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Abstract

We establish the range of values of ρ, where 0 ≤ ρ ≤ m(q − 1), for which the
generalized Reed-Muller code RFq (ρ,m) of length qm over the field Fq of order q
is spanned by its minimum-weight vectors.
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1 Introduction

The codes of the designs from finite projective and affine geometry are Reed-Muller
and generalized Reed-Muller p-ary codes, where p is the characteristic of the geometry.
The minimum-weight vectors in the codes are the incidence vectors of the blocks of the
design, along with scalar multiples, and these generate (i.e. span) the corresponding
generalized Reed-Muller code over the prime field, as was shown in work of Delsarte,
Goethals and MacWilliams: see [1, Chapter 5] or [2] for full references to this work.

We look here at the generalized Reed-Muller q-ary codes for q any prime power, and
ask when these are generated by their minimum weight vectors. The work of Delsarte
et al. establishes the minimum weight of any of these codes, and the exact nature of
the minimum-weight vectors. Delsarte [7, Theorem 10] considers the codes generated
by the minimum-weight vectors as extended cyclic codes, and gives the non-roots of the
generator polynomial: see also [2, Section 4.3], Charpin [5] or Berger and Charpin [3] for
more on the approach to the generalized Reed-Muller codes as extended cyclic codes.

In Section 3 we prove the following:

Theorem 1 Let C = RFq(ρ,m) be the q-ary generalized Reed-Muller code of order ρ
and length qm, where q = pt, p is a prime, and 0 ≤ ρ ≤ m(q− 1). Then C is generated
by its minimum-weight vectors if m = 1 or t = 1 or ρ < p or ρ > (m−1)(q−1)+pt−1−2.
In all other cases it is not generated by its minimum-weight vectors.
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2 TERMINOLOGY AND BACKGROUND 2

We use the method and constructions of Mortimer [9] (see [2, p. 1322]) in our proof.
Note also that our statement agrees with the known fact, as shown by Delsarte et al.,
that in the case when ρ ≡ 0 (mod q − 1), the minimum-weight vectors are constant
vectors, and thus only generate a subcode of the same dimension as that of the subfield
subcode, which is less than that of the generalized Reed-Muller q-ary code if q is not a
prime. When m = 1, the codes are extended Reed-Solomon codes (see [1, Section 5.4])
and hence MDS (maximum-distance-separable) codes, easily seen to be generated by
minimum-weight vectors.

We give the necessary definitions, background theory and previous results in Sec-
tion 2. In Section 3 we build up a proof of the main theorem through a series of lemmas
and propositions. In the final section we give some Magma [4] code for computing these
dimensions, along with some supporting output.

2 Terminology and background

We will use standard terminology for the structures that we need, and in particular we
will follow that used in [1, 2]. These references also contain many related results on
the generalized Reed-Muller codes.

Let q = pt, where p is a prime, and let V be a vector space of dimension m over
the field Fq of order q. We take V to be the space Fm

q of m-tuples, with standard
basis. Our codes will be q-ary codes, i.e. codes over Fq, and the ambient space will be
the function space F V

q , with the usual basis of characteristic functions of the vectors of
V . We can denote the elements f of F V

q by functions of the m-variables denoting the
coordinates of a variable vector in V , i.e. if x = (x1, x2, . . . , xm) ∈ V, then f ∈ F V

q is
given by

f = f(x1, x2, . . . , xm)

and the xi take values in Fq. Since every element in Fq satisfies aq = a, the poly-
nomial functions in the m variables can be reduced modulo xq

i − xi. Furthermore,
every polynomial can be written uniquely as a linear combination of the qm monomial
functions

M = {xi1
1 xi2

2 . . . xim
m | 0 ≤ ik ≤ q − 1, k = 1, 2, . . . ,m}. (1)

For any monomial the degree ρ is the total degree, i.e. ρ =
∑m

k=1 ik and clearly 0 ≤
ρ ≤ m(q − 1).

The generalized Reed-Muller codes can now be defined:

Definition 1 Let V = Fm
q be the vector space of m-tuples, for m ≥ 1, over the finite

field Fq of order q, where q = pt and p is a prime. For any ρ such that 0 ≤ ρ ≤ m(q −
1), the ρth-order generalized Reed-Muller code RFq(ρ,m) is the subspace of F V

q (with
basis the characteristic functions of vectors in V ) of all reduced m-variable polynomial
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functions (reduced modulo xq
i − xi) of degree at most ρ. Thus

RFq(ρ,m) = 〈xi1
1 xi2

2 · · ·x
im
m |

m∑
k=1

ik ≤ ρ〉.

