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Abstract

We improve on the known upper bound for the minimum weight of the
dual codes of translation planes of certain orders by providing a general
construction of words of small weight. We use this construction to suggest
a possible formula for the minimum weight of the dual p-ary code of the
desarguesian plane of order pm for any prime p and any m ≥ 1.
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1 Introduction

Early in the study of codes associated with finite projective planes it was
shown that the p-ary code of a projective plane of order n, where p is a
prime dividing n, has minimum weight n+1 and the codewords of minimum
weight are the scalar multiples of the incidence vectors of the lines (see [2,
Chapter 6] for discussion of these results). For the dual code, neither the
minimum weight nor the nature of the possible minimum words is known
in the general case, even though these are the codes that are most useful in
applications since they can be decoded using majority logic decoding (see
[12]). Various bounds can be established, and for some particular classes
precise results are known. In particular, for desarguesian planes of even
order q = 2m, where p = 2, the minimum weight is q + 2 and the minimum
words are the incidence vectors of the hyperovals, which always exist in
the desarguesian planes. See [9] for other results in the even case, and for
instances when the plane has no hyperoval. In the latter case, again the
minimum weight is not known except in some particular cases.

When p is an odd prime, even for the desarguesian planes the minimum
weight of the dual code is not in general known, except for the case when the
order is prime, in which case the minimum weight is 2p. Some bounds have
been found for p odd in Sachar [15] and in Clark and Key [6]: see the results
quoted in Section 2. In this paper we obtain the following theorem, which
implies some improved bounds for some translation planes of odd order:

Theorem 1 Let Π be a projective translation plane of order qm and kernel
containing Fq, where m = 2 or 3, q = pt, and p is a prime. Then the dual
code of the p-ary code of Π has minimum weight at most 2qm − (qm−1 +
qm−2 + · · ·+ q). If Π is desarguesian, this also holds for m = 4.

We give the construction that leads to this result in Section 3. If this con-
struction could be shown to be valid for translation planes of order qm for
any m ≥ 2, then we would have a general upper bound for the minimum
weight of 2qm− (qm−1 + · · ·+ q). In fact, for the desarguesian plane of order
pm, where p is a prime, in all cases where the minimum weight of the dual
p-ary code is known, and in particular for p = 2, or for m = 1, the minimum
weight is precisely as given in this formula, i.e. 2pm−(pm−1+pm−2+ · · ·+p).
This suggests that this formula might hold for all p and m. We pose this as
a question:
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Question 1 Is the minimum weight of the dual code of the p-ary code of
the desarguesian plane of order pm given by the formula

2pm − (pm−1 + pm−2 + · · ·+ p) = 2pm + 1− pm − 1
p− 1

for all primes p and all m ≥ 1?

The other odd orders for which the minimum weight is known in the des-
arguesian case are q = 9 (see [10]) and q = 25 (see [5]). The discussion in the
paragraph immediately following Result 3 has more details of these cases.
See also Section 4 for further discussion on this issue. We note that there is
some evidence to support this observation for translation planes in general,
and not just for the desarguesian planes, but very little is known about the
codes of these planes.

In Section 2 we give the background results, in Section 3 we prove the
theorem, and in Section 4 we give some other possible constructions of code-
words in the dual code.

2 Background and terminology

An incidence structure D = (P,B, I), with point set P, block set B and
incidence I, is a t-(v, k, λ) design if |P| = v, every block B ∈ B is incident
with precisely k points, and every t distinct points are together incident
with precisely λ blocks. A 2-(n2 + n + 1, n + 1, 1) design, for n ≥ 2, is a
finite projective plane of order n. We write PG2,1(Fq) for the desarguesian
projective plane, i.e. the design of points and 1-dimensional subspaces of the
projective space PG2(Fq). Further, AGm,n(Fq) will denote the 2-design of
points and n-flats (cosets of dimension n) in the affine geometry AGm(Fq).
If S is a set of points in a plane and if L is a line of the plane that meets
S in m points, then L will be called an m-secant to S. The set S is an
(n1, . . . , nr)-set if S has m-secants if and only if m ∈ {n1, . . . , nr}.

