight 2, 4, 6
are on a block of D3

n. If wt(x + y) = 2 then x, y are on a block of D1
n and hence so are xσ, yσ, and

so wt(xσ + yσ) = 2 and hence they are on a block of D3
n. If wt(x+ y) = 4, then x, y are on a block

of D2
n and hence so are xσ, yσ, and so wt(xσ + yσ) = 2, 4, and so they are on a block of D3

n. If
wt(x + y) = 6, then without loss of generality we can take x = e1 + e2 + e3, y = e4 + e5 + e6. The
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point z = e4 has wt(x + z) = 4, wt(y + z) = 2. So x and z are on a block of D2
n, y and z are on a

block of D1
n. Thus wt(xσ + zσ) = 2, 4 and wt(yσ + zσ) = 2. This implies that

0 < wt(xσ + yσ) = wt(xσ + zσ) + wt(yσ + zσ)− 2i ≤ 6,

and is even, so xσ, yσ are on a block of D3
n. Thus σ ∈ Aut(D3

n).
Now suppose σ ∈ Aut(D3

n). If x, y are in a block of D1
n, then wt(x+ y) = 2 and so they are on a

block of D3
n, and hence so are xσ, yσ. Thus wt(xσ+ yσ) = 2, 4, 6. Now x and y are in (n− 2)(n− 3)

blocks of D3
n, by Lemma 5, and so xσ and yσ are together in (n − 2)(n − 3) blocks of D3

n. If
wt(xσ + yσ) = 2 then xσ, yσ are in a block of D1

n, as required. If wt(xσ + yσ) = 4 then we must
have 6(n− 4) = (n− 2)(n− 3), i.e. n = 5, 6 which is impossible since n ≥ 8. If wt(xσ+ yσ) = 6 then
20 = (n− 2)(n− 3) and n = 7, again impossible. Thus σ ∈ Aut(D1

n).
Now we prove (2). Let G = Aut(Γ3

n), A = Aut(Γ1
n). Then we have already established that

G ≥ A, and, since G ≤ Aut(D3
n), that G acts imprimitively on Vn with {v, vc} forming blocks of

imprimitivity, for v ∈ Vn. Let H = G0, the stabilizer of 0, the zero vector of Vn, in G. Since A0
∼= Sn,

we need to show that H does not contain any non-identity element that fixes e1, . . . , en. Let σ ∈ H.
We first introduce some notation: for 0 ≤ i ≤ n let

W i = {x | x ∈ Vn,wt(x) = i}.

Further, let d(x), for x ∈ Vn, denote the distance in Γ3
n of x from 0. Then d(x) = d(xσ) for all x. Since

H ≥ Sn, each x ∈ W i is at the same distance from 0 in the graph Γ3
n, and we denote this distance

by di. Thus d0 = 0, d3 = 1, d2 = d4 = d6 = 2, and d1 = 3, for example, and di = 1
3(i + 2(i mod 3))

in general for i 6= 1. For i ≥ 2, write i = 3t− j where j = 0, 2, 4; then di = t. If

St = {x | x ∈ Vn, d(x) = t}

then S0 = 0, S1 =W3,
St =W3t−4 ∪W3t−2 ∪W3t

for t ≥ 2, t 6= 3 (where some of the W i may be empty), and

S3 =W1 ∪W5 ∪W7 ∪W9.

So σ fixes the classes St, for all t. Before commencing the proof of the proposition, we note that
x ∈ W i for i ≥ 3 has neighbours in Wj for j = i+ 3, i+ 1, i− 1, i− 3 (where some of these sets may
be empty, for example if i > n − 3). For i = 1, x ∈ W1 has neighbours in Wj for j = 2, 4, i.e. only
in the one class S2, and for i = 2, x ∈ W2 has neighbours in Wj for j = 1, 3, 5.

We now show that for n > 7 all the W i are fixed by H = G0. We first show that all the weight
classes in S2 must be fixed and then follow with induction on t for the classes in St. We know that
W3 is fixed. The number of weight-3 neighbours of x ∈ W2 is (n − 2)(n − 3), that of x ∈ W4 is
6(n− 4), and that of x ∈ W6 is 20. No two of these numbers can be equal for n ≥ 8, and it follows
that these weight classes cannot be interchanged for n ≥ 8 and so W2,W4 and W6 are fixed. It then
follows that W1 is fixed, since none of the other W i in S3 have neighbours in only the two weight
classes W2 and W4. Thus the sets W i for i = 0, 1, 2, 3, 4, 6 are all fixed. We show that all the W i

are fixed, using induction and the fact that if W i is fixed then its set of neighbouring weight classes
is fixed. The fact that each member of S2 is fixed immediately gives that W i is fixed for i = 5, 7, 9,
i.e. that all members of S3 are fixed. Suppose that all members of St are fixed, where t ≥ 3. We
use induction on t ≥ 3. To consider St+1, we look at the members of St and their neighbours. The
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neighbours of vectors inW3t−4 are inW i where i = 3(t+1)−4, 3(t−1), 3(t−1)−2, 3(t−1)−4, which
tells us that W3(t+1)−4 is fixed, by induction. The neighbours of vectors in W3t−2 are in W i where
i = 3(t+ 1)− 2, 3(t+ 1)− 4, 3(t− 1), 3(t− 1)− 2, which tells us that W3(t+1)−2 is fixed, by induction.
The neighbours of vectors in W3t are in W i where i = 3(t + 1), 3(t + 1) − 2, 3(t + 1) − 4, 3(t − 1),
which tells us that W3(t+1) is fixed, by induction. This covers St+1, so all the W i are fixed.