These codes are thus codes of length qm and the codewords are obtained by evaluating
the m-variable polynomials in the subspace at all the points of the vector space V = Fm

q .
The Reed-Muller codes are the generalized Reed-Muller codes when q = 2. Clearly,
if ρ < ν then RFq(ρ,m) ⊂ RFq(ν, m).

The following result is well known and quoted in [2, Theorem 5.5], for example:

Result 1 For any ρ such that 0 ≤ ρ ≤ m(q − 1),

dim(RFq(ρ,m)) =
ρ∑

i=0

m∑
k=0

(−1)k

(
m

k

)(
i− kq + m− 1

i− kq

)

=
m∑

k=0

(−1)k

(
m

k

)(
m + ρ− kq

ρ− kq

)
.

Note: The second formula, simplifying the first, is due to Neil J. Calkin.
Define, for any integers, k ≥ 0 and q > 1, the q-weight of k, written wtq(k),

as wtq(k) =
∑∞

ν=0 kν , where k =
∑∞

ν=0 kνq
ν is the q-ary expansion of k. Then an

alternative formula for the dimension of RFq(ρ,m) using the q-weight can be given (see
[2]): for 0 ≤ ρ ≤ m(q − 1),

dim(RFq(ρ,m)) = |{u | 0 ≤ u ≤ qm − 1 and wtq(u) ≤ ρ}|. (2)

For any code C of length n over a field F , an automorphism of C is a permutation
σ of the n coordinate positions that preserves C, i.e. for which, if c = (c1, c2, . . . , cn) ∈
C, then cσ ∈ C, where cσ is defined by (cσ)i = ciσ−1 for 1 ≤ i ≤ n. For 0 ≤ ρ ≤
m(q−1), the automorphism group of RFq(ρ,m) contains the affine general linear group
AGLm(Fq) (or AGL(V )) in its natural action on V = Fm

q : if γ ∈ AGLm(Fq) is given
by

γ : v 7→ vA + a, (3)

where v,a ∈ V = Fm
q and A is a non-singular m × m matrix over Fq, then vγ−1 =

vA−1 − aA−1 and for f ∈ RFq(ρ,m), fγ is defined by

fγ(x) = f(xA−1 − aA−1) (4)

where x = (x1, x2, . . . , xn) and the degree in the variables xi is preserved.
The following can be found in [1, Theorem 5.4.2]:
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Result 2 For ρ < m(q − 1), the dual code is given by

RFq(ρ,m)⊥ = RFq(m(q − 1)− 1− ρ,m).

In the affine geometry AGm(Fq) defined by V the incidence vectors of the r-flats
(cosets of dimension r) can be found in these codes. More generally, if ρ = r(q−1)+ s,
0 ≤ s < q − 1, and for 1 ≤ i ≤ r, 1 ≤ j ≤ s, wi ∈ Fq are arbitrary and w′

j ∈ Fq are all
distinct, the polynomial

h(x1, . . . , xm) =
r∏

i=1

(1− (xi − wi)q−1)
s∏

j=1

(xr+1 − w′
j) (5)

has degree r(q − 1) + s = ρ and is zero in V unless

xi = wi, for i = 1, . . . , r,

xr+1 6= w′
j for j = 1, . . . , s.

Thus it gives a vector of weight (q − s)qm−r−1 which consists of the sum of multiples
of incidence vectors of (q− s) parallel (m− r− 1)-flats all contained in an (m− r)-flat
in the affine geometry AGm(Fq): see [1, Theorem 5.5.3]. These are minimum-weight
vectors of RFq(ρ,m). Taking s = 0 gives the incidence vector of the (m−r)-flat defined
by the equations Xi = wi for 1 ≤ i ≤ r.

The following result of Delsarte, Goethals and MacWilliams [6, Theorem 2.6.3]
shows that all minimum-weight vectors are of the form given by the polynomial in
Equation (5):

Result 3 All the minimum-weight codewords of RFq(ρ,m), for any values of m, q and
ρ, can be obtained from the vectors corresponding to polynomial (5) by suitable affine
transformations in the affine general linear group AGLm(Fq).

It is well known (see [2]) that the Reed-Muller code RF2(r, m) is generated by the
characteristic vectors of the (m−r)-flats in the affine geometry AGm(F2) and that these
are the minimum-weight vectors of RF2(r, m), of weight is 2m−r. Thus the Reed-Muller
codes are generated by their minimum-weight vectors.