A linear code of length n over a finite field F is any subspace of the
vector space Fn. The code CF , or CF (D), of the design D over the finite
field F is the space spanned by the incidence vectors of the blocks over F .
We take F to be a prime field Fp where the prime must divide the order of
the design. If the point set of D is denoted by P and the block set by B, and
if Q is any subset of P, then we will denote the incidence vector of Q by vQ.
Thus CF (D) =

〈
vB |B ∈ B

〉
, and is a subspace of FP , the full vector space

of functions from P to F . For any code C, the dual or orthogonal code
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C⊥ is the orthogonal subspace with respect to the standard inner product.
Thus C⊥ = {u ∈ FP |(u, c) = 0 for all c ∈ C}. If c is a codeword then the
support of c is the set of non-zero coordinate positions of c. The weight
of c is the cardinality of the support. The minimum weight of a code C
is the smallest non-zero weight of the words in C. If a linear code over a
field of order q is of length n, dimension k, and minimum weight d, then we
write [n, k, d]q to show this information. A constant word in the code is a
codeword, all of whose coordinate entries are either 0 or 1.

The current state of knowledge of the minimum weight of the dual code
of a projective plane in the odd-order case is summed up in the following
results. The first is a special case for the desarguesian geometries and can
be found discussed in [2, Theorem 5.7.9]:

Result 1 Let C be the p-ary code of the desarguesian plane PG2,1(Fq) or
AG2,1(Fq) where q = pt and p is prime. Then the minimum weight d⊥ of
C⊥ satisfies

(q + p) ≤ d⊥ ≤ 2q.

Note that a similar range holds for any projective plane: if Π is a plane of
order n and p|n is a prime, the minimum weight d⊥ of Cp(Π)⊥ satisfies

n + 2 ≤ d⊥ ≤ 2n.

The lower bound is obtained by simply noticing that every one of the n + 1
lines through a point in the support must meet the set again, and the upper
bound follows since the vector vL − vM is in Cp(Π)⊥, where L and M are
any two distinct lines of Π.

The next result can be found in [6, Corollary 4], but the first part of it
was established earlier by Sachar [15]:

Result 2 Let Π be a projective plane of odd order n, and let p|n. Then the
minimum weight d⊥ of Cp(Π)⊥ satisfies d⊥ ≥ 4

3n+2. Further, if p ≥ 5 then
d⊥ ≥ 3

2n + 2.

In addition there is the following from [15, 6]:

Result 3 A projective plane of order q2 that contains a Baer subplane has
words of weight 2q2 − q in its p-ary dual code, where p is a prime dividing
q.

Looking at planes of various specific orders, in [10] the four projective
planes of order 9 were examined: the desarguesian plane, Φ, the translation
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(Hall) plane, Ω, the dual translation plane, ΩD, and the Hughes plane, Ψ
(see [14, 11]). It was shown that the minimum weight of the dual ternary
code is 15 for Φ, Ω, and ΩD, and is 14 for Ψ. In Clark [5] it is shown that
for planes of order 25 the minimum weight of the dual 5-ary code is at least
42, and is exactly 45 in the desarguesian case.

A translation plane can be defined in many equivalent ways (see for
example André [1], Bruck and Bose [4], or [2, Chapter 6.8] for more refer-
ences). We use here the following construction (from [1]) for a translation
plane of order qm with kernel containing the finite field Fq of order q, where
q = pt, p is a prime, and m ≥ 2. Let V denote the vector space V2m(q) of
dimension 2m over F = Fq. A spread is a set V of qm + 1 m-dimensional
subspaces Vi of V , for i ∈ I, where Vi ∩ Vj = {0} for i 6= j, and where I is a
set of cardinality qm +1. The points of the affine plane are the vectors of V ,
and the lines are all the cosets u + Vi for u ∈ V , i ∈ I. The projective plane
is obtained by adding a line at infinity consisting of points Pi corresponding
to Vi, with Pi incident with u + Vj if and only if j = i. Write P(V) and
A(V) for the projective and affine planes defined by V, respectively. The
lines of P(V) (respectively A(V)) will be denoted by LP (respectively LA),
with `∞ the line at infinity made up of the points Pi corresponding to the
spread elements Vi. The desarguesian plane of order qm is a translation
plane where the m-dimensional subspaces over Fq are in fact 1-dimensional
subspaces over Fqm .

