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Abstract
Codes of length n2 and dimension 2n− 1 or 2n− 2 over the field Fp, for any prime p, that can

be obtained from designs associated with the complete bipartite graph Kn,n and its line graph,
the lattice graph, are examined. The parameters of the codes for all primes are obtained and
PD-sets are found for full permutation decoding for all integers n ≥ 3.

1 Introduction

Codes obtained from an adjacency matrix of the line graph of a graph are closely related to codes
from an incidence matrix of the original graph, and are, in fact, subcodes of this in the binary case.
The codes from the incidence matrix of a graph, in case the graph has some regularity, have been
found, in many cases, to have rank either the number v of vertices, or v−1, in particular the latter in
the binary case: see [6, 7, 13]. Furthermore, their minimum weight is often the valency of the graph,
and the minimum words simply the scalar multiples of the rows of the matrix. Thus it makes sense
to look at these codes in conjunction with the codes from the adjacency matrix of the line graph,
and codes associated with this adjacency matrix. In addition, binary codes from some line graphs
have been found to be good candidates for permutation decoding: see [6, 12, 16, 14, 15, 22].

In this paper we consider the lattice graph, where, for any n, the lattice graph is defined to
be the line graph of the complete bipartite graph Kn,n. It is a strongly regular graph on v = n2

vertices. The binary codes from the span of adjacency matrices of lattice graphs have been examined
by various authors: see [3, 4, 9, 23], and with a view to permutation decoding in [16, 22]. We
extend these results now to p-ary codes for all primes p; the p-rank of these and related graphs was
examined in [20]. Taking the complete bipartite graph Kn,n to have vertices from two disjoint sets
A = {a1, . . . , an} and B = {b1, . . . , bn}, the vertices of the lattice graph Ln are the n2 pairs (ai, bj)
with (ai, bj) and (ak, bm) adjacent if i = k or j = m. If An denotes an adjacency matrix for Ln then
Bn = J−I−An, where J is the all-one and I the identity n2×n2 matrix, will be an adjacency matrix
for the the graph L̃n on the same vertices with adjacency defined by (ai, bj) adjacent to (ak, bm) if
i 6= k, j 6= m. We examine the neighbourhood designs and p-ary codes, for any prime p, from An,
An + I, Bn, Bn + I and show that all the codes are inside the code or its dual obtained from an
incidence matrix Mn for the graph Kn,n, noting that MT

nMn = An + 2I. Thus the codes from the
row span of Mn, and some subcodes of codimension 1, are the ones that we examine for permutation
decoding. Note that An + I and Bn + I are adjacency matrices for the graphs LRn and L̃Rn obtained
from Ln and L̃n, respectively, by including all loops, and thus referred to as reflexive graphs.
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We summarize our results below in a theorem; the specific results relating to the codes from
Ln, L̃n, L

R
n , L̃

R
n are given as propositions and lemmas in the following sections. The notation is as

explained in the paragraph above.

Theorem 1 Let Cn be the p-ary code of an incidence matrix Mn for the complete bipartite graph
Kn,n where p is a prime and n ≥ 3. The vertex set of Kn,n is A ∪ B, where A = {a1, . . . , an},
B = {b1, . . . , bn} and the edges are the pairs (ai, bj) where ai ∈ A, bj ∈ B. Then Cn is a [n2, 2n−1, n]p
code with information set

In = {(ai, bn) | 1 ≤ i ≤ n} ∪ {(an, bi) | 1 ≤ i ≤ n− 1}.

For n ≥ 3, the minimum words are the scalar multiples of the rows ri of Mn, and Aut(Cn) =
Sn o S2, where Aut(Cn) denotes the automorphism group of Cn. The set

S = {(tn,i, tn,i) | 1 ≤ i ≤ n},

of elements of Sn × Sn, where ti,j = (i, j) ∈ Sn is a transposition and tk,k = (k, k) is the identity of
Sn, is a PD-set of size n for Cn using In.

Let En = 〈ri − rj | ri, rj rows of Mn 〉. Then for n ≥ 3, En is an [n2, 2n − 2, 2n − 2]p code
and the minimum words are the scalar multiples of the ri − rj. Further, I∗n = In \ {(a1, bn)} is an
information set, and

S∗ = {(tn,i, tn,j) | 1 ≤ i, j ≤ n},

a PD-set of size n2 for En using I∗n.
The p-ary codes from Ln, L̃n, L

R
n , L̃

R
n are either Fn2

p , 〈〉⊥, C⊥n , E⊥n , Cn or En.

We note that the binary code from the lattice graph is En: see Result 2 in Section 2.
The proof of the theorem follows from propositions and lemmas in the following sections. The

full details about the codes from Ln, L̃n, L
R
n , L̃

R
n are in Proposition 8. Background definitions are

given in Section 2, and notation for the graphs, designs and codes that we consider here is given in
Section 3. Computations leading to these results were all done with Magma [5, 2].