Now we consider the generalized Reed-Muller codes over any finite field Fq. Mor-
timer’s results [9] are employed extensively in our study and for this we need the
following maps:

Definition 2 In the space F V
q where V = Fm

q , for 1 ≤ i, j ≤ m, i 6= j, 0 ≤ ai ≤ q − 1
and b any integer, define the maps δb

i and εb
i,j on the monomials xa1

1 xa2
2 . . . xam

m :

(xa1
1 xa2

2 . . . xam
m )δb

i =
(

ai

b

)
xa1

1 xa2
2 . . . xai−b

i . . . xam
m (6)

(xa1
1 xa2

2 . . . xam
m )εb

i,j =
(

ai

b

)
xa1

1 xa2
2 . . . xai−b

i . . . x
aj+b
j . . . xam

m . (7)
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The maps are then extended to be linear on the space F V
q .

Since
(
ai
b

)
= 0 for ai < b, δb

i annihilates the monomial xa1
1 xa2

2 . . . xam
m unless b ≤ ai;

similarly εb
i,j annihilates xa1

1 xa2
2 . . . xam

m unless b ≤ ai. Both δ0
i and ε0

i,j are the identity
on M and hence on F V

q . Notice that if δb
i does not annihilate a monomial and if

b 6= 0, then it reduces the degree of the monomial, whereas εb
i,j keeps the degree fixed

or reduces it.
Mortimer [9] (see [2, Lemma 5.32]) proves the following result:

Result 4 The collection of transformations εb
i,j acts transitively on the set of all mono-

mials of fixed degree (ignoring scalar multiples) when q = p is a prime.

The code C generated by the minimum-weight codewords of RFq(ρ,m) is invariant
under AGL(V ). In fact this is true for the code generated by vectors of any fixed
given weight in RFq(ρ,m). We will refer to minimum-weight codewords or vectors as
minimum words. We will also use the notation

(xa1
1 xa2

2 . . . xam
m )f ' xb1

1 xb2
2 . . . xbm

m

if the monomial on the left is mapped by f to a non-zero scalar multiple of the mono-
mial on the right. We will say that the monomial on the right is obtained from the
monomial on the left by the transformation f .

The following result due to Mortimer [9] (see [2, Theorem 5.31]) plays an important
role in our argument.

Result 5 Let H be a subspace of F V
q where V = Fm

q , q is a prime power and m ≥ 1.
Then H is invariant under the affine general linear group AGL(V ) if and only if

• H is invariant under the transformations δb
i and εb

i,j for i 6= j and 1 ≤ i, j ≤ m
and 0 ≤ b ≤ q − 1, and

• H is spanned by monomials.

Corollary 2 The code generated by the minimum-weight codewords of RFq(ρ,m), for
any m ≥ 1, any prime-power q and 0 ≤ ρ ≤ m(q − 1), has a monomial basis.

The dimension of the code generated by the minimum-weight vectors follows from
Delsarte [7, Theorem 10]:

Result 6 For m ≥ 2, q = pt where p is a prime, if ρ = r(q − 1) + s, where 0 ≤ r ≤
m− 1, 0 ≤ s < q − 1, then the subcode of RFq(ρ,m) generated by the minimum-weight
codewords has dimension

|
⋃

0≤j≤s

{z | 1 ≤ z < qm such that wtq(pkz) ≥ (m− r)(q − 1)− [pkj] for 0 ≤ k < t} | ,

where [y] denotes the residue of y modulo q − 1.
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When q = pt is not a prime we will need to use p-ary expansions: if n and m are
integers with p-ary expansions n =

∑∞
s=0 nsp

s and m =
∑∞

s=0 msp
s, respectively, we

will write (n)p � (m)p if ns ≥ ms for all s ≥ 0.

Result 7 (Lucas’s Theorem) For p a prime, let a and b be positive integers with
p-ary expansions a =

∑v
s=0 asp

s and b =
∑v

s=0 bsp
s. Then(

a

b

)
≡

v∏
s=0

(
as

bs

)
(mod p).

In the proofs in the next section we will need the following definition:

Definition 3 Given a monomial xa1
1 xa2

2 . . . xam
m , where 0 ≤ ai ≤ q − 1 for 1 ≤ i ≤ m

and q = pt, suppose that the p-ary expansion of ai is ai =
∑t−1

j=0 ai,jp
j, where 0 ≤ ai,j ≤

p − 1. For 0 ≤ k ≤ t − 1, the k-component-degree of xa1
1 xa2

2 . . . xam
m , denoted by

cdegk, is defined by

cdegk(x
a1
1 xa2

2 . . . xam
m ) =

m∑
i=1

ai,k. (8)

Given any integer b with p-ary expansion b =
∑∞

i=0 bip
i, where 0 ≤ bi ≤ p − 1, we

define
b̄ = min{i | bi 6= 0}. (9)

3 Minimum-weight words as generators

In this section we will prove our main theorem through a series of lemmas and propo-
sitions.

Proposition 3 For any ρ, m and q = p a prime, RFp(ρ, m) is generated by its
minimum-weight codewords.