3 Construction

Given a vector space V = V2m(q) of dimension 2m over the finite field
F = Fq of order q, and a spread V of qm + 1 m-dimensional subspaces Vi

of V , and using the notation of Section 2, we can now describe a recursive
construction leading to subsets Sn of points of A(V), where Sn will consist
of qn points, where 1 ≤ n ≤ m, and have the property that projective (or
affine) lines meet it in 0, 1 or q points. The points of Sn and the lines meeting
it in q points (the q-secants) will form a 2-(qn, q, 1) design, in fact the design
AGn,1(Fq).

Take any non-zero vector of V , say u1 ∈ V1, and let S1 = 〈u1〉, the
1-dimensional subspace spanned by u1. Then |S1| = q and lines meet S1 in
0, 1 or q points. Pick any non-zero vector u2 in a distinct spread element
V2, and let S2 = 〈u1, u2〉, a 2-dimensional subspace of V . Then |S2| = q2

and lines of the affine plane A(V) meet S2 in 0, 1 or q points: for suppose
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M = u + W ∈ LA. If a ∈ (u + W ) ∩ S2 then u + W = a + W and
(a + W )∩ S2 = a + (W ∩ S2) has the same size as W ∩ S2. Since u1 and u2

in S2 were chosen from different spread elements, we have W ∩ S2 6= S2, so
that |W ∩ S2| = 1 or q, as asserted. Let

V2 = {W ∈ V | |W ∩ S2| = q}

and
L2 = {u + W | W ∈ V2, u ∈ S2}.

Then for M ∈ L2, we have |M ∩ S2| = q. It is clear that the points and
q-secants to S2 (i.e. L2) form a 2-(q2, q, 1) design.

Lemma 1 If M,N ∈ L2 are distinct lines, then |(M ∩N) ∩ S2| = 0 if and
only if M and N are cosets of the same spread element.

Proof: We show that if M = u+W1 and N = v+W2 are in L2 and W1 6= W2,
then M and N meet in S2. Since W1, W2 ∈ V2 and are not equal, there
exist wi ∈ Wi ∩ S2, i = 1, 2, and S2 = 〈w1, w2〉. Thus u = αw1 + βw2 and
v = γw1 + δw2 and M = u + W1 = αw1 + βw2 + W1 = βw2 + W1 and N =
v +W2 = γw1 + δw2 +W2 = γw1 +W2. It follows that γw1 +βw2 ∈ M ∩N ,
and so the cosets meet in S2 if the spread elements are distinct. Obviously,
distinct cosets of the same spread element do not meet in the affine plane.
Thus the elements of V2 form the line at infinity for the affine plane of order
q made up of the points of S2 and the lines L2. 2

Now we form S3 by adjoining, if such can be found, a vector u3 that is
not on any of the members of L2, and forming S3 = 〈S2, u3〉 = 〈u1, u2, u3〉.
Then S3 is a (0, 1, q)-set and the points and q-secants form a 2-(q3, q, 1)
design. Continue in this way, if possible, and suppose we have defined the
n-dimensional subspace Sn = 〈u1, . . . , un〉 such that lines meet Sn in 0, 1 or
q points, so that the points and q-secants of Sn form a 2-(qn, q, 1) design.
We know this is possible for n = 2.