Let σ ∈ G0. Then σ fixes W1, so there is an element τ ∈ A0 such that στ ∈ G[0,e1,...,en], the
pointwise stabilizer. Since G0 ≥ A0, τ ∈ G0, so we can take σ ∈ G[0,e1,...,en] and show it must
be the identity. Then it will follow that G0 = A0 and the proof is complete. Suppose then that
σ ∈ G[0,e1,...,en]. We first show that σ also fixes every weight-2 vector. Let x = e1 + e2. Then x is a
neighbour in Γ3

n of ei for i = 3, . . . , n. We want to show that it is the only common neighbour of this
set of points. Suppose w is a neighbour to all these points. Then wt(w+ ei) = 3 for i = 3, . . . , n. So,
for i = 3, . . . , n, we have 3 = wt(w)+1−2wt(w∩ei), so wt(w) = 2+2wt(w∩ei). Now wt(w∩ei) is 0
or 1. Suppose wt(w ∩ ei) = 1 for some i ≥ 3. Then wt(w) = 4, and thus wt(w ∩ ei) = 1 for all i ≥ 3,
so that wt(w) ≥ n − 2 > 4, giving a contradiction. So wt(w ∩ ei) = 0 for all i ≥ 3 and so w = x.
Since each of the ei are fixed, this unique common neighbour is also fixed. Thus any weight-2 vector
is fixed.

Finally we show that every vector is fixed by σ. We do this by induction on i forW i. It is true for
i = 1, 2. If x ∈ W3 then it is neighbour to precisely 3(n− 3) weight-2 vectors, all of which are fixed,
and no other weight-3 can be neighbour to this set. Thus every weight-3 vector is fixed. Suppose the
result is true for i = j − 1 ≥ 3, and let x ∈ Wj . Then x is neighbour to

(
j
3

)
vectors of weight j − 3,

and no other weight-j can be a neighbour to this set, so by the same argument, x is fixed. Thus σ
is the identity and G = A. �

Note: It seems that this argument can be adapted to hold for Γk
n for any odd k. It clearly will not

work for k even.

7 Permutation decoding for the self-dual C2(Γ
2
n)

We will show that the same 2-PD-sets as found in [6] and 3-PD-sets as found in [12] for C2(Γ1
n) for

n even will work for C2(Γ2
n) for n ≡ 0 (mod 4), n ≥ 8, although a different information set needs to

be chosen. We do not have a formula for the minimum weight of C2(Γ2
n), although we know it is 2

for n = 4, 8 for n = 8, and at least 12 for n = 12.1 For n ≥ 16, using Equation (3) and Lemma 4,
we have Bn ∼

[
I Dn−1

]
∼
[
Dn−1 I

]
for n ≡ 0 (mod 4), since D2

n−1 = I. Supposing the
minimum weight is less than 8, it must be 2,4 or 6. We need only look at sums of one, two or three
rows of

[
I Dn−1

]
. From Lemma 5 we see that the sum of two blocks of D3

n−1 has weight at least
2(
(
n−1

3

)
− (n− 3)(n− 4)) and the sum of three blocks has weight at least 3(

(
n−1

3

)
− 2(n− 3)(n− 4)).

For n ≥ 12 the sum of two or three rows of the the equivalent matrices for Bn thus has weight greater
than 6, which shows that the minimum weight of C2(Γ2

n) is at least 8 for n ≥ 12 and thus the code
will always correct three errors for n ≥ 8.

Lemma 6 For n ≡ 0 (mod 4), an information set can be obtained for the binary code C2(Γ2
n) by

making the following interchanges between the information and check sets from the natural ordering
of the vectors: move e1 + e2 + e3 + n = (0, 0, 0, 1, . . . , 1) and e2 + e3 + n = (1, 0, 0, 1, . . . , 1) into
the information set, and move

∑n−1
i=2 ei = (0, 1, . . . , 1, 0) and

∑n−1
i=1 ei = (1, . . . , 1, 0) into the check

positions.
1We thank John Cannon for computing this lower bound for us.
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Proof: In this case, [Bn−1 | An−1] is a generator matrix for the code, and this is equivalent to
[I | Bn−1An−1] since B2

n−1 = I by Lemma 2. From Lemma 4 Bn−1An−1 is an adjacency matrix for
Γ3

n−1. Thus the last two rows of the column for e1 + e2 + e3 + n = (0, 0, 0, 1, . . . , 1) = 2n − 8 have
entries 0 and 1 respectively, while the last two rows of the column for e2+e3+n = (1, 0, 0, 1, . . . , 1) =
2n − 7 have entries 1 and 0. Thus the last two columns of I, representing the points 2n−1 − 2 =
(0, 1, . . . , 1, 0) =

∑n−1
i=2 ei and 2n−1 − 1 = (1, . . . , 1, 0) =

∑n−1
i=1 ei, can be replaced by these columns,

preserving the rank, and giving an isomorphic code. �

For each i such that 1 ≤ i < n let ti = (i, n) ∈ Sn, i.e. the automorphism of C2(Γ2
n) defined by

the transposition of the coordinate positions. For n ≥ 4 let

Pn = {ti | 1 ≤ i ≤ n− 1} ∪ {ι}
Tn = TPn.

Since the translation group T is normalized by Sn, elements of the form T (w)tiT (u) are all in
Tn, i.e. σ−1T (u)σ = T (uσ−1), so that for transpositions t, tT (u) = T (ut)t. Let P ∗n = {tn−1, ι} and

T ∗n = TP ∗n = T{tn−1, ι}.