Proof: Suppose ρ = r(p− 1) + s, where 0 ≤ s < p− 1, and let C be the code generated
by the minimum words of RFp(ρ,m). Then C is clearly invariant under AGL(V ) and
so Result 5 applies. It can be seen that the monomial xp−1

1 xp−1
2 . . . xp−1

r xs′
r+1, for any

s′ ≤ s, is one term in the polynomial function of Equation (5) that gives a minimum
word. From Result 5, it must be a monomial in the monomial basis of C. All the
monomials transformed from it by some transformation of type δb

i are in C as well.
For any a such that 0 ≤ a ≤ p − 1, we have

(
p−1
a

)
6= 0, and hence, given a monomial

xi1
1 xi2

2 . . . xir
r xs′

r+1 where 0 ≤ i1, i2, . . . , ir ≤ p− 1, 0 ≤ s′ ≤ s, we have

(xp−1
1 xp−1

2 . . . xp−1
r xs

r+1)δ
s−s′

r+1 δp−1−ir
r . . . δp−1−i1

1 ' xi1
1 xi2

2 . . . xir
r xs′

r+1.
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Therefore C must contain the monomial xi1
1 xi2

2 . . . xir
r xs′

r+1. Hence C contains monomi-
als with degrees ranging from 0 to ρ. It follows from Result 4 that C contains all the
monomial of degree up to ρ. Hence C is precisely RFp(ρ,m) by Definition 1. 2

Note: This can also be deduced, in this case where q = p is a prime, from Delsarte’s
result for the formula of the dimension of the code spanned by the minimum words:
see Equation (2) and Result 6.

Now we consider the generalized Reed Muller code RFq(ρ,m) where q = pt is not a
prime. Then q−1 =

∑t−1
i=0(p−1)pi and thus (q−1)p � (a)p for 0 ≤ a ≤ q−1. It follows

from Lucas’s theorem that
(
q−1
a

)
6≡ 0 (mod p). In RFq(ρ,m), where ρ = r(q − 1) + s,

xq−1
1 xq−1

2 . . . xq−1
r xs

r+1 is one term in the polynomial of Equation (5). Using the same
argument as in the proof of Proposition 3, we can conclude that the monomials of type

xi1
1 xi2

2 . . . xir
r xs′

r+1, 0 ≤ i1, i2, . . . , ir ≤ q − 1, 0 ≤ s′ ≤ s, (10)

are in the monomial basis of the code C generated by the minimum words of RFq(ρ,m).

Lemma 4 Let B be the monomial basis of the code C generated by minimum words
of RFq(ρ, m). Any monomial in B can be obtained from some monomial of type (10)
having the same or greater degree, by some transformations of type εb

i,j.

Proof: Since C is invariant under AGLm(Fq), it follows from Results 3 and 5 that
any monomial M(x) in B must be a monomial term in a polynomial that is mapped
from the polynomial h(x) of Equation (5) by some transformation in AGLm(Fq). Any
element of AGLm(Fq) is the product of a translation and a linear transformation.

We consider the following translation for any fixed i and u ∈ Fq:

σu
i : (x1, x2, . . . , xm) 7−→ (x1, x2, . . . , xi−1, xi − u, xi+1, . . . , xm). (11)

The polynomial of Equation (5) can be written as h(x1, x2, . . . , xm) =
∑

j hjx
j
i where

the hj are polynomials independent of xi. Then it follows that hσu
i (x) (see notation in

Equation 4) satisfies the following:

hσu
i (x) =

∑
j

hj(xi + u)j =
∑

j

hj

∑
b

(
j

b

)
xj−b

i ub

=
∑

b

ub
∑

j

(
j

b

)
hjx

j−b
i =

∑
b

ub(h(x))δb
i .

Obviously the monomials in (h(x))δb
i are of type (10) and thus the translations map

h(x) to polynomials that contain only monomial terms of type (10).
Now for any fixed i, j, i 6= j, consider the transvection λi,j where

λi,j : (x1, x2, . . . , xm) 7−→ (x1, x2, . . . , xi − xj , . . . , xm), (12)
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i.e. (x1, . . . , xm)λi,j = (y1, . . . , ym) where yk = xk for k 6= i and yi = xi − xj . For a
polynomial f we write f(x1, . . . , xm) =

∑
r,s fr,sx

r
i x

s
j , where the fr,s are polynomials

independent of xi and xj . Then it follows directly that

fλi,j(x) =
∑
r,s

fr,s(xi + xj)rxs
j =

∑
r,s

fr,s

∑
b

(
r

b

)
xr−b

i xs+b
j

=
∑

b

∑
r,s

(
r

b

)
fr,sx

r−b
i xs+b

j =
∑

b

(f(x))εb
i,j .