2 Background and terminology

Notation for designs and codes is as in [1, Chapters 1,2]. An incidence structure D = (P,B,J ),
with point set P, block set B and incidence J is a t-(v, k, λ) design, if |P| = v, every block B ∈ B
is incident with precisely k points, and every t distinct points are together incident with precisely λ
blocks. The design is symmetric if it has the same number of points and blocks. The code CF (D)
of the design D over the finite field F is the space spanned by the incidence vectors of the blocks
over F . If Q is any subset of P, then we will denote the incidence vector of Q by vQ, and if
Q = {P} where P ∈ P, then we will write vP instead of v{P}. Thus CF (D) =

〈
vB |B ∈ B

〉
, and

is a subspace of FP , the full vector space of functions from P to F . For any w ∈ FP and P ∈ P,
w(P ) denotes the value of w at P . If F = Fp then the p-rank of the design, written rankp(D), is
the dimension of its code CF (D), which we usually write as Cp(D).

The codes here are linear codes, and the notation [n, k, d]q will be used for a q-ary code C
of length n, dimension k, and minimum weight d, where the weight, wt(v), of a vector v is the
number of non-zero coordinate entries. A generator matrix for C is a k × n matrix made up of
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a basis for C, and the dual code C⊥ is the orthogonal under the standard inner product (, ), i.e.
C⊥ = {v ∈ Fn|(v, c) = 0 for all c ∈ C}. A code is self-orthogonal if C ⊆ C⊥. A self-orthogonal
binary code is doubly − even if all the codewords have weight divisible by 4. If C = Cp(D), where
D is a design, then C ∩ C⊥ is the hull of D at p, or simply the hull of D or C if p and D are clear
from the context. A check matrix for C is a generator matrix for C⊥. The all-one vector will be
denoted by , and is the vector with all entries equal to 1. We call two linear codes isomorphic if
they can be obtained from one another by permuting the coordinate positions. An automorphism
of a code C is an isomorphism from C to C. The automorphism group will be denoted by Aut(C).
Any code is isomorphic to a code with generator matrix in so-called standard form, i.e. the form
[Ik |A]; a check matrix then is given by [−AT | In−k]. The first k coordinates in the standard form
are the information symbols and the last n− k coordinates are the check symbols.

The graphs, Γ = (V,E) with vertex set V and edge set E, discussed here are undirected with no
loops, apart from the case where all loops are included, in which case the graph is called reflexive.
The order of Γ = (V,E) is |V |. A graph is regular if all the vertices have the same valency. An
adjacency matrix A of a graph of order |V | = n is an n×n matrix with entries aij such that aij = 1
if vertices vi and vj are adjacent, and aij = 0 otherwise. An incidence matrix of Γ is an n × |E|
matrix B with bi,j = 1 if the vertex labelled by i is on the edge labelled by j, and bi,j = 0 otherwise.
If Γ is regular with valency k, then the 1-(|E|, k, 2) design with incidence matrix B is called the
incidence design of Γ. The neighbourhood design of a regular graph is the 1-design formed by
taking the points to be the vertices of the graph and the blocks to be the sets of neighbours of a
vertex, for each vertex. The line graph of a graph Γ = (V,E) is the graph L(Γ) with E as vertex
set and where adjacency is defined so that e and f in E, as vertices, are adjacent in L(Γ) if e and
f as edges of Γ share a vertex in Γ. A strongly regular graph Γ of type (n, k, λ, µ) is a regular
graph on n = |V | vertices, with valency k which is such that any two adjacent vertices are together
adjacent to λ vertices and any two non-adjacent vertices are together adjacent to µ vertices.

The complete bipartite graph Kn,n on 2n vertices, A ∪ B, where A = {a1, . . . , an}, B =
{b1, . . . , bn}, with n2 edges, has for line graph, the lattice graph Ln, which has vertex set the set
of ordered pairs {(ai, bj) | 1 ≤ i, j ≤ n}, where two pairs are adjacent if and only if they have a
common coordinate. Ln is a strongly regular graph of type (n2, 2(n− 1), n− 2, 2).

The code of a graph Γ over a finite field F is the row span of an adjacency matrix A over the
field F , denoted by CF (Γ) or CF (A). The dimension of the code is the rank of the matrix over F ,
also written rankp(A) if F = Fp, in which case we will speak of the p-rank of A or Γ, and write
Cp(Γ) or Cp(A) for the code.

Permutation decoding, first developed by MacWilliams [18], involves finding a set of auto-
morphisms of a code called a PD-set. The method is described fully in MacWilliams and Sloane [19,
Chapter 16, p. 513] and Huffman [10, Section 8]. In [11] and [17] the definition of PD-sets was
extended to that of s-PD-sets for s-error-correction:

Definition 1 If C is a t-error-correcting code with information set I and check set C, then a PD-
set for C is a set S of automorphisms of C which is such that every t-set of coordinate positions is
moved by at least one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set of
coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding is given in [10] and requires that the generator matrix
is in standard form. Furthermore, there is a bound on the minimum size that the set S may have,
due to Gordon [8] from a counting argument in [21], and quoted and proved in [10]:
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Result 1 If S is a PD-set for a t-error-correcting [n, k, d]q code C, and r = n− k, then

|S| ≥
⌈
n

r

⌈
n− 1
r − 1

⌈
. . .