We will write

I1 = {r | 0 ≤ r ≤ 2n−1 − 3} = {(r1, . . . , rn−1, 0) | ri ∈ F2} \ {(0, 1, . . . , 1, 0), (1, . . . , 1, 0)}
C1 = {r | 2n−1 ≤ r ≤ 2n − 1} \ {2n − 8,2n − 7}

= {(r1, . . . , rn−1, 1) | ri ∈ F2} \ {(0, 0, 0, 1, . . . , 1), (1, 0, 0, 1, . . . , 1)}
I2 = {2n − 8,2n − 7} = {(0, 0, 0, 1, . . . , 1), (1, 0, 0, 1, . . . , 1)}
C2 = {2n−1 − 2,2n−1 − 1} = {(0, 1, . . . , 1, 0), (1, . . . , 1, 0)},

and I = I1 ∪ I2, C = C1 ∪ C2. Write

a = 2n − 8 = (0, 0, 0, 1, . . . , 1), b = a+ 1 = 2n − 7 = (1, 0, 0, 1, . . . , 1),

α = 2n−1 − 2 = (0, 1, . . . , 1, 0), β = α+ 1 = 2n−1 − 1 = (1, . . . , 1, 0).

Proposition 5 With I as information set, for n ≡ 0 (mod 4), n ≥ 8, T ∗n is a 2-PD-set of size 2n+1

for C2(Γ2
n), and Tn is a 3-PD-set of size n2n for C2(Γ2

n).

Proof: First consider the case of 2-PD-sets. Let T = {x, y} be a set of two points in Vn. We need
to show that there is an element in T ∗n that maps T into C. We consider the various possibilities for
the points in T . If T ⊆ C then use ι. Thus suppose at least one of the points is in I and, by using a
translation, suppose that one of the points, say y, is 0.

If x ∈ I, then suppose first that x ∈ I1. Then T ((0, . . . , 0, 1)) will work unless x =
(0, 0, 0, 1, . . . , 1, 0) or (1, 0, 0, 1, . . . , 1, 0), in which case T ((0, . . . , 0, 1, 1)) will work. If x ∈ I2, then
T ((1, 1, 1, 0, . . . , 0, 1)) will map y into C1 and x into C2.

If x ∈ C, then suppose first that x ∈ C1. Then x = (x1, . . . , xn−1, 1) and (x1, . . . , xn−1) 6=
(0, 0, 0, 1, . . . , 1), (1, 0, 0, 1, . . . , 1). Then T ((1, . . . , 1, 0)) will map y into C2 and x to (x1+1, . . . , xn−1+
1, 1) ∈ C1 unless x = (1, 1, 1, 0, . . . , 0, 1) or (0, 1, 1, 0, . . . , 0, 1), in which case tn−1T ((0, . . . , 0, 1)) will
work. If x ∈ C2, then T ((0, . . . , 0, 1)) will work. This completes the case of the 2-PD-set.

Now let T = {x, y, z} be a set of three points in Vn. We need to show that there is an element
in Tn that maps T into C. We consider the various possibilities for the points in T . If T ⊆ C then
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use ι. Thus suppose at least one of the points is in I and, by using a translation, suppose that one
of the points, say z, is 0.

If T ⊆ I, then suppose first that x, y ∈ I1. Then T ((0, . . . , 0, 1) will work unless x or y is
(0, 0, 0, 1, . . . , 1, 0) or (1, 0, 0, 1, . . . , 1, 0). If x and y are these two points then T ((0, . . . , 0, 1, 1))
will work. If x is one of these points and y is not, then T ((0, . . . , 0, 1, 1) will work unless y is
(0, 0, 0, 1, . . . , 1, 0, 0) or (1, 0, 0, 1, . . . , 1, 0, 0), in which case T ((0, . . . , 0, 1, 0, 1) will work.

If x, y ∈ I2, then T ((0, 1, 1, 0 . . . , 0, 1)) will work. Now suppose x ∈ I2, y ∈ I1, and
suppose x = (0, 0, 0, 1 . . . 1), y = (y1, . . . , yn−1, 0). Then T ((1, 1, 1, 0, . . . , 0, 1)) will work; simi-
larly if x = (1, 0, 0, 1, . . . , 1), then T ((0, 1, 1, 0, . . . , 0, 1)) will work, since in the first case yT =
((y1)c, (y2)c, (y3)c, y4 . . . , yn−1, 1) 6∈ C only if yT = a, b, i.e. y = α, β, which is impossible.

The other cases for T involve one or two points in C.
Case (i) x ∈ I1 and y ∈ C1. Then x = (x1, . . . , xn−1, 0), y = (y1, . . . , yn−1, 1), x 6= α, β, y 6= a, b.

1. Suppose x = yc. Then τ = T ((x1, . . . , xn−1, 1)) will have zτ = (x1, . . . , xn−1, 1), xτ =
(0, . . . , 0, 1), yτ = (1, . . . , 1, 0) which will work unless zτ = a, b, i.e. x = (0, 0, 0, 1, . . . , 1, 0)
or (1, 0, 0, 1, . . . 1, 0). In this case σ = tn−1T ((0, 1, 1, 0, . . . , 0, 1, 1)) will work.

2. Suppose xi = yi for 1 ≤ i ≤ n− 1. Then x = (x1, . . . , xn−1, 0) and y = (x1, . . . , xn−1, 1). Then
if τ = T (xc), zτ = xc, xτ = (1, . . . , 1), yτ = (1, . . . , 1, 0) are all in C unless xc = a, b, i.e.
x = (1, 1, 1, 0, . . . , 0) or (0, 1, 1, 0 . . . 0). In this case σ = tn−1T ((0, . . . , 0, 1)) will work.