Thus the monomials that can be obtained from h(x) by translations or transvections
are those that can be obtained from the monomials in h(x) by the maps δb

i and the
εb
i,j . For any nonsingular matrix A, ignoring scalar products, A can be written as the

product of matrices of the transformations (12). Thus it can be seen from the above
procedures that any monomial M(x) in B is obtained from some monomial of type (10)
of no smaller degree by some transformations of type εb

i,j . 2

Example 1 In the code RF4(3, 2), the incidence polynomial (5) is h(x1, x2) = 1 −
(x1 − α)3 for some α ∈ F4. Here m = 2, r = 1 and s = 0. According to Lemma 4,
all the monomials of degree 2 in the code generated by minimum-weight codewords
must be obtained from x2

1 or x3
1 by transformations of type (7). It is easy to verify

that the monomial x1x2 ∈ RF4(3, 2) cannot be obtained in this way, since, for example,
x2

1ε
1
1,2 =

(
2
1

)
x1x2 = 0. Thus RF4(3, 2) is not generated by its minimum-weight vectors.

Note that the binary subfield subcode of RF4(3, 2) is generated by its minimum-weight
vectors, and a basis of nine vectors is given in [1, Example 5.7.1, page 187]. These
involve the nine monomials {1, x1, x

2
1, x

3
1, x2, x

2
2, x

3
2, x1x

2
2, x

2
1x2}, which form a basis for

the code generated by the minimum-weight vectors over F4. 2

Lemma 5 Given two monomials MA = xa1
1 xa2

2 . . . xam
m and MB = xb1

1 xb2
2 . . . xbm

m , if
cdegk(MA) = cdegk(MB) for 0 ≤ k ≤ t − 1 then MB can be obtained from MA by
transformations of type εb

i,j.

Proof: (Refer to Definition 3 for the notation here.) Clearly deg(MA) = deg(MB) since
cdegk(MA) = cdegk(MB) for 0 ≤ k ≤ t− 1. As before, letting ai,k and bi,k be the k-th
p-ary digits of ai and bi respectively, we have

∑m
l=1 al,k =

∑m
l=1 bl,k for 0 ≤ k ≤ t − 1.

Fix k in the range 0 ≤ k ≤ t − 1. The proof will follow if we can prove that al,k can
be changed to bl,k by transformations of the type εb

i,j for 1 ≤ l ≤ m. Without loss of
generality, assume that

a1,k ≥ b1,k, a2,k ≥ b2,k, . . . , ad,k ≥ bd,k,

and
ad+1,k < bd+1,k, ad+2,k < bd+2,k, . . . , am,k < bm,k.
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Then
d∑

i=1

(ai,k − bi,k) =
m−d∑
i=1

(bd+i,k − ad+i,k).

For 0 < i < d + 1 and ai,k > bi,k, there exists j such that d < j ≤ m and aj,k < bj,k,
and

(MA)εpk

i,j =
(

ai

pk

)
xa1

1 xa2
2 . . . x

(ai−pk)
i . . . x

(aj+pk)
j . . . xam

m 6= 0,

by Lucas’s theorem, and reduces ai,k by 1 and increases aj,k by 1. If this procedure is
applied repeatedly, then ai,k can be reduced to bi,k. If we reduce all the ai,k to bi,k for
all 0 < i < d + 1, then simultaneously aj,k is increased to bj,k for all d < j ≤ m by the
above procedure. This can be done for each value of k. 2

Example 2 For q = 24, m = 4, let Ak and Bk be the k-component-degrees of MA =
x3

1x
5
2x

2
3x

8
4 and MB = x7

1x2x
10
3 respectively, for 0 ≤ k ≤ 3. It is easy to check that

Ak = Bk for all k and A0 = 2, A1 = 2, A2 = 1, A3 = 1. It follows from Lemma 5
that there exist transformations of type εb

i,j such that x7
1x2x

10
3 can be obtained from

x3
1x

5
2x

2
3x

8
4 by these transformations. For instance, (x3

1x
5
2x

2
3x

8
4)ε

4
2,1ε

8
4,3 ' x7

1x2x
10
3 . 2

Lemma 6 Let M = xa1
1 xa2

2 . . . xam
m and let Ak denote the k-component degree of M .

For any integer b and any k such that 0 ≤ k ≤ t− 1, if k ≤ b̄ then cdegk(Mεb
i,j) ≤ Ak

for 1 ≤ i, j ≤ m.