⌈
n− t+ 1
r − t+ 1

⌉
. . .

⌉⌉⌉
.

PD-sets for binary codes from the lattice graphs were found in [16], in which the main result was
as follows:

Result 2 For n ≥ 5, let C be the binary code from the row span of an adjacency matrix for the
lattice graph of Kn,n with vertices A × B where A = {a1, . . . , an}, B = {b1, . . . , bn}. Then C is a
[n2, 2(n− 1), 2(n− 1)]2 code and the set

I = {(ai, bn) | 2 ≤ i ≤ n− 1} ∪ {(an, bi) | 1 ≤ i ≤ n}

is an information set. The set

S = {(ti,n, tj,n) | 1 ≤ i ≤ n, 1 ≤ j ≤ n}

of permutations in Sn × Sn forms a PD-set of size n2 for C for I.

Note: Here, and in what follows, ti,j denotes the transposition (i, j) ∈ Sn, and tk,k denotes the
identity element of Sn. This notation is used since we are using ordered pairs for the edges of Kn,n.
The code C in the result is the code En of Theorem 1 for p = 2.

3 The graphs, designs and codes

In all the following sections, p will denote any prime. We set up our notation for the graphs, designs
and codes that we will be examining.

For any n ≥ 2, let Gn denote the incidence design of the complete bipartite graph Kn,n. Thus Gn
is a 1-(n2, n, 2) design. The point set of Gn will be denoted by Pn = A×B, where A = {a1, . . . , an}
and B = {b1, . . . , bn}. This is the point set for all the classes of designs here. Writing Ω = {1, . . . , n},
we take for incidence matrix Mn where the first n rows are labelled by the vertices of Kn,n in A, and
the next n rows by B. The columns are labelled

(a1, b1), . . . , (a1, bn), (a2, b1) . . . (a2, bn), . . . , (an, b1), . . . , (an, bn). (1)

For ai ∈ A the block of Gn defined by the row ai will be written as

ai = {(ai, bj) | 1 ≤ j ≤ n}, (2)

and for bi ∈ B the block of Gn defined by the row bi will be written as

bi = {(aj , bi) | 1 ≤ j ≤ n}. (3)

The code of Gn over Fp will be denoted by Cn, assuming the prime p is clear from the context.
Thus

Cn = 〈vx | x ∈ A ∪B〉, (4)

where the span is taken over Fp. Furthermore

En = 〈vx − vy | x, y ∈ A ∪B〉, (5)
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where the span is over Fp.
The lattice graph Ln is the line graph L(Kn,n). The rows of an adjacency matrix An for Ln give

the blocks of the neighbourhood design Dn of Ln. It is clear that MT
nMn = An + 2I. The blocks of

Dn are
(ai, bj) = {(ai, bk) | k 6= j} ∪ {(ak, bj) | k 6= i} (6)

for each point (ai, bj) ∈ Pn. Thus Dn is a symmetric 1-(n2, 2(n− 1), 2(n− 1)) design for n ≥ 3. We
write

Cn = 〈v(ai,bj) | (ai, bj) ∈ Pn〉. (7)

For the reflexive lattice graph LRn , we get the 1-(n2, 2n− 1, 2n− 1) design Dn with blocks

(ai, bj) = (ai, bj) ∪ {(ai, bj)} (8)

for each point (ai, bj) ∈ Pn, and p-ary code

Cn = 〈v(ai,bj) | (ai, bj) ∈ Pn〉. (9)

The graph L̃n is the complement of Ln and gives a symmetric 1-(n2, (n − 1)2, (n − 1)2) design D̃n
with blocks

(̃ai, bj) = {(ak, bm) | k 6= i,m 6= j} = Pn \ {(ai, bj)} (10)

for each point (ai, bj) ∈ Pn, and p-ary code

C̃n = 〈v(̃ai,bj) | (ai, bj) ∈ Pn〉. (11)

Finally, from the reflexive graph L̃Rn we get a 1-(n2, n2 − 2n+ 2, n2 − 2n+ 2) design ˜̃Dn (for n ≥ 3)
with blocks

˜̃
(ai, bj) = (̃ai, bj) ∪ {(ai, bj)} (12)

for each point (ai, bj) ∈ Pn, and p-ary code

˜̃
Cn = 〈v

˜̃
(ai,bj) | (ai, bj) ∈ Pn〉. (13)

Note also that if  denotes the all-one vector of length n2, then, for all (a, b) ∈ Pn,

v(a,b) + v(̃a,b) =  = v(a,b) + v
˜̃
(a,b). (14)

The group G = Sn o S2 is the automorphism group of Kn,n. It acts on the edge set Pn = A×B
by its construction as an extension of the group H = Sn × Sn by S2 = {1, τ}, where τ = (1, 2). The
element τ then acts on H via (α, β)τ = (β, α), for α, β ∈ Sn. Then G acts as a rank-3 group on Pn
as follows:

(ai, bj)(α,β) = (aiα , bjβ ), and (ai, bj)τ = (aj , bi). (15)

Furthermore, G acts on each of these graphs, designs and codes. We will establish when it is the
full automorphism group.
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4 Codes from Gn
We obtain now the basic properties of Cn = Cp(Gn) = Cp(Mn). We first need a lemma. The notation
is as established in the last section.