3. Suppose there exists i such that xi = yi = 0, and xj 6= yj for some j. Then σ = T ((1, . . . , 1))ti
will work as long as xσ, yσ 6= a or b. In this case tiT ((0, . . . , 0, 1)) or tiT ((0, 1, 0 . . . , 0, 1)) will
work.

4. Suppose there is no i for which xi = yi = 0, and x 6= yc. If y = (1, . . . , 1) then T ((1, 0, . . . , 0, 1))
will do unless x = (0, 0, 0, 1, . . . , 1, 0) or (1, 0, 0, 1, . . . , 1, 0), in which case tn−1T ((1, . . . , 1, 0))
will work. Otherwise yj = 0 for some j, 1 ≤ j ≤ n− 1. The possibility y = (0, . . . , 0, 1) cannot
arise, so xi = yi = 1 for some i ≤ n− 1 and then σ = tiT ((1, . . . , 1, 0)) will do, unless xσ or yσ
is a, b. If xσ = a, then i ≥ 4 and x = (1, 1, 1, 0, . . . , 0) + 2i−1, y = (y1, y2, y3, 1, . . . , 1), where yj

for j = 1, 2, 3 are not all 0 and not all 1. The translation T (((y1)c, (y2)c, (y3)c, 0, . . . , 0, 1)) will
work. If xσ = b then i = 1 or i ≥ 4, x = (1, 1, 1, 0, . . . , 0) if i = 1, or x = (0, 1, 1, 0, . . . , 0)+2i−1

if i ≥ 4, and y = (1, y2, y3, 1, . . . , 1) in either case. Then T ((0, (y2)c, (y3)c, 0, . . . , 0, 1)) will work.
Similarly, if yσ = a or b, then y = (1, 1, 1, 0, . . . , 0, 1) or (0, 1, 1, 0, . . . , 0, 1), respectively and
tn−1T (((x1)c, (x2)c, (x3)c, 0, . . . , 0, 1, 1)) will work.

Case (ii) x ∈ I1 and y ∈ C2. Then x = (x1, . . . , xn−1, 0) and y = α or β. Then in either case
for y, T ((0, . . . , 0, 1)) will work unless x = (0, 0, 0, 1, . . . , 1, 0) or (1, 0, 0, 1, . . . , 1, 0). In this case,
T ((1, . . . , 1)) will do.
Case (iii) x ∈ I2 and y ∈ C2. In all the four cases the map tn−1T (β) will work.
Case (iv) x ∈ I2 and y ∈ C1. Then x = a, b and y = (y1, . . . , yn−1, 1). If x = a, then T (β) will
work unless y = (1, 1, 1, 0, . . . , 0, 1) or (0, 1, 1, 0, . . . , 0, 1), in which case tn−1T ((1, 1, 1, 0, . . . , 0, 1)) will
work. Similarly if x = b.
Case (v) x ∈ C2 and y ∈ C2. Then T ((0, . . . , 0, 1)) will do.
Case (vi) x ∈ C1 and y ∈ C2. Then if x = (x1, . . . , xn−1, 1) and y = β, σ = T (((x1)c, . . . , (xn−1)c, 1))
will work unless zσ = ((x1)c, . . . , (xn−1)c, 1) = a, b. If it is a, then x = (1, 1, 1, 0, . . . , 0, 1), and
if b, then x = (0, 1, 1, 0, . . . , 0, 1). In either case, tn−1T ((0, . . . , 0, 1, 1)) will work. If y = α, then,
as above, T ((x1, (x2)c, . . . , (xn−1)c, 1)) will work unless (x1, (x2)c . . . , (xn−1)c, 1) = a, b, i.e. x =
(0, 1, 1, 0, . . . , 0, 1) or (1, 1, 1, 0, . . . , 0, 1). The same map tn−1T ((0, . . . , 0, 1, 1)) will work.
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Case (vii) x, y ∈ C1. Then x = (x1, . . . , xn−1, 1), y = (y1, . . . , yn−1, 1), 6= a, b. Then T (β) will work
unless one or both of x, y are either u = (1, 1, 1, 0, . . . , 0, 1) or v = (0, 1, 1, 0, . . . , 0, 1). If x = u and
y = v then tn−1T ((1, . . . , 1)) will work. If x = u or v and y = (1, . . . , 1) then tn−1T ((0, . . . , 0, 1))
will work. Thus suppose x = u or v and yi = 0 for some i, but y 6= u, v. If there is no j ≥ 4
for which xj = yj = 0 then y = (y1, y2, y3, 1, . . . , 1) where yi = 0 for some 1 ≤ i ≤ 3. In this
case tn−1T ((y1)c, (y2)c, (y3)c, 0 . . . , 0, 1) will work. Otherwise yi = 0 for some 4 ≤ i ≤ n − 1. Then
tiT ((0, . . . , 0, 1)) will work unless y = (0, 0, 0, 1, . . . , 1, 0, 1, . . . , 1) or (1, 0, 0, 1, . . . , 1, 0, 1, . . . , 1) where
the 0 is in the ith position. In this case, tiT ((1, . . . , 1)) will work.

This completes all the cases. �

Note: The combinatorial lower bound for the size of an s-PD-set from Result 1 is 14 for s = 3, and
6 for s = 2.

8 Ternary codes for Γ1
n

We now look at the ternary codes from the graph Γ1
n, i.e. from the design D1

n. All the spans are now
over F3. We first establish a general result for all the Γk

n, k ≥ 1. Using the notation of Section 3:

Lemma 7 Over F3, if k ≥ 0, n ≥ 1, then M3(n, k) = M(n, k), (M2(n, k) + I)2 = I, and
rank3(M(n, k)) = rank3(M2(n, k)).