Lemma 2 Suppose for some n ≥ 2 the n-dimensional subspace Sn =
〈u1, . . . , un〉 of V is such that lines of A(V) meet Sn in 0, 1 or q points. Let
Ln denote the set of (affine) q-secants to Sn, and let Vn denote the set of
qn−1
q−1 spread members corresponding to the lines in Ln. If there exists w ∈ V
such that w 6∈ U for any U ∈ Ln then Sn+1 = 〈Sn, w〉 = 〈u1, . . . , un, w〉 is a
set of qn+1 points that is met by lines of the plane in 0, 1 or q points.
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Proof: Clearly the vectors in Sn and the q-secants form a 2-(qn, q, 1) design.
As in the case when n = 2 it follows that each spread element in Vn will have
qn−1 cosets that are q-secants to Sn. Write S = Sn+1 = 〈Sn, w〉, where w
satisfies the conditions of the lemma. Suppose for some U ∈ LA, |S∩U | > q.
If U = u+C where C ∈ V, then S∩U = S∩ (u+C) = s+(S∩C), for some
s ∈ S, and thus without loss of generality we can assume that |S ∩ C| > q
for some C ∈ V. Thus dim(S ∩ C) = k ≥ 2. Since

dim(Sn) + dim(S ∩ C) = dim(Sn + (S ∩ C)) + dim(Sn ∩ (S ∩ C)),

we have n + k ≤ n + 1 + d, where d = dim(Sn ∩ C). Thus 1 ≤ k − 1 ≤ d,
and since d is at most 1, we have d = 1 and C ∈ Vn.

Thus C = 〈v, x, S′〉, where v ∈ Sn, x ∈ (S \ Sn) and S′ ⊂ C. So
S = 〈x, Sn〉, and hence w = αx + u where α ∈ Fq and u ∈ Sn. It follows
that w ∈ u + C ∈ Ln, contrary to our construction. 2

Thus provided we can find a vector w such that w 6∈ U for any U ∈ Ln,
we can extend the subspace Sn to Sn+1 of qn+1 points such that Sn+1 is met
by lines in 0, 1 or q points. If we can proceed as far as n = m then the set
will have size qm and we get the following:

Proposition 1 With the notation as above, if we can form a set Sm of
size qm from the construction, then if X = Sm and Y = {Pi | i ∈ I} \
{Pi | Vi ∈ Vm}, the vector vX − vY is in the dual code of the p-ary code
of the plane P(V). Thus the minimum weight of the dual code is at most
2qm + 1− (qm − 1)/(q − 1).

Proof: Recall that vZ denotes the characteristic vector of the set Z, a subset
of the coordinate set of the code. We need to show that for every line ` of
the projective plane, (vX − vY , v`) = 0. If ` meets X in q points then
` ∩ Y = ∅, and we are done. If ` is a tangent to X then ` ∩ `∞ ∈ Y , and
so (vX − vY , v`) = 0. Each point of Y is on qm affine lines, and these lines
must all be tangents to X, and thus satisfy our requirement. The line `∞

clearly satisfies the requirement, and any other line that does not meet X
must have ` ∩ Y = ∅, so we are done.

The weight of the vector vX − vY is |X|+ |Y | = qm +(qm +1− qm−1
q−1 ) =

2qm + 1− qm−1
q−1 . 2

Note: 1. The construction we obtain here has size quite close to the bound
mentioned in Result 2, but will of course only hold for translation planes,
and when we can find such sets.
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2. If q = pt then a translation plane of order qm can be viewed in a vector
space of dimension 2mt over Fp. In this case the construction we have
described would lead to a word of smaller weight, since clearly

2pmt + 1− pmt − 1
p− 1

< 2qm + 1− qm − 1
q − 1

,

for t > 1.
3. If q = 2 the size of the word in the dual code is qm + 2, and thus we have
a hyperoval. If at any stage we cannot move from Sn up to Sn+1, then the
set Sn is a complete arc in the affine plane. This will give a complete arc
in the projective plane by adjoining any two points on `∞ that are not in
the projective completion of Sn, i.e. not amongst the points corresponding
to Vn.