Proof: (Recall that b̄ is defined in Equation (9).) Fix i, j in the range. If Mεb
i,j = 0,

then the claim is trivially true. If Mεb
i,j 6= 0, then ai � b. If k < b̄, the k-th digit of

ai− b is the same as that of ai, and the k-th digit of aj + b is the same as that of aj . If
k = b̄, the k-th digit of ai − b is less than that of ai by bk, and the k-th digit of aj + b
is greater than that of aj by at most bk. This gives the stated result. 2

Lemma 7 Let MA = xa1
1 xa2

2 . . . xam
m and MB = xb1

1 xb2
2 . . . xbm

m be two monomials and
let Ak, Bk be their k-component-degrees respectively, for 0 ≤ k ≤ t − 1. Suppose that
Ak = Bk, for 0 ≤ k ≤ l − 1 and Al < Bl for some l ≤ t − 1. Then MB cannot be
obtained from MA by transformations of the type εb

i,j.

Proof: We use induction on l. If l = 0, then A0 < B0. From Lemma 6, A0 cannot be
increased by any transformations εb

i,j since 0 ≤ b̄.
Assume that the result holds for 0 ≤ l ≤ d−1 and suppose Ak = Bk for 0 ≤ k ≤ d−1,

and Ad < Bd. If MB can be obtained from MA, then Ad can be increased to Bd by
some transformations of the type εc

i,j . Thus for some c and i, j, MC = MAεc
i,j has

d-component degree Cd where Bd ≥ Cd > Ad, and MB can be obtained from MC by
further transformations. It follows from Lemma 6 that d > c̄ and for some l such that
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c̄ ≤ l ≤ d−1, Cl < Al = Bl, and for k < l, Ck = Ak = Bk. By the induction hypothesis,
MB cannot be obtained from MC , contradicting our assumption. This completes the
proof. 2

The generalized Reed-Muller code RFq(ρ, 1) is an extended Reed-Solomon code and
is an MDS code; thus it is clearly generated by its minimum-weight codewords. Thus
from now on we can assume that m > 1.

Proposition 8 For any m and q = pt, if ρ < p then RFq(ρ,m) is generated by its
minimum-weight codewords.

Proof: Since ρ < p < q, the polynomial of Equation (5) is
∏ρ

j=1(x1 − w′
j). It follows

from Lemma 4 that all the monomials in the code generated by the minimum words
are the monomials which can be obtained from 1, x1, x2

1,. . . , xρ
1 by transformations of

type εb
i,j . Since

(
a
b

)
6= 0 if a > b and a < p, b < p, all the monomials with degree no

greater than ρ can be obtained by transformations of type εb
i,j . 2

Proposition 9 For m ≥ 2, and q = pt, if p ≤ ρ < q then RFq(ρ,m) is not generated
by its minimum-weight codewords.

Proof: Since ρ ≤ q − 1, the polynomial of Equation (5) is
∏ρ

j=1(x1 − w′
j) if ρ < q − 1,

or 1 − (x1 − w1)q−1 if ρ = q − 1. The type (10) monomials are xr
1 for 0 ≤ r ≤ ρ. For

the monomial xp−1
1 x2, cdeg0(x

p−1
1 x2) = p which is greater than cdeg0(xr

1) for r ≤ q−1.
It follows from Lemma 6 that xp−1

1 x2 cannot be obtained from xr
1 for any r ≤ q− 1 by

transformations of the type εb
i,j . According to Lemma 4, the monomial xp−1

1 x2 is not
in the code generated by the minimum-weight codewords in RFq(ρ,m) . 2

Proposition 10 For m ≥ 3, if ρ = r(q−1)+s, where 0 < r ≤ m−2 and 0 ≤ s ≤ q−2,
then RFq(ρ,m) is not generated by its minimum-weight codewords.

Proof: Since 0 < r ≤ m − 2 and 2(p − 1) ≤ p2 − p, xp−1
1 xp−1

2 . . . xp−1
r+1x

p−1
r+2 is a

monomial in RFq(ρ, m) and its 0-component-degree is (r + 2)(p − 1). According to
Lemma 7, xp−1

1 xp−1
2 . . . xp−1

r+1x
p−1
r+2 cannot be transformed from monomials of type (10)

by transformations εb
i,j , since xi1

1 xi2
2 . . . xir

r xs
r+1 has 0-component-degree strictly less

than (r+2)(p−1) for any i1, i2, . . . , ir, s. Therefore xp−1
1 xp−1

2 . . . xp−1
r+1x

p−1
r+2 is not in the

code generated by the minimum-weight codewords in RFq(ρ,m) by Lemma 4. 2

Proposition 11 If m ≥ 2, q = pt and ρ = (m− 1)(q − 1) + s where 0 ≤ s < pt−1 − 1
then RFq(ρ,m) is not generated by its minimum-weight codewords.
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Proof: Let r = pt−1 − 1 =
∑t−2

i=0(p − 1)pi. The monomial xr
1x

r
2 . . . xr

m is in RFq(ρ,m)
and has the maximum k-component-degree where 0 ≤ k ≤ t − 2. Since r > s, the
(t− 2)-component-degree of xr

1x
r
2 . . . xr

m must be greater than that of any monomial of
type (10) in the code and hence it cannot be obtained from type (10) monomials by
transformations of type εb

i,j , by Lemma 7. Thus the monomial xr
1x

r
2 . . . xr

m is not in the
code generated by the minimum-weight codewords in RFq(ρ,m). 2

Proposition 12 For m ≥ 2 and q = pt, if ρ = (m− 1)(q − 1) + s where s ≥ pt−1 − 1,
then RFq(ρ,m) is generated by its minimum-weight codewords.

