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Abstract

We determine the minimum weight of the ternary dual codes of each of the four
projective planes of order 9, and of the seven affine planes of order 9. The proof
includes a construction of a word of small, sometimes minimal, weight in the dual
code of any plane of square order containing a Baer subplane.
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1 Introduction

The p-ary linear code obtained from a projective plane of order n divisible by p has
long been known to have minimum weight n + 1 and minimum weight vectors simply
the scalar multiples of the incidence vectors of the lines. The dual code is not so
well determined; bounds for the minimum weight are easy to establish, but the actual
minimum weight in any case must be a function of the existence of a particular type of
configuration in the plane. For example, in the case of the binary code of a projective
plane of even order, the minimum possible weight is n 4+ 2 and the support of such a
vector is a hyperoval in the plane. Up to fairly recently no planes without hyperovals
were known, but we now know (see [16]) that there are planes of order 16 without
hyperovals. In this case, the minimum weight turns out to be n + 4 = 20: see [12].

The case of n odd is not as easy to describe, and in general the minimum weight is
not known. In the case of n = p a prime, the minimum weight is 2n in all known cases,
all of which are desarguesian. Bounds are known from coding theory and geometry for
the desarguesian case, since then the codes of the planes are generalized Reed-Muller,
although the dual codes are not, unless n is a prime.
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There are four projective planes of order 9: the desarguesian plane, ®, the trans-
lation (Hall) plane, €2, the dual translation plane, 2, and the Hughes plane, ¥: see
[17, 13]. Here we prove the following:

Theorem 1 Let I1 be a projective plane of order 9. The minimum weight of the dual
ternary code of I1 is 15 if I1 is ®, Q, or QF, and 14 if II is V.

Note that in fact the codes here are too large to be examined by current stan-
dard computational facilities, for example using Magma [5] on Sun stations. However,
Magma was useful in searching for geometrical configurations of a particular type.

2 Notation and background

Notation will include PGy, (Fy) to denote the design of points and r-dimensional
subspaces of the projective space PGy, (F}), i.e. a 2-(v,k, \) design with v points, k
points per block, and any two points on exactly A blocks, where

m+1_1 r+1 m—l_l m+1—r_1
oo @ k=9 1,/\:((1 1) (q )
(¢t =1)...(¢—1)

q—1 q—1
Similarly, AG, »(F;) will denote the 2-design of points and r-flats (cosets of dimension
r) in the affine geometry AG,, (Fy).

The code Cr of the design D over the finite field F' is the space spanned by the
incidence vectors of the blocks over F'. We take I’ to be a prime field F),; in the case
of the designs from finite geometries, p will be the same as the characteristic of the
field over which the geometry is defined. In the general case of a 2-design, the prime
must divide the order of the design, i.e.  — A, where r is the replication number for the
design, that is, the number of blocks through a point. If the point set of D is denoted
by P and the block set by B, and if Q is any subset of P, then we will denote the
incidence vector of Q@ by v2. Thus Cp = <UB | B € B>, and is a subspace of F¥. For

any code C, the dual or orthogonal code C is the orthogonal subspace under the
standard inner product. If a linear code over a field of order ¢ is of length n, dimension
k, and minimum weight d, then we write [n, k, d]; to show this information.

For any design D, a set of points is called an (nj,ng,...,ns)-set if blocks of the
design meet the set in n; points for some i such that 1 < i < s, and if for each 7 there
exists at least one block meeting the set in n; points. The n;’s are the intersection
numbers for the set, and an n;-secant is a block meeting the set in n; points.

The following construction is used in [6] and we mention it here as it can be modified
to help in the non-binary case for projective geometry designs of larger dimension: see
Section 4.
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Result 1 Let D = PG, 1(F,) where g =2" fort > 1, i.e. D is the 2—(qw;+_11_1,q +1,1)
design of points and lines in P = PGy, (Fy). Let H be a hyperplane in P, and let S
be a set of even type in 'H, i.e. S is a set of points such that every line of H meets S

evenly. Let V' be a point of P that is not in H. Then the set of points

S*={X|X on aline VY for Y on §} —{V}
is a set of even type for D, of size q|S|.

The known bounds in the general case are summed up in [1, Theorem 5.7.9] and
are given as follows:

Result 2 Let C be the p-ary code of the design PGy, »(F,) or AGp, »(F,) where ¢ = pt,
0 <r <m and p is prime. Then the minimum weight d*- of C* satisfies

(q+p)g™ "t <dt <2¢™T.

See also Blake and Mullin [4, Section 2.2], Delsarte, Goethals and MacWilliams [9]
or Delsarte [10, 8]. The lower bounds for the affine case are deduced in [8] from the
BCH bound using the fact that the projective codes are cyclic and the affine codes are
extended cyclic; the bound for the projective case follows by an induction argument
given in [6]. The precise value for the binary case is determined in [6]; here we improve
on the values for some cases when ¢ is odd.