Lemma 1 For n ≥ 2, if {i, j, k,m} ⊆ Ω where i 6= k, and j 6= m, then the vector

u = u((ai, bj), (ak, bm)) = v(ai,bj) + v(ak,bm) − v(ai,bm) − v(ak,bj) (16)

is in C⊥n .

Proof: This is clear since (x, u) = 0 for all choices of x ∈ A ∪B. �

Proposition 1 For n ≥ 2, the code Cn over Fp of the incidence design Gn of the complete bipartite
graph Kn,n is a [n2, 2n− 1, n]p code. For n ≥ 3, the minimum-weight vectors are the scalar multiples
of the incidence vectors of the blocks of Gn.

Proof: It is easy to see that the matrix Mn has rank 2n− 1 over any field, and that the minimum
weight is at most n.

Now let Bn be the set of supports of the vectors u((ai, bj), (ak, bm)) as defined in Equation (16).
Then (Pn,Bn) is a 1-(n2, 4, r) design, where r = (n− 1)2.

Let w ∈ Cn and Supp(w) = S, where |S| = s. Let P ∈ S. We first count the number of blocks
of Bn through P and another point Q. Suppose P = (ai, bj). Then

1. if Q = (ai, bk) then P,Q ∈ Supp(u((ai, bj), (am, bk)) for all m 6= i, giving n− 1 such blocks;

2. if Q = (am, bj) then P,Q are on n− 1 blocks again;

3. if Q = (am, bk) where m 6= i, k 6= j, then P,Q ∈ Supp(u((ai, bj), (am, bk)) only, giving one
block.

Suppose that in S there are k points of the type (ai, bk) or (am, bj), and ` of the type (am, bk) where
m 6= i, k 6= j. Then s = k+`+1. Counting blocks of Bn through the point P , suppose that there are zi
that meet S in i points. Then z0 = z1 = zi = 0 for i ≥ 5, since w cannot meet a block of Bn only once.
Thus r = z2+z3+z4 and z2+2z3+3z4 = (n−1)k+` = (n−1)(s−`−1)+` = (n−1)(s−1)−`(n−2).
Thus r = (n− 1)2 ≤ (n− 1)(s− 1)− `(n− 2) ≤ (n− 1)(s− 1) for n ≥ 2. So s ≥ n for n ≥ 2, giving
the minimum weight as stated.

Now we show that for n ≥ 3 the vectors of weight n must be scalar multiples of the blocks of
Gn. Suppose s = n with the same notation as above. Putting s = n in the equations above, we
get (n − 1)2 ≤ z2 + 2z3 + 3z4 = (n − 1)2 − (n − 2)`. Since n − 2 > 0 this implies that ` = 0, and
r = z2 + z3 + z4 = z2 + 2z3 + 3z4. Thus z3 = z4 = 0, k = n − 1 and S \ {P} consists of at least
n − 1 ≥ 2 points and they are all of the form (ai, bk) or (am, bj). Suppose there are k1 of the form
(ai, bk) and k2 of the form (am, bj). If k1 = 0 or k2 = 0 then S = ai or bj . If k1, k2 ≥ 1 then we can
make the same counting argument using the point (ai, bk) for P and get a contradiction for ` = 0.
Thus S = ai, say. If w 6= αva for some α ∈ Fp then wt(w+ βvai) < n for some β ∈ Fp, contradicting
the minimum weight being n. Thus we have our result. �

Note: For n = 2 there are words of weight 2 in Cn for all odd p that are not scalar multiples of the
incidence vectors of the blocks of Gn, viz., for example, w = − va1 − vb1 .
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Proposition 2 For n ≥ 2, and Cn = Cp(Gn),

U = {u((ai, bj), (ai+1, bj+1)) | 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1}

is a basis for C⊥n .

Proof: We consider U as a sequence ordered first through fixing i, and allowing j to take the values
1 to n− 1 within each fixed i. Thus the sequence is

[u((a1, b1), (a2, b2)), u((a1, b2), (a2, b3), . . . , u((an−1, bn−1), (an, bn))].

If the points of Pn are ordered as described for Mn in Equation (1), then the array of vectors from
U is in echelon form. Since |U| = (n− 1)2 = n2 − (2n− 1) = dim(C⊥n ), we have the result. �

Proposition 3 For n ≥ 3, and Cn = Cp(Gn), Aut(Gn) = Aut(Cn) = Sn o S2.