Proof: For any monomial M = xd1
1 xd2

2 . . . xdm
m with degree no greater than ρ, if we can

show that it can be obtained from some monomial of type (10) with the same or greater
degree less than ρ by transformations of type εb

i,j , then the stated result is proved. If
dm = 0 this is clear.

Suppose that deg(M) = (m − 1)(q − 1) + s′ where 0 ≤ s′ ≤ s. The monomial
xq−1

1 xq−1
2 . . . xq−1

m−1x
s′
m is of type (10). Since

(
q−1
a

)
6= 0 for 0 ≤ a ≤ q − 1, it follows that

(xq−1
1 xq−1

2 . . . xq−1
m−1x

s′
m)εq−1−d1

1,m εq−1−d2
2,m . . . ε

q−1−dm−1

m−1,m ' M.

If deg(M) < (m− 1)(q − 1) let M ′
t = xd1

1 xd2
2 . . . x

dm−1

m−1 and write

dm = deg(M)− deg(M ′
t) = ft−1p

t−1 + rt−1, 0 ≤ rt−1 ≤ pt−1 − 1 ≤ s.

If cdegt−1(M ′
t)+ft−1 ≤ (m−1)(p−1), we construct a monomial M ′

t−1 = x
d′1
1 x

d′2
2 . . . x

d′m−1

m−1

from M ′
t by adding ft−1p

t−1 to the degree of M ′
t such that cdegt−1(M ′

t−1) = ft−1 +
cdegt−1(M ′

t), and cdegi(M ′
t−1) = cdegi(M ′

t) for 0 ≤ i ≤ t − 2. Since rt−1 ≤ s, the
monomial M ′

t−1x
rt−1
m is of type (10) and clearly d′j � d′j − dj for 1 ≤ j ≤ m− 1. Thus

(M ′
t−1x

rt−1
m )εd′1−d1

1,m ε
d′2−d2

2,m . . . ε
d′m−1−dm−1

m−1,m ' M,

and the proof is complete.
If cdegt−1(M ′

t) + ft−1 > (m − 1)(p − 1), we construct M ′
t−1 = x

d′1
1 x

d′2
2 . . . x

d′m−1

m−1 by
adding ((m−1)(p−1)−cdegt−1(M ′

t))p
t−1 to the degree of M ′

t such that cdegt−1(M ′
t−1) =

(m− 1)(p− 1), and cdegi(M ′
t−1) = cdegi(M ′

t) for 0 ≤ i ≤ t− 2. Then write

deg(M)− deg(M ′
t−1) = ft−2p

t−2 + rt−2, 0 ≤ rt−2 ≤ pt−2 − 1 ≤ s.

Now we construct M ′
t−2 from M ′

t−1 by the same procedure we used to construct M ′
t−1

from M ′
t , except that we now only increase cdegt−2(M ′

t−1): using the same argument
as above we see that if cdegt−2(M ′

t−1) + ft−2 ≤ (m− 1)(p− 1), then the proof is done,
and if cdegt−2(M ′

t−1) + ft−2 > (m − 1)(p − 1), we need to construct M ′
t−3. Because

deg(M) ≤ (m − 1)(q − 1), the recursive construction will terminate and produce the
monomial we need. 2

The following example illustrates the algorithm we use in proving Proposition 12.
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Example 3 In RF27(86, 4) we have m = 4, r = t = 3, s = 32 − 1, (m− 1)(q − 1) = 78
and (m − 1)(p − 1) = 6. A monomial of type (10) has the form xi1

1 xi2
2 xi3

3 xi4
4 ,where

0 ≤ i1, i2, i3 ≤ 26, and 0 ≤ i4 ≤ 8. The monomial M = x10
1 x25

2 x25
3 x25

4 is not of type (10);
here deg(M) = 85 = 3× 26 + 7 > 78, so Proposition 12 yields

(x26
1 x26

2 x26
3 x7

4)ε
16
1,4ε

1
2,4ε

1
3,4 ' M.