We can now start the proof of Theorem 1.

Proof of Theorem 1:
For m = 2 the existence is clear and the set is just the affine part of a Baer
subplane, reaffirming the result, which, as far as the authors are aware, is
well-known, that all translation planes of square order have Baer subplanes.

For m = 3 we can always produce such sets, by an easy counting argu-
ment. Clearly we can form the set S2 of the construction. By Proposition 1,
if we can form a set S3 then we will have the required word in the dual
code. By Lemma 2 we simply need to show that w ∈ V not on any of the
q-secants of S2 can be found. Since S2 is an affine plane of order q, all its
lines either meet in the plane or on the line at infinity. The line at infinity
for S2 is made up of the elements of V2, as was shown in Lemma 1. Thus
the number of points in V outside of S2 that are on lines of the affine plane
is (q2 + q)(q3 − q). The number of points available for S3 is thus

q6 − ((q2 + q)(q3 − q) + q2),

and this is easily seen to be greater than 0. This deals with the first part
of the theorem. For the extension of this to m = 4 in the desarguesian case
we need to give explicit constructions, for which we need another lemma.

Lemma 3 Let Π = PG2(Fqm) where q is a power of a prime, and m ≥ 2.
Let K = Fqm, F = Fq. Then using homogeneous coordinates for the points
of Π,
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1. the set
S2 = {(1, a, b) | a, b ∈ F}

has q2 points and is met by lines of Π in 0, 1 or q points;

2. the set
S3 = {(1, a + bω, c + bω2) | a, b, c ∈ F},

where ω is any primitive element of K, has q3 points and is met by
lines of Π in 0, 1 or q points, if m ≥ 3;

3. if q is odd and k is a non-zero non-square in F , then the set

S4 = {(1, a + bω + cω2, d + bω2 + ckω) | a, b, c, d ∈ F},

where ω is an element of K whose minimal polynomial m(x) over F
has degree 4 and has a non-zero cubic term, has q4 points and is met
by lines of Π in 0, 1 or q points, if m = 4.

Proof: The proof is by a direct application of the construction, looking for
a point of the plane that is not on any of the lines of the previous set.

The set S2 clearly has the properties stated, since m ≥ 2. To form S3,
with m ≥ 3, notice that the lines of Π that meet S2 in q points are the lines
with homogeneous coordinates (a, b, c)T for a, b, c ∈ F , excluding the line at
infinity (1, 0, 0)T . If ω is any primitive element for K, the point (1, ω, ω2)
will be on one of these lines if a + bω + cω2 = 0, which will occur if ω is a
root of the polynomial p(x) = a + bx + cx2 ∈ F [x]. Since ω is a root of an
irreducible polynomial of degree m ≥ 3, it is not possible for it to satisfy a
polynomial of smaller degree over F . Thus P = (1, ω, ω2) is a suitable point
to use to get S3, which is then just a simple span of all the points from S2

and P , but not including the line at infinity, (1, 0, 0)T . Clearly the set S3

has the form stated, and the points and q-secants form a 2-(q3, q, 1) design.
For the next case, with m = 4, we need to find a point on none of

the q-secants to S3. We extend the field F to K using a root ω of an
irreducible polynomial of degree 4 with a non-zero cubic term: such a prim-
itive polynomial can always be found by Cohen [7, Theorem 1]. Consider
the line through the two distinct points of S3, P = (1, a + bω, c + bω2) and
Q = (1, a∗+b∗ω, c∗+b∗ω2), where a, a∗, b, b∗, c, c∗ ∈ F , and P 6= Q. If a = a∗

and b = b∗, the line will have coordinates (a+bω,−1, 0)T which will exclude
from our choice all points of the form (1, a + bω, α) where a, b ∈ F and
α ∈ K. If b = b∗ and c = c∗ then the line has coordinates (c + bω2, 0,−1)T
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which also excludes points of the form (1, α, a + bω2) where a, b ∈ F and
α ∈ K.