Proof: We prove this by induction on n and k ≤ n. It is true for n = 1 and k = 0, 1 since

M(1, 1) = A1 =
[

0 1
1 0

]
and M(1, 0) = I. Suppose by induction that it is true for n and all

0 ≤ k ≤ n. Then, writing M(n+ 1, k) = M , M(n, k) = N , M(n, k − 1) = L,

M3 =
[
N2 + L2 2NL

2NL N2 + L2

] [
N L
L N

]
=
[
N3 L3

L3 N3

]
= M,

by induction if k ≤ n. If k = n+ 1, then M(n+ 1, n+ 1) is the reverse diagonal matrix, which does
have this property.

For the other statements, just notice that (M2 + I)2 = I, and rank3(M) ≥ rank3(M2) ≥
rank3(M3) = rank3(M). �

We now return to the ternary codes of Γ1
n, i.e. we take An = M(n, 1) over F3.

Lemma 8 For n ≥ 3, rank3(An) = 2n−1 + rank3(An−2).

Proof: Writing A = An−2, using A3 = A and elementary row operations over F3, we have

An =


A I I 0
I A 0 I
I 0 A I
0 I I A

 ∼

I 0 A I
0 I I A
0 I I + 2A2 2A
0 A 2A 0

 ∼

I 0 0 A2 + I
0 I A2 + I 0
0 0 A 2A2

0 0 0 0

 .
This gives the result. �

Proposition 6 For n ≥ 1,

rank3(An) =
{

2
3(2n − 1) if n is even
2
3(2n + 1) if n is odd
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Proof: We can verify directly that the result is true for n = 1, 2. Let n ≥ 3 and write rank3(An) = an.
Then by Lemma 8 an = 2n−1 + an−2. Solving this recurrence with a1 = a2 = 2, gives an = 2

3(2n− 1)
for n even, an = 2

3(2n + 1) for n odd, proving the assertion. �

Note: 1. Since
∑

x∈Vn
vx̄ = n, it follows that  ∈ C3(Γ1

n) for n ≡ 1, 2 (mod 3). Clearly  ∈ C3(Γ1
n)⊥

for n ≡ 0 (mod 3).
2. Peeters [16] obtains the p-rank for graphs that include the class of Hamming graphs in a different,
more general, way.

9 Ternary codes for Γ2
n

Now we consider the codes generated by the adjacency matrices Bn of Γ2
n over F3. All spans will

now be over F3 with notation as before. Recall that A3
n = An and B3

n = Bn, by Lemma 7.

Lemma 9 For all n ≥ 1, A2
n = nI+2Bn, AnBn = (n−1)An, and B2

n =


2Bn if n ≡ 0 (mod 3)
Bn if n ≡ 1 (mod 3)
I if n ≡ 2 (mod 3)

Proof: The proof of the first statement is by induction. It is true for n = 1 since A2
1 = I and B1 = 0.

Suppose it is true for all k < n. Then

A2
n =

[
A2

n−1 + I 2An−1

2An−1 A2
n−1 + I

]
=
[

2Bn−1 + nI 2An−1

2An−1 2Bn−1 + nI

]
= 2Bn + nI,

as required. The other statements follow from the first. �

Writing now B = Bn−2, A = An−2, we have

Bn =


B A A I
A B I A
A I B A
I A A B

 ∼

I A A B
0 I + 2A2 B + 2A2 A+ 2AB
0 B + 2A2 I + 2A2 A+ 2AB
0 A+ 2AB A+ 2AB I + 2B2

 . (5)

Proposition 7 For n ≥ 1,

rank3(Bn) =



2
3(2n − 1) for n ≡ 0 (mod 6) and Bn ∼ An
2
3(2n + 1) for n ≡ 3 (mod 6) and Bn ∼ An
2
3(2n−1 − 1) for n ≡ 1 (mod 6)
2
3(2n−1 + 1) for n ≡ 4 (mod 6)
2n for n ≡ 2 (mod 3)

.

Proof: First take n ≡ 0 (mod 3). Then n− 2 ≡ 1 (mod 3), and B2 = B, AB = 0, and A2 = I+ 2B.
By Equation (5), using elementary row operations,

Bn ∼


I A A B
0 B 2I + 2B A
0 2I + 2B B A
0 A A I + 2B

 ∼

I 0 0 A2 + I
0 I A2 + I 0
0 0 A 2A2

0 0 0 0

 ∼ An,

by the proof of Lemma 8.
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For n ≡ 1 (mod 3), n−2 ≡ 2 (mod 3), n−1 ≡ 0 (mod 3), so B2 = I, A2 = 2I+2B, and AB = A.
By Equation (5),

Bn ∼


I A A B
0 2I +B I + 2B 0
0 I + 2B 2I +B 0
0 0 0 0

 ∼

I A A B
0 2I +B 2B + I 0
0 0 0 0
0 0 0 0

 ,
and so rank3(Bn) = 2n−2 + rank3(Bn−2 + 2I) for n ≡ 1 (mod 3). Now Bn−2 + 2I = I + 2A2

n−2 and

A2
n−2 − I =

[
An−3 I
I An−3

]2

−
[
I 0
0 I

]
=
[
A2

n−3 2An−3

2An−3 A2
n−3

]
∼
[
A2

n−3 2An−3

0 0

]
.