Proof: From Whitney’s theorem [24] it is clear that Aut(Ln) = Aut(Kn,n) = Sn o S2 and thus
Sn oS2 ⊆ Aut(Gn). For the reverse inclusion, suppose that σ ∈ Aut(Gn). To show that σ ∈ Aut(Ln),
suppose P and Q are adjacent in Ln. Then P = (ai, bj) and Q = (ai, bk) or (ak, bj), so P,Q ∈ ai
or bj . Thus Pσ,Qσ ∈ x for some x ∈ A ∪ B, and so Pσ and Qσ are adjacent in Ln and hence
σ ∈ Aut(Ln).

For n ≥ 3, by Proposition 1, the words of weight n are the scalar multiples of the blocks of Gn.
Since weight classes are preserved by any σ ∈ Aut(Cn), we see that σ ∈ Aut(Gn) = Sn oS2, and thus
Aut(Cn) = Sn o S2 for n ≥ 3. �

Proposition 4 For n ≥ 3, and Cn = Cp(Gn),

In = {(ai, bn) | 1 ≤ i ≤ n} ∪ {(an, bi) | 1 ≤ i ≤ n− 1}

is an information set for Cn and the set

S = {(tn,i, tn,i) | 1 ≤ i ≤ n},

of elements of Sn × Sn, is a PD-set for Cn of size n for the information set In.

Proof: That In is an information set follows from Proposition 2. Let Cn be the corresponding check
set. To prove that S is a PD-set for Cn, note that Cn can correct t = bn−1

2 c errors. Let

T = {(ai1 , bji), . . . , (ait , bjt)}

be a set of t points of Pn, and Ω1 = {i1, . . . , it}, Ω2 = {j1, . . . , jt}, O = Ω1∪Ω2. Then since t ≤ n−1
2 ,

|O| ≤ 2t ≤ n − 1. If n 6∈ O then we use the identity ι. If n ∈ O then there is a k ∈ Ω, k 6= n, such
that k 6∈ O and the element (tn,k, tn,k) will move T into Cn. Thus we have a PD-set. �

Note: Result 1 gives the bounds n
2 for n even, and n+3

2 for n odd for the smallest size possible for a
PD-set. Our set has size n.

Recall that the code En is defined in Equation (5).
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Proposition 5 For n ≥ 3, let En = 〈vx−vy | x, y ∈ A∪B〉 over Fp. Then En is a [n2, 2n−2, 2n−2]p
code and the words of weight 2n− 2 are the scalar multiples of vai − vbj , for 1 ≤ i, j ≤ n.

Proof: It is clear that En = 〈vx − va1 | x ∈ A ∪ B〉 and has codimension at most 1 in Cn. In Cn
we have

∑n
i=1 v

ai =
∑n

i=1 v
bi = , and so

∑n
i=1(vai − va1) =

∑n
i=1(vbi − va1), showing that En has

dimension at most 2n− 2, and thus exactly 2n− 2.
For the minimum weight, En 6= Cn so if w ∈ En and w 6= 0, it must follow that wt(w) ≥ n + 1,

since the words of weight n in Cn are the scalar multiples of the vx, for x ∈ A ∪ B. Further,
wt(vx − vy) = 2(n − 1). Suppose wt(w) = n + j = s where 1 ≤ j ≤ n − 3, and show we have a
contradiction. Let S = Supp(w). Count as in Proposition 1, considering intersections of S with
weight-4 vectors in C⊥n ⊂ E⊥n .

For P = (a1, b1) ∈ S let

• KP = {Q | Q ∈ S, Q = (a1, bj) or (ak, b1), j, k 6= 1}, kP = |KP |;

• LP = {Q | Q ∈ S, Q = (aj , bk), j, k 6= 1}, `P = |LP |.

If Q ∈ LP , Q = (a2, b2) say, then KP ∩KQ ⊆ {(a1, b2), (a2, b1)}, so |KP ∩KQ| ≤ 2.
We have s = |S| = n + j = kP + `P + 1 for any P ∈ S. Fix some P ∈ S and write k = kP and

` = `P . Counting as in Proposition 1, we get

(n− 1)2 ≤ (n− 1)k + ` = (n− 1)(n+ j − 1− `) + ` = (n− 1)2 + (n− 1)j − `(n− 2),

which gives

` ≤ (n− 1)j
(n− 2)

and k ≥ n− 1− j

n− 2
. (17)

We remark that if `P = 0 for P = (a1, b1), then S = KP ∪ {P}. Since s ≥ n + 1, by assumption,
kP ≥ n ≥ 2, KP must contain points of the form (a1, bj) and (ak, b1), k, j 6= 1 and thus we can
always find two points P and Q such that Q ∈ LP , and then also P ∈ LQ.

So suppose Q ∈ LP . Then |KP ∩KQ| = t ≤ 2. Since also then P ∈ LQ, we get that |KP ∪KQ| =
kP + kQ − t. Thus

s = n+ j ≥ kP + kQ − t+ 2 = (n+ j − 1− `P ) + (n+ j − 1− `Q)− t+ 2,

so that
`P + `Q ≥ n+ j − t.