Now consider M = x12
1 x18

2 x21
3 x26

4 of degree 77 = 2×26+25 < 78. Then M ′
3 = x12

1 x18
2 x21

3

and
deg(M)− deg(M ′

3) = 26 = 2× 9 + 8, cdeg2(M
′
3) + 2 = 7 > 6.

Thus we add 1× 9 to the degree to obtain M ′
2 = x21

1 x18
2 x21

3 and

deg(M)− deg(M ′
2) = 17 = 5× 3 + 2, cdeg1(M

′
2) + 5 = 7 > 6.

Thus we add 4× 3 to the degree to obtain M ′
1 = x24

1 x24
2 x24

3 and

deg(M)− deg(M ′
1) = 5× 1 + 0, cdeg0(M

′
1) + 5 = 5 < 6.

So finally we add 5× 1 to the degree to obtain M ′
0 = x26

1 x26
2 x25

3 , and obtain

(M ′
0x

0
4)ε

14
1,4ε

8
2,4ε

4
3,4 ' M.

2

The propositions of this section, along with the observation that RFq(m(q− 1),m)
is trivially seen to be generated by its minimum-weight codewords, it being the full
space, completes the proof of Theorem 1.

Note:
1. If ρ = r(q − 1) then the minimum-weight vectors of RFq(ρ,m) are the incidence
vectors of the (m− r)-flats, and the code generated by them is a subfield subcode: see
[1, Chapter 5]. This is only equal to RFq(ρ,m) if q is a prime. Our theorem agrees
with this.
2. The dual code ofRFq(ρ,m) may be generated by its minimum words whileRFq(ρ,m)
is not. For example, RF9(12, 2) is generated by its minimum words, but RF9(12, 2)⊥ =
RF9(3, 2) is not. In fact if m > 1 and q is not prime, only in the case q = 4 will
RFq(ρ,m) be generated by its minimum words if and only if its dual is generated by
its minimum words.
3. Actual bases of minimum-weight vectors are known only in some specific cases: see
Gao and Key [8] for a discussion, and where the case RFp(p− 1,m) is solved.
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4 Computations

We tested our results using the formulae for the dimensions as given in Section 2
with Magma [4]. For the dimension of the generalized Reed-Muller code we used the
simplified form of Result 1 and the Magma function:

//Gives the dimension of R_GF(q)(r,m)
grmD:=func<q,r,m|&+[(-1)^k*Binomial(m,k)*

Binomial(r-k*q+m,r-k*q):k in [0..m]]>;

and for the dimension of the code spanned by the minimum-weight vectors we used
Delsarte’s Result 6 and the Magma function:

//Gives the q-weight of u
qwt:=func<u,q| &+[Intseq(u,q)[j]: j in [1..#Intseq(u,q)]]>;

/*Gives the dimension of the code spanned by the minimum weight
vectors of R_GF(q)(r,m) for r <m(q-1), where q=p^e*/
GRMmw:=function(p,e,r,m);
q:=p^e; nrts:={};

for j:=0 to (r mod (q-1)) do
for t:=1 to q^m-1 do
s:={};

for k:=0 to e-1 do
d:=(m-(r div (q-1)))*(q-1)-(j*p^k mod (q-1));

if qwt(t*p^k,q) ge d then
s:=s join {k};
end if;

end for;
if #s eq e then
nrts:=nrts join {t};
end if;

end for;
end for;

return #nrts;
end function;

Some output using these Magma functions:

dims:=[[r,grmD(9,r,2),GRMmw(3,2,r,2)]:r in [0..15]];
> dims;
[ [ 0, 1, 1 ], [1, 3, 3 ], [2, 6, 6 ], [3, 10, 8 ], [4, 15, 12 ], [5, 21,
18 ], [6, 28, 21 ], [7, 36, 27 ], [8, 45, 36 ], [9, 53, 50 ], [10, 60,
60 ], [11, 66, 66 ], [12, 71, 71 ], [13, 75, 75 ], [14, 78, 78 ], [15,
80, 80 ] ]
dims:=[[r,grmD(8,r,3),GRMmw(2,3,r,3)]:r in [0..20]];
> dims;
[ [ 0, 1, 1 ], [1, 4, 4 ], [2, 10, 7 ], [3, 20, 16 ], [4, 35, 19 ], [5, 56,



REFERENCES 14

28 ], [6, 84, 37 ], [7, 120, 64 ], [8, 162, 127 ], [9, 208, 172 ], [10,
256, 231 ], [11, 304, 258 ], [12, 350, 298 ], [13, 392, 328 ], [14, 428,
373 ], [15, 456, 443 ], [16, 477, 474 ], [17, 492, 492 ], [18, 502, 502
], [19, 508, 508 ], [20, 511, 511 ] ]

Notice that the values of r for which the dimensions become the same agrees with
our theorem.
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