So rank3(I + 2A2
n−2) = rank3(An−3) and this is given by the formula in Proposition 6, giving the

stated result.
For n ≡ 2 (mod 3), B2

n = I by Lemma 9, so Bn is invertible and hence of full rank. �

10 The self-dual binary codes

For n ≡ 0 (mod 4), both the codes C2(Γ1
n) and C2(Γ2

n) are self-dual, from [12, 6] for the first case,
and from Lemma 3, for the second. The graph Γ3

n only yields new codes when n ≡ 2 (mod 4), in
which case C2(Γ3

n)⊥ ⊃ C2(Γ1
n) by Result 2 and Lemma 5.

Lemma 10 For n ≥ 4, n ≡ 0 (mod 4), C2(Γ1
n) 6= C2(Γ2

n).

Proof: Since these are self-dual, we need only show that there are blocks of the designs that do
not meet evenly. Thus consider u = e1 = (1, 0, . . . , 0) and w = 0 = (0, 0, . . . , 0) in Vn. Then
|ū1 ∩ w̄2)| = n− 1, which is odd, so vū1 6∈ C2(Γ2

n) and so the codes are distinct. �

Note: For n = 4, C2(Γ2
n) has minimum weight 2; for n = 8 it has minimum weight 8 and two types

of minimum words: if P1 = {0, e1 + e2, e3 + e4, e1 + e2 + e3 + e4}, P2 = {0, e1 + e2 + e7 + e8, e3 +
e4 + e7 + e8, e1 + e2 + e3 + e4} and if Pc

i = {xc | x ∈ P i}, and Si = P i ∪ Pc
i , then w = vSi ∈ C2(Γ2

n),
and vSi 6∈ C2(Γ1

n), for i = 1, 2. This was discovered computationally (using Magma [2, 4]) but can
easily be verified by checking that w meets every block of D2

n evenly, but for v = (0, 0, 0, 0, 1, 0, 0, 0),
|S1 ∩ v̄1| = 1, and similarly for S2. Computational results showed that the number of minimum
weight words of C2(Γ1

n) for n = 8 is 256, i.e. the incidence vectors of the blocks of the design, and
that the minimum weight of C2(Γ2

n) is 8, and that there are 10080 minimum words, 6720 of the first
type, and 3360 of the second, as counting will verify. The intersection of these codes has dimension
72, minimum weight 16, and 1680 minimum words.

Proposition 8 For n ≥ 4, n ≡ 0 (mod 4), dim(C2(Γ1
n) ∩ C2(Γ2

n)) = 2n−2 + 2
n
2
−1.

Proof: Since (C2(Γ1
n) ∩ C2(Γ2

n))⊥ = C2(Γ1
n)⊥ + C2(Γ2

n)⊥ = C2(Γ1
n) + C2(Γ2

n), we consider the row
span of the matrices An and Bn. Thus, with A = An−1 and B = Bn−1, n ≡ 0 (mod 4) implies
n− 1 ≡ 3 (mod 4) so A2 = B2 = I by Lemma 2, and

[
An

Bn

]
=


A I
I A
B A
A B

 ∼

I A
0 B + I
0 0
0 0

 .
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By the proof of Proposition 1, rank2(B+I) = 2n−3+2(2n−4−2
n−4

2 ) = 2n−2−2
n−2

2 , thus dim(C2(Γ1
n)+

C2(Γ2
n)) = 2n−1 + 2n−2 − 2

n−2
2 , and it follows that dim(C2(Γ1

n) ∩ C2(Γ2
n)) = 2n−2 + 2

n−2
2 . �

We can identify some words in C2(Γ2
n) and in C2(Γ1

n)∩C2(Γ2
n), for n ≡ 0 (mod 4), n ≥ 4, although

we have not yet found the minimum weight of these codes for n ≥ 12. Similarly, we have found some
words in C2(Γ2

n)⊥ when n ≡ 1 (mod 4), n ≥ 5, that are of minimum weight in the smallest case. The
constructions of these words are similar.

Our words will be constructed as follows: write Ωn = {1, . . . , n}. For n ≡ 0 (mod 4) let {N i |
1 ≤ i ≤ n

2 } be the partition of Ωn into 2-subsets given by N i = {2i − 1, 2i} for 1 ≤ i ≤ n
2 , and let

fi = e2i−1 + e2i. Let g = f1 + f2. Thus the fi are weight-2 vectors in Vn and g has weight 4. Let

Un = 〈fi | 1 ≤ i ≤
n

2
〉

Wn = 〈{fk | 3 ≤ k ≤
n

2
} ∪ {g}〉,

i.e. subspaces of dimension n
2 and n

2 − 1, respectively.
For n ≡ 1 (mod 4) we partition up to n− 1 and define

Yn = 〈fi | 1 ≤ i ≤
n− 1

2
〉.

Thus Yn is a subspace of Vn of dimension n−1
2 . With this notation we get:

Proposition 9 For n ≡ 0 (mod 4), n ≥ 4, the code C2(Γ1
n)∩C2(Γ2

n) has a word of weight 2
n
2 given

by the incidence vector vUn of the subspace Un. Further, C2(Γ2
n) has a word of weight 2

n
2
−1 given by

the incidence vector vWn of the subspace Wn.
For n ≡ 1 (mod 4), n ≥ 5, C2(Γ2

n)⊥ has a word of weight 2
n−1

2 given by vYn.

Proof: First we deal with the n ≡ 0 (mod 4) case. Notice that Un is the union of the subspace Wn

and the coset f1 + Wn. Thus if we can show that the incidence vector of Wn is in the code C2(Γ2
n)

then its translate by f1 will also be in C2(Γ2
n) and hence the incidence vector of Un will be in C2(Γ2

n).
For x ∈ Vn let

S1
x = {y | y ∈ Un,wt(x+ y) = 1};
S2

x = {y | y ∈Wn, wt(x+ y) = 2}.