Together with Equation (17) for ` = `P , `Q, this implies 2(n− 1)j ≥ (n+ j − t)(n− 2) and hence

j ≥ n− (t+ 2) +
2t
n
. (18)

If t = 2 we get j ≥ n − 3, and if t = 1 or t = 0 we get j ≥ n − 2 or n − 1 respectively, which is
impossible since j ≤ n − 3. Thus we must have j = n − 3, s = 2n − 3 and k ≥ n − 1 − n−3

n−2 , so
k ≥ n−1 for all points. But if t = 2 then s = 2n−3 = 2(n−3)+2+2 = 2n−2, which is impossible.
So there are no words of Cn in this range, and the minimum weight of En is 2n− 2.

Now to show that the words of weight 2n− 2 are the scalar multiples of the words vai − vbj , we
put s = 2n− 2 in the above argument and obtain k ≥ n− 2 for all points. Again we take P,Q such
that P ∈ LQ, Q ∈ LP , and we get the following possibilities:
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1. kP = kQ = n− 1, t = 2;

2. kP = n− 2, kQ = n, t = 2;

3. kP = n− 2, kQ = n− 1, t = 1, 2;

4. kP = kQ = n− 2, t = 0, 1, 2.

We show that the only possibility is the last case with t = 0, and that this has to be of the form
stated. The main argument used will be that, taking P = (a1, b1), Q = (a2, b2), the weight-4 word
u((a1, b1), (ak, bm)) for k,m ≥ 3 must meet S = Supp(w) again.

Thus in Case (1) we have S = KP ∪KQ ∪ {P,Q}, leaving n− 3 points available in KP \KQ, but
at least n − 2 are needed to meet all the weight-4 words. Case (2) is the same, as is Case (3) with
t = 1. In Case (3) with t = 2, S = KP ∪KQ ∪ {P,Q,R} where R ∈ LP ∩ LQ. The same argument
then eliminates this possibility.

In Case (4), if t = 2 there are two more points, both in LP ∩ LQ, and if t = 1 there is one more
point. In both cases the same argument can be used. This leaves only the Case (4) with t = 0. Here
there are (n−2)2 words of weight 4 that must meet KP again and unless KP = a1\{(a1, b1), (a1, b2)}
or b1 \ {(a1, b1), (a2, b1)} this will not be possible. Similarly for KQ. If KP = a1 \ {(a1, b1), (a1, b2)}
and KQ = a2 \ {(a2, b2), (a2, b1)} then for R = (a1, b3) we have kR = n − 1, which we have already
shown to be impossible. So Supp(w) = Supp(va1 − vb2), and, from the intersections with the
weight-4 words in E⊥n , we have w((a1, b1)) = −w((a2, b2)), w((a1, b1)) = w((a1, bj)) for j ≥ 3 and
w((a2, b2)) = w((aj , b2)) for j ≥ 3. Thus w = α(va1 − vb2) for some α ∈ Fp. �

Proposition 6 For n ≥ 3, let En = 〈vx − vy | x, y ∈ A ∪B〉. Then

I∗n = {(ai, bn) | 1 ≤ i ≤ n} ∪ {(an, bi) | 1 ≤ i ≤ n− 1} \ {(a1, bn)}

is an information set for En and

S = {(tn,i, tn,j) | 1 ≤ i, j ≤ n}, (19)

of elements of Sn × Sn is a PD-set of size n2 for En using I∗n.

Proof: That I∗n is an information set follows from Proposition 2. Let Cn be the corresponding check
set. To prove that S is a PD-set for En, note that En can correct n− 2 errors. Let

T = {(ai1 , bji), . . . , (ait , bjt)}

be a set of t ≤ n − 2 points of Pn, and Ω1 = {i1, . . . , it}, Ω2 = {j1, . . . , jt}, O = Ω1 ∪ Ω2. If n 6∈ O
then we use the identity ι. Since t ≤ n − 2 there is a k 6= n, k 6∈ Ω1 and an ` 6= n, ` 6∈ Ω2, and
(tn,k, tn,`) will move T into Cn. Thus we have a PD-set. �

Note: This is the same PD-set as was used in the binary case in [16]. In that paper it was shown
that Result 1 gives a bound linear in n. Our set has size n2.

When p divides n, a further class of codes with a larger minimum weight than En and correcting
n− 1 errors, can be obtained.
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Proposition 7 If n ≥ 3, p divides n, and

E∗n = 〈vai − va1 , vbi − vb1 | i ∈ {1, . . . , n}〉,

then E∗n is a self-orthogonal [n2, 2n− 3, d]p code, where d = 2n− 1 or 2n. An information set for E∗n
is I∗n \ {(an, bn)}.

If p is odd then E∗n = Hull(En). If p = 2 then E∗n ⊂ Hull(En) = En and E∗n is a doubly-even
[n2, 2n− 3, 2n]2 code.