In the general case a line through the two points P and Q has coordinates
(x1, x2, x3)T where

x1 = (ca∗ − ac∗) + (cb∗ − bc∗)ω + (ba∗ − ab∗)ω2

x2 = (c∗ − c) + (b∗ − b)ω2

x3 = (a− a∗) + (b− b∗)ω.

Now we can verify that with our choice of ω, the point (1, ω2, kω), where k
is a non-square in F , is not on any of these lines: it is clearly not on any
of the lines (a + bω,−1, 0)T nor (c + bω2, 0,−1)T , since ω is not the root
of a quadratic. Suppose it is on one of the lines in the general case. Then
x1 + ω2x2 + kωx3 = 0, where x1, x2, x3 are of the form given above. Thus
(ca∗ − ac∗) + (cb∗ − bc∗)ω + (ba∗ − ab∗)ω2 + (c∗ − c)ω2 + (b∗ − b)ω4 + (a−
a∗)kω + (b− b∗)kω2 = 0. Since ω4 =

∑3
i=0 aiω

i and a3 6= 0, the term in ω3

must be 0, so b = b∗. Equating coefficients of ωi to 0 for i = 0, 1, 2 yields
k = b2, which contradicts our choice of k.

The point (1, ω2, kω) can thus be taken as the next choice, allowing us
to get S4 in the same way. It clearly has the form stated in the lemma. 2

We can now complete the proof of Theorem 1, using the notation of
Lemma 3. First let S = {(0, 1, a) | a ∈ K}.

For m = 2 we let

S′2 = S \ {(0, 1, a) | a ∈ F}.

Then the word in the dual code is vS2 − vS′
2 .

For m = 3 we let

S′3 = S \ {(0, 1,
a + bω2

c + bω
) | a, b, c ∈ F, c + bω 6= 0}.

Then the word in the dual code is vS3 − vS′
3 .

For m = 4 we let

S′4 = S \ {(0, 1,
a + bω2 + ckω

d + bω + cω2
) | a, b, c, d ∈ F, d + bω + cω2 6= 0}.

Then the word in the dual code is vS4 − vS′
4 .

Notice that in each case we are simply omitting the points on the line
at infinity where the q-secants meet it. The word is then easily seen to be
in the dual code. 2
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Note: We first noticed sets of this nature in the case of q = 3 and m = 3
while using Magma [3] to construct the seven translation planes of order
n = 27, as classified by Dempwolff [8], when words of weight 42 occurred
in the echelonized basis for the dual code. Sets of this size were not found
in the dual codes of any of the non-desarguesian dual translation planes of
order 27, and we still have no better upper bound than 2n = 54 for the
minimum weight of the dual codes of these planes.

Clearly we would also like to be able to show the existence of these sets
of size qm for any m > 3 in any translation plane of order qm. We have
been unable to do this; simple counting is not good enough. We did make
one step towards a set of q5 points by constructing the set S4 in the general
case of a field of order qm where m ≥ 5 (notice that in Lemma 3, m = 4).
We state this as a lemma:

Lemma 4 Let Π = PG2(Fqm) where q is a power of an odd prime, and
m ≥ 5. Let K = Fqm, F = Fq. Let the set S3 be as in Lemma 3. Then if ω
is a primitive element for K with minimal polynomial (over F ) m(x), then
the point (1, ω3, ω) is not on any q-secant of S3 if m ≥ 6, or if m = 5 and
ω is chosen such that m(x) has a non-zero quartic term. The set S4 is then
given by

S4 = {(1, a + bω + cω3, d + cω + bω2) | a, b, c, d ∈ F},

has q4 points and is met by lines of Π in 0, 1 or q points.