Then for z ∈ Un, S1
(x+z) = S1

x + z and for z ∈Wn, S2
(x+z) = S2

x + z. Proving the first of these,

S1
(x+z) = {y | y ∈ Un,wt(x+ z + y) = 1} = {(r + z) | r ∈ Un,wt(x+ r) = 1} = S1

x + z.

The other follows similarly.
First we show that vUn ∈ C2(Γ1

n), and that Un is in fact an arc for D1
n, i.e. blocks of the design

meet it in 0 or 2 points. If x ∈ Vn has even weight then x̄1 ∩ Un = ∅. If x ∈ Vn has odd weight,
we can reduce it by adding suitable elements of Un so that the entries at the coordinate pairs in N i

are 1, 0 or 0, 0. Thus, without loss of generality, suppose x has this form. Suppose there are i of the
first type where 0 ≤ i ≤ n

2 , and i is odd, since wt(x) = i. For any y ∈ Un, wt(x+ y) ≥ i, so if i ≥ 2,
x̄1 ∩ Un = ∅. If i = 1 then x = ej for some j, and x̄1 meets Un in precisely two points. This shows
that vUn ∈ C2(Γ1

n), and that Un is an arc for D1
n.

Now we prove vWn ∈ C2(Γ2
n). If x ∈ Vn has odd weight then x̄2 ∩ Un = ∅. If x ∈ Vn has even

weight, we can reduce it by adding suitable elements of Wn so that the entries at the coordinate
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pairs in N i for i ≥ 3 are 1, 0 or 0, 0, and such that the first four entries have r 1’s where 0 ≤ r ≤ 2.
Suppose there are i of the type 1, 0, where 0 ≤ i ≤ n

2 − 2. Then for y ∈Wn, wt(x+ y) ≥ i+ r. Thus
if i ≥ 3, x̄2 ∩Wn = ∅. If i = 2 then we need r = 0 for a non-trivial intersection, and we get |S2

x| = 4.
If i = 1 then r = 1 and |S2

x| = 2. If i = 0 then r = 0 or r = 2. In the first case |S2
x| = n

2 − 2, which
is even, and in the second, |S2

x| = 2. Thus vWn ∈ C2(Γ2
n).

For n ≡ 1 (mod 4), we show that vYn ∈ C2(Γ2
n)⊥. For x ∈ Vn we write Tx = {y | y ∈ Yn,wt(x+

y) = 2}, and note that as before, for z ∈ Yn, T(x+z) = Tx + z. Thus we can employ the same method
of proof as in the previous cases. If wt(x) is odd, then x̄2 ∩ Yn = ∅. If x ∈ Vn has even weight, we
can reduce it by adding suitable elements of Yn so that the entries at the coordinate pairs in N i for
1 ≤ i ≤ n−1

2 are 1, 0 or 0, 0. The entry at n is xn. Suppose x now has i pairs with entries 1, 0, where
0 ≤ i ≤ n−1

2 . Then for y ∈ Yn, wt(x + y) ≥ i. Thus if i ≥ 3, x̄2 ∩ Yn = ∅. If i = 2 then xn = 0 and
|Tx| = 4. If i = 1 then xn = 1 and again |Tx| = 2. If i = 0 then x = 0 and |T0| = n−1

2 which is even
for n ≡ 1 (mod 4). Thus vYn ∈ C2(Γ2

n)⊥. �

11 The dual codes when p = 3

Proposition 10 Let C = C3(Γ1
n) or C3(Γ2

n) for n ≥ 4. Then C ∩ C⊥ = {0}.
Further, for n ≡ 1 (mod 3), C3(Γ1

n)⊥ = C3(Γ2
n); for n ≡ 0, 2 (mod 3), the minimum weight of

C3(Γ1
n)⊥ is at most

(
n
2

)
+ 1.

Proof: Recall that C3(Γ1
n) = C3(Γ2

n) for n ≡ 0 (mod 3) by Proposition 7.
In both cases we show that FVn

3 = C +C⊥ by showing that the incidence vector of any point can
be written as u+ w where u ∈ C and w ∈ C⊥, which will prove the assertion.

First let C = C3(Γ1
n). For brevity, write 0 = (0, . . . , 0) and z̄ for z̄1 in this part of the proof. We

show that w = v0 −
∑

0∈z̄ v
z̄ is in C⊥. Since the automorphism group is transitive on points, this

will show that all the weight-1 vectors are in C + C⊥.
The blocks containing 0 are the blocks ēi, so w = v0−

∑n
i=1 v

ēi . We show that the inner product
(w, vx̄) = 0 for all blocks x̄.

First suppose 0 ∈ x̄. Then wt(x) = 1, so x = ei for some i. Without loss of generality take
x = e1. Then

(w, vē1) = (v0, vē1)−
n∑

i=1

(vēi , vē1) = 1−
n∑

i=1

(vēi , vē1).

Now (vē1 , vē1) = n and (vēi , vē1) = 2 for i 6= 1, since, for each i, ēi = {0, ei + ej | j 6= i}. So
(w, vē1) = 1− n− 2(n− 1) = 0.

Now suppose 0 6∈ x̄. For y ∈ x̄, wt(x+ y) = 1 and since

wt(x+ y) = wt(x) + wt(y)− 2wt(x ∩ y) = 1,

if x̄ meets ēi then y ∈ x̄ ∩ ēi has wt(y) = 2, so wt(x) = 2wt(x ∩ y) − 1 ≤ 3 (since wt(x ∩ y) ≤ 2),
and wt(x) is odd. Since 0 6∈ x̄, if x̄ meets any of the ēi then wt(x) = 3 and x = ei + ej + ek for some
distinct i, j, k. Then ēl ∩ x̄ = ∅ unless l = i, j, k, so

n∑
l=1

(vēl , vx̄) = (vēi , vx̄) + (vēj , vx̄) + (vēk , vx̄) = 6 = 0.