Proof: Since
∑n

i=1(vai − va1) =  + nva1 and
∑n

i=1(vbi − vb1) =  + nvb1 , we have

 =
n∑
i=1

(vai − va1)− nva1 =
n∑
i=1

(vbi − vb1)− nvb1 ,

and so n(va1 − vb1) ∈ E∗n, so that if p 6 |n, then E∗n = En.
So suppose p|n. Then (vai − va1 , vx) = 0 for all x ∈ A ∪ B, and similarly for (vbi − vb1 , vx), so

that E∗n ⊆ C⊥n ⊂ E⊥n . But En 6⊆ C⊥n , so E∗n 6= En, E∗n ⊆ Hull(En) and [En : E∗n] = 1. Since E∗n 6= En
and has vectors of weight 2n, its minimum weight is 2n− 1 or 2n. Also, looking at inner products,
we see that with p|n then En ⊆ E⊥n only if p = 2, i.e. E∗n = Hull(En) if p 6= 2, and Hull(En) = En if
p = 2. So if p = 2, En and E∗n are self-orthogonal, E∗n is doubly-even, and hence its minimum weight
must be 2n.

That I∗n \ {(an, bn)} is an information set is clear from the matrix Mn. �

Corollary 2 For n ≥ 3, the set S of Equation (19) is a PD-set for E∗n for the information set
I∗n \ {(an, bn)}.

Proof: The proof is almost identical to that for En, except that we are taking a set of size n − 1.
Thus

T = {(ai1 , bji), . . . , (ait , bjt)}

is a set of t ≤ n − 1 points of Pn, and Ω1 = {i1, . . . , it}, Ω2 = {j1, . . . , jt}, O = Ω1 ∪ Ω2. If n 6∈ O
then we use the identity ι. So suppose n ∈ O. If there is a k 6= n, k 6∈ Ω1 and an ` 6= n, ` 6∈ Ω2, and
(tn,k, tn,`) will move T into Cn. Otherwise, if n ∈ Ω1 and Ω2 = {1, . . . , n− 1}, then there is a k 6∈ Ω1,
k 6= n, and (tk,n, tn,n) will map T into Cn. Thus we have a PD-set. �

5 The codes Cn, Cn, C̃n,
˜̃
Cn

We show now that none of the p-ary codes from the lattice graph nor its complementary graph, nor
from the reflexive graphs, give any interesting new codes beyond the codes Cn and En that we have
already examined.

We use the notation established in Section 3.

Lemma 2 For n ≥ 2, p an odd prime, the weight-4 vectors u((ai, bj), (ak, bm)) of Equation (16) are

in all Cn, Cn, C̃n,
˜̃
Cn. For p = 2, u ∈ Cn, C̃n.
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Proof: It can be verified easily that if u = u((ai, bj), (ak, bm)), then

v(ai,bj) + v(ak,bm) − v(ai,bm) − v(ak,bj) = −2u.

It then follows from Equations (8) and (14) that

v(ai,bj) + v(ak,bm) − v(ai,bm) − v(ak,bj) = −u
v(̃ai,bj) + v

˜(ak,bm) − v ˜(ai,bm) − v ˜(ak,bj) = u

v
˜̃
(ai,bj) + v

˜̃
(ak,bm) − v

˜̃
(ai,bm) − v

˜̃
(ak,bj) = 2u,

which gives the result. �

Proposition 8 For n ≥ 2, p an odd prime,

1. if n ≡ 2 (mod p) then Cn = E⊥n ; if n 6≡ 2 (mod p) then Cn = Fn2

p if n 6≡ 1 (mod p), and
Cn = 〈〉⊥ for n ≡ 1 (mod p);

2. if n ≡ 1 (mod p) then Cn = E⊥n ; if n 6≡ 1 (mod p) then Cn = Fn2

p if 2n 6≡ 1 (mod p), and

Cn = 〈〉⊥ for 2n ≡ 1 (mod p);

3. if n ≡ 1 (mod p) then C̃n = C⊥n ; if n 6≡ 1 (mod p) then C̃n = Fn2

p ;

4. if n ≡ 2 (mod p) then ˜̃Cn = E⊥n ; if n 6≡ 2 (mod p) then ˜̃Cn = Fn2

p .

For p = 2, Cn = En; Cn = E⊥n if n is odd, Cn = Fn2

p if n is even; C̃n = C⊥n if n is odd, C̃n = Fn2

p

if n is even; ˜̃Cn = En for n even, ˜̃Cn = Cn for n odd.

Proof: First take p odd. Let u(1, 2) =
∑n

i 6=1 u((a1, b1), (a2, bi)) =
∑n

i 6=1(v(a1,b1) + v(a2,bi) − v(a1,bi) −
v(a2,b1)). Then it follows that

u(1, 2) = (n− 1)(v(a1,b1) − v(a2,b1))−
∑
i 6=1

(v(a2,bi) − v(a1,bi)),

and u(1, 2) ∈ Cn, Cn, C̃n,
˜̃
Cn by Lemma 2. Now we consider the four classes of codes, the proofs

being similar.