We have not been able to find a general form for an element not on a
q-secant of S4, but we have some computational results using Magma [3] for
q = 3 and m = 5: if ω is a root of the primitive polynomial x5+x4+x3+x+1
and S4 is the (0, 1, 3)-set as described in Lemma 4, then there is no point of
the projective plane PG2(35) not on the line at infinity that is not on any
3-secant of S4. If, on the other hand, ω is a root of x5 +2x4 +x3 +x2 +x+1,
then the point (1, ω4, ω13) is not on any 3-secant of S4 and hence S5 and an
appropriate word in the dual ternary code of PG2(35) can be constructed.
Thus the minimum weight of the dual ternary code of the desarguesian plane
of order 35 is at most 366.

4 Possible words in the dual

In trying to establish bounds for the minimum weight of the dual code, we
looked at some constructions that might give suitable words. We describe
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here one such type of construction. Our results in this paper are of this
type.

Let Π be a projective plane of order n, and let p|n, where p is a prime.
Let Si for i ∈ {1, 2} be a set of points of Π that is a (0, 1, hi)-set, where
hi > 1. Further, let |Si| = si. We will say that S1 and S2 are absolutely
disjoint if they have no points in common, and if the hi-secants to Si are
exterior to Sj , and every 1-secant to Si is a 1-secant to Sj , for {i, j} = {1, 2}.

For i ∈ {1, 2}, the points of Si and the hi-secants form a 2-(si, hi, 1)
design Di (which might be a trivial design) by taking the blocks to be the
intersections of the hi-secants with Si.

Proposition 2 Let Π be a projective plane of order n and p a prime dividing
n. Suppose that Si for i = 1, 2 are a pair of absolutely disjoint (0, 1, hi)-sets
of size |Si| = si, respectively, where p|hi. Then vS1 −vS2 is a word of weight
s1 + s2 in Cp(Π)⊥ and

n + 1 =
s1 − 1
h1 − 1

+ s2 =
s2 − 1
h2 − 1

+ s1.

Further:

1. If s1 = s2 = s then h1 = h2 = h, and s = n + 1 − n
h . Conversely, if

h 6= 2, then h1 = h2 = h implies that s1 = s2 = s, s = n + 1− n
h , and

s1 + s2 = 2n− 2n−h
h .

2. If s2 = h2 (so S2 is part of a line of Π), then s1 = n, s2 = n+1− n−1
h1−1 ,

and s1 + s2 = 2n− n−h1
h1−1 .

Proof: The definition of Si, along with p|hi for i = 1, 2, clearly gives vS1 −
vS2 ∈ Cp(Π)⊥. For any point x ∈ Si, counting the lines and blocks through
x gives n + 1 = si−1

hi−1 + sj for {i, j} = {1, 2}.
To prove (1), suppose first that s1 = s2 = s. Then s−1

h1−1 + s = s−1
h2−1 + s.

Thus clearly h1 = h2 = h. From n + 1 = s−1
h−1 + s we can solve for s to get

the stated equality.
Suppose now that h1 = h2 = h. Then s1−1

h−1 + s2 = s2−1
h−1 + s1 implies that

s1(h− 2) = s2(h− 2), so either h = 2 or s1 = s2.
To prove (2), suppose s2 = h2. Then n + 1 = s2−1

h2−1 + s1 implies that
s1 = n. From n + 1 = s1−1

h1−1 + s2 we get n + 1 = n−1
h1−1 + s2 and hence

s2 = n + 1− n−1
h1−1 , as required. 2
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Note: The support set S1∪S2 is a (0, 2, h1, h2)-set, where here we may have
h1 = h2 and either or both may be 2. Also note that for h = h1 > 2, the
word in the dual code from the construction in (1) is smaller than the word
from (2).
The following special cases are feasible:

1. s1 = s2 = h1 = h2: the configuration consists of two lines with the
point of intersection omitted.

2. If n = qr = pt and s2 = h2, then p|h1 and (h1 − 1)|(qr − 1) is possible
if h1 = q, which will give a word of weight 2qr− (qr−1 +qr−2 + . . .+q).
This is the construction of our Theorem 1.

3. Other numerical possibilities:

(a) n = 9, s1 = s2 = 7, h1 = h2 = 3: two absolutely disjoint Fano
planes, weight 14 (see [10]).