This covers all blocks, so w ∈ C⊥ for C = C3(Γ1
n).
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Now let C = C3(Γ2
n). From Proposition 7 we need only consider n ≡ 1 (mod 3). Now z̄ will

denote z̄2.
Using a similar argument as in the case of Γ1

n, the blocks containing 0 are the blocks ei + ej , so
let

w = v0 −
∑
0∈z̄

vz̄ = v0 −
∑
i 6=j

vei+ej ,

where z̄ denotes the neighbourhood block of z ∈ Vn in Γ2
n, i.e. z̄2. We show that the inner product

(w, vx̄) = 0 for all blocks x̄. Recall that ei + ej = {0, ei +ek, ej +ek, ei +ej +ek +el | k, l 6= i, j, k 6= `}.
As before, let us first suppose that 0 ∈ x̄ so that wt(x) = 2, and x = ei + ej for some i 6= j.

Without loss of generality take x = e1 + e2. Notice that

e1 + e2 = {0, e1 + ei, e2 + ei, e1 + e2 + ei + ej | i, j 6= 1, 2, i 6= j}.

Then (vx̄, vx̄) =
(
n
2

)
= 0 since n ≡ 1 (mod 3).

e1 + e2 ∩ e1 + e3 = {0, e1 + ei, e2 + e3, e1 + e2 + e3 + ei | i 6= 1, 2, 3},

of size 2(n− 2). There are 2(n− 2) blocks of the form e1 + ei or e2 + ei, i 6= 1, 2, so 4(n− 2)2 = 1 is
the contribution to the inner product from these blocks.

e1 + e2 ∩ e3 + e4 = {0, e1 + e3, e1 + e4, e2 + e3, e2 + e4, e1 + e2 + e3 + e4}

of size 6, so these blocks do not contribute to the inner product. Thus we have, for 0 ∈ x̄, (w, vx̄) =
1− 1 = 0, as required.

If 0 6∈ x̄ then wt(x) 6= 2. Every y in Support(w) has weight 0,2 or 4. If y is also in x̄ then
wt(x+ y) = 2 = wt(x) + wt(y)− 2wt(x∩ y), and taking wt(y) to be 2 or 4 gives wt(x) = 2 + 2wt(x∩
y)−wt(y). Thus wt(x) is even and at most 6. If x = 0 then x̄∩ ei + ej = 2(n− 2) for each pair i, j,
and each occurs

(
n
2

)
times, thus giving (w, vx̄) = 0.

If wt(x) = 4, then taking x =
∑4

i=1 ei, we have x̄ ∩ ei + ej = ∅ if i or j 6= 1, 2, 3, 4. Also

x̄ ∩ e1 + e5 = {e1 + e2, e1 + e3, e1 + e4, e1 + e5 + e2 + e3, e1 + e5 + e2 + e4, e1 + e5 + e3 + e4}

of size 6, so these blocks make no contribution, and

x̄ ∩ e1 + e2 = {e1 + e3, e1 + e4, e2 + e3, e2 + e4, e1 + e2 + e3 + ei, e1 + e2 + e4 + ei | i 6= 1, 2, 3, 4},

of size 4 + 2(n − 4) = 2(n − 2). There are
(

4
2

)
= 6 choices of these so they also cancel in the inner

product, giving (w, vx̄) = 0.
If wt(x) = 6, taking x =

∑6
i=1 ei say, then only blocks of the form ei + ej for 1 ≤ i, j ≤ 6 intersect

x̄; for example,
x̄ ∩ e1 + e2 = {e1 + e2 + ei + ej | 3 ≤ i, j ≤ 6}

has size
(

4
2

)
= 6, and thus does not contribute to the inner product. This completes the proof that

w ∈ C⊥ for C = C3(Γ2
n). Thus C ∩ C⊥ = {0} for C = C3(Γk

n), k = 1, 2.
For the remaining assertions, notice that, from Lemma 9, AnBn = 0 for n ≡ 1 (mod 3), so

C3(Γ1
n)⊥ ⊇ C3(Γ2

n). Since they have the same dimensions, they are equal. For the final assertion, we
have, for n ≡ 0, 2 (mod 3), w = v0 −

∑
z∈0̄1

vz̄1 ∈ C3(Γ1
n)⊥ has weight

(
n
2

)
+ 1. �

Table 1 shows the minimum weight of C3(Γ1
n) for small values of n that were computable easily

with Magma. The supports of words in the dual were of the form a subspace of Vn (with coordinate
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n Dim(C) Dim(Dual(C)) MW(C) MW(Dual(C))
3 6 2 2 4
4 10 6 2 4
5 22 10 4 8
6 42 22 4 8
7 86 42 7 16

Table 1: Minimum weight for C3(Γ1
n), small n

value 1) and a translate of the subspace (with coordinate value −1). From Proposition 10 we get the
results also for the codes of Γ2

n. That proposition also gives an upper bound for the minimum weight
that, for n large, will be better than a bound given by a subspace of Vn and a translate. Thus we
have not pursued the construction of such words, although we have found them to exist in this form
for values of n up to n = 11.

12 Conclusion

The minimum weight of the codes has not been established in general. This seems to be a hard
problem. Similarly, the ternary codes for Γ3

n are certainly interesting but as yet we have no general
method of finding out more about them.
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