1. For Cn:

v(a1,b1) − v(a2,b1) = (n− 1)(v(a1,b1) − v(a2,b1))− u(1, 2)− (v(a1,b1) − v(a2,b1))
= (n− 2)(v(a1,b1) − v(a2,b1))− u(1, 2)

is in Cn.

If n 6≡ 2 (mod p) then v(a1,b1) − v(a2,b1) ∈ Cn, and this will hold for any pairs of points, so
〈〉⊥ ⊆ Cn. But  ∈ C⊥n only if n ≡ 1 (mod p), so we have the stated result for n 6≡ 2 (mod p).

If n ≡ 2 (mod p), then since (vx, v(y,z)) = 1 if x 6= y, z and n− 1 if x = y or z, it follows that
Cn ⊆ E⊥n . Now from Proposition 2, the weight-4 vectors span C⊥n , so C⊥n ⊆ Cn. Clearly we
cannot have equality, and since [E⊥n : C⊥n ] = 1, we have Cn = E⊥n .
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2. For Cn:

v(a1,b1) − v(a2,b1) = v(a1,b1) − v(a2,b1) + v(a1,b1) − v(a2,b1)

= (n− 1)(v(a1,b1) − v(a2,b1))− u(1, 2),

from the previous case, is in Cn.

If n 6≡ 1 (mod p) then v(a1,b1) − v(a2,b1) ∈ Cn, and this will hold for any pairs of points, so

〈〉⊥ ⊆ Cn. But  ∈ C
⊥
n only if 2n ≡ 1 (mod p), so we have the stated result for n 6≡ 1 (mod p).

If n ≡ 1 (mod p), then since (vx, v(y,z)) = 1 if x 6= y, z and n if x = y or z, it follows that
Cn ⊆ E⊥n . Now from Proposition 2, the weight-4 vectors span C⊥n , so C⊥n ⊆ Cn. Clearly we
cannot have equality, and since [E⊥n : C⊥n ] = 1, we have Cn = E⊥n .

3. For C̃n:
v(̃a,b) + v(a,b) = , so

v
˜(a1,b1) − v ˜(a2,b1) = −v(a1,b1) + v(a2,b1)

= −(n− 1)(v(a1,b1) − v(a2,b1)) + u(1, 2),

from the previous case, is in C̃n.

If n 6≡ 1 (mod p) then v(a1,b1) − v(a2,b1) ∈ C̃n. and this will hold for any pairs of points, so
〈〉⊥ ⊆ C̃n. But  6∈ C̃⊥n for n 6≡ 1 (mod p), so we have the stated result for n 6≡ 1 (mod p).

If n ≡ 1 (mod p), then since (vx, v(̃y,z)) = n− 1 if x 6= y, z and 0 if x = y or z, it follows that
C̃n ⊆ C⊥n . Now from Proposition 2, the weight-4 vectors span C⊥n , so we have equality.

4. For ˜̃Cn:

v
˜̃
(a,b) = v(̃a,b) + v(a,b), so

v
˜̃
(a1,b1) − v

˜̃
(a2,b1) = v

˜(a1,b1) − v ˜(a2,b1) + v(a1,b1) − v(a2,b1)

= −(n− 2)(v(a1,b1) − v(a2,b1)) + u(1, 2),

from the previous case, is in ˜̃Cn.

If n 6≡ 2 (mod p) then v(a1,b1) − v(a2,b1) ∈ ˜̃Cn. and this will hold for any pairs of points, so

〈〉⊥ ⊆ C̃n. But  6∈ ˜̃Cn⊥ so we have the stated result for n 6≡ 2 (mod p).

If n ≡ 2 (mod p), then since (vx, v
˜̃
(y,z)) = n− 1 if x 6= y, z and 1 if x = y or z, it follows that˜̃

Cn ⊆ E⊥n . Now from Proposition 2, the weight-4 vectors span C⊥n , so C⊥n ⊆
˜̃
Cn. Clearly we

cannot have equality, and since [E⊥n : C⊥n ] = 1, we have ˜̃Cn = E⊥n .

This completes all the cases for p odd.
Now take p = 2. That Cn = En follows from the observation that MT

nMn = An (in the notation
of Section 3), or from Result 2.
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For Cn, from Lemma 2, u(1, 2) ∈ Cn, and the same argument as in the case of odd p can be used;
similarly for C̃n.

For ˜̃Cn, since v
˜̃
(a,b) =  + v(a,b) =  + va + vb,

∑n
i=1 v

˜̃
(ai,b) = n +

∑n
i=1 v

ai + nvb =  for n even,

and equal to vb for n odd, and so ˜̃Cn = Cn for n odd. For n even,
∑n

i=1 v
(ai,b) = , so for n even,˜̃

Cn = Cn = En.
This completes the proof of all the cases. �

The proof of Theorem 1 now follows from the results in this and the last section.
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