(b) n = 25, s1 = s2 = 21, h1 = h2 = 5: two absolutely disjoint planes
of order 4, weight 42; in general it is unknown if a plane of order
25 can have an embedded plane of order 4 (see the note below).

(c) n = 27, s1 = s2 = 19, h1 = h2 = 3: two absolutely disjoint
Steiner triple systems, weight 38; it is not known if this is possible.

(d) n = 27, s1 = 25, s2 = 16, h1 = 3, h2 = 6: 2-(25, 3, 1) and 2-
(16, 6, 1) designs, weight 41; no design with the latter parameters
can exist by Fisher’s inequality.

(e) n = 49, s1 = s2 = 43, h1 = h2 = 7: two absolutely disjoint 2-
(43,7,1) designs, i.e. planes of order 6, weight 86; planes of order
6 do not exist, by the Bruck-Ryser theorem (see, for example, [2,
Chapter 4]).

(f) n = 81, s1 = 73, s2 = 46, h1 = 3, h2 = 6: 2-(73, 3, 1) and 2-
(46, 6, 1) designs, weight 119; it is unknown if a design with the
latter parameters exists.

Note: The desarguesian plane PG2,1(Fq) does not contain subplanes of
orders other than those from subfields of Fq, so the configurations for n = 9
or 25 cannot exist for the desarguesian case. However, it is conjectured that
any non-desarguesian plane contains a Fano plane (see Neumann [13]). Not
all the known planes of order 25 have been checked for subplanes of order
4, but some are known not to have any; Clark [5] has a survey of the known
results.
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[1] J. André. Über nicht-Desarguessche Ebenen mit transitiver Transla-
tionsgruppe. Math. Z., 60:156–186, 1954.

[2] E. F. Assmus, Jr. and J. D. Key. Designs and their Codes. Cambridge:
Cambridge University Press, 1992. Cambridge Tracts in Mathematics,
Vol. 103 (Second printing with corrections, 1993).

[3] Wieb Bosma and John Cannon. Handbook of Magma Functions. De-
partment of Mathematics, University of Sydney, November 1994.

[4] R. H. Bruck and R. C. Bose. The construction of translation planes
from projective spaces. J. Algebra, 1:85–102, 1964.

[5] K. L. Clark. Improved bounds for the minimum weight of the dual codes
of some classes of designs. PhD thesis, Clemson University, 2000.

[6] K. L. Clark and J. D. Key. Geometric codes over fields of odd prime
power order. Congr. Numer., 137:177–186, 1999.

[7] Stephen D. Cohen. Primitive elements and polynomials with arbitrary
trace. Discrete Math., 83:1–7, 1990.

[8] U. Dempwolff. Translation planes of order 27. Des. Codes Cryptogr.,
4:105–121, 1994. Correction in Vol. 5, 1995, page 81.

[9] J. D. Key and M. J. de Resmini. Small sets of even type and codewords.
J. Geom., 61:83–104, 1998.

[10] J. D. Key and M. J. de Resmini. Ternary dual codes of the planes of
order nine. J. Statist. Plann. Inference, 95:229 – 236, 2001.

[11] C. W. H. Lam, G. Kolesova, and L. Thiel. A computer search for finite
projective planes of order 9. Discrete Math., 92:187–195, 1991.



REFERENCES 14

[12] Shu Lin and Daniel J. Costello, Jr. Error Control Coding: Fundamen-
tals and Applications. Prentice-Hall, 1983. Englewood Clifts, NJ.

[13] H. Neumann. On some finite non-desarguesian planes. Arch. Math.,
VI:36–40, 1955.

[14] T. G. Room and P. B. Kirkpatrick. Miniquaternion geometry: an intro-
duction to the study of projective planes. Cambridge University Press,
1971.

[15] H. Sachar. The Fp span of the incidence matrix of a finite projective
plane. Geom. Dedicata, 8:407–415, 1979.