3 0Odd order planes

Suppose II is a projective plane of order ¢ = p', where p is odd. Let S be a set of
size s that is the support of a word in Cp(H)J—. For¢=0,...,q+ 1, let x; denote the
number of i-secants to S; for a fixed point y € S, let y; denote the number of i-secants
that pass through y; for a fixed point z € S, let z; be the number of i-secants passing
through z. Standard counting gives the following sets of equations, noting first that
x1 = y1 = 21 = 0 since S is the support of a codeword in the dual:

q+1 q+1 q+1

Zmi =@ +q+1; szl =s(q+1); Zz(z— Daz; =s(s—1), (1)
i=0 i=2 i=2
and hence
q+1
S (i — 2w = s(5 — 2 — g), (2)
i=3

(where the last equation is obtained from the previous two);

q+1 q+1

dyi=q+1 ) iyi=s, (3)
=0

=1
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and
q+1 q+1
Yozi=aq+ls Y (i-Du=s—1, (4)
i=2 i=2
and hence
g+1
Z(i—2)2i25—2—q, (5)
i=3

(where the last equation is obtained from the previous two).

In all that follows let C' = Cp(II) where p is an odd prime. Further, let w be a
codeword in C+ with support S. The coordinate of w at the point z will be written
w(x). If ¢ = p, then the only planes known are desarguesian and in this case the general
theory of generalized Reed-Muller codes tells us that the minimum weight of C is 2p.
Thus we exclude these cases from our arguments where necessary.

Lemma 2 For any q = p* where t > 1, we have s > q + 4.

Proof: Clearly s > q + 2; if s = g + 2 then every point is on ¢ + 1 2-secants. Thus if
w(z) = a at a point = € S, then w must take the value —a on all the other ¢+ 1 points.
Since the same must be true of any point, we have a contradiction.

Suppose s = ¢ + 3. Then, from Equation (5), we have z3 + 2z4 + --- = 1, so that
zi = 0 for ¢ > 4, and z3 = 1, for any point of §. Thus each point of § is on a unique
3-secant, and the entries in w at the points on this 3-secant must be the same, a say,
and we can only possibly have p = 3. The entries at any other point must be —a, but
since g > 3, there are more than six points, so we have a contradiction. O

Lemma 3 For ¢ = 3! where t > 1, we have s > q + 5.

Proof: Suppose s = ¢ + 4. Then, from Equation (5), we have z3 + 2z4 + --- = 2, so
that z4 <1 for any point of S. If z4 = 1 for some point z, then if w(z) = a, we must
have w(y) = —a for every point off the 4-secant through z. Thus all the points on the
4-secant must take the same value a, which means that 4a = 0 and thus a = 0, which
is a contradiction. Thus z4 = 0 for all the points, and thus x4 = 0. From Equation (2)
then 3x3 = 2(q + 4), so that 3|(¢ + 1), which is impossible since ¢ = 3¢. O

Lemma 4 If g =9 and s = 14, then S is the union of two disjoint Fano subplanes,
neither of whose lines contains points of the other Fano subplane. Further, S is a
(0,2, 3)-set.

Proof: Suppose s = ¢+ 5, so that, from Equation (5), we have z3+2z4+3z5+--- = 3,
which implies z5 < 1 and z; = 0 for ¢ > 6. If 25 = 1 for some point, then 23 = z4 = 0,
and the entries in w at the points on the 5-secant must all be the same, which is
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impossible. So z; = 0 for all the points, and hence x5 = 0. Suppose that z4 = 1
and z3 = 1 for some point z. If w(z) = a, then all the points on the 3-secant have
entry a, and the remaining points on the 4-secant must have entries a and —a. Every
point not on these two lines must have entry —a, since the line joining it with x must
be a 2-secant. Let z be a point on the 4-secant with w(z) = a and let y # x be a
point on the 3-secant through x. Then the line yz must be a 3-secant and thus the
third point on it must have coordinate a, contradicting what we have just said. Thus
z4 = 1 is impossible, and hence we must have z4 = 0 and z3 = 3 for all points of S.
The configuration described is thus all we can have, with w(z) = a on the one Fano
subplane, and w(z) = —a on the other Fano subplane. O

Note: We will call a pair of Fano subplanes that satisfy the conditions of Lemma 4,
absolutely disjoint complements of one another.

Proposition 5 A projective plane of square order ¢*> that contains a Baer subplane
has words of weight 2q> — q in its p-ary dual code, where plq.

Proof: Suppose II is the projective plane containing a Baer subplane, 7. If Q is the
set of points of 7, and L is a line of II that is a line of 7, i.e. meets Q in g + 1 points,
then, writing v~ for the incidence vector of a set X of points, we find that the vector
ve — v’ is in the dual code of the design, and is of weight 2¢%> — q. The intersection
numbers for the set S which is the symmetric difference of Q@ and L are (0,2, ¢, ¢* —q).
This set can clearly be found in an affine plane as well by taking for the line at infinity

a tangent to the Baer subplane that meets L in 7. O

Recall that the four projective planes of order 9 are: the desarguesian plane, ®, the
translation (Hall) plane, 2, the dual translation plane, Q”, and the Hughes plane, .
We now complete the proof of Theorem 1.

Proof of Theorem 1

It is well known that all the planes have Baer subplanes (see, for example, [15]), so all
have words of weight 15 in the dual ternary code. Further, ® has no Fano subplanes at
all, so 15 must be the minimum weight, by Lemma 4. The Hall plane and its dual do
have Fano subplanes, but no pairs of absolutely disjoint complements, so the minimum
weight is 15 here too.

In the case of the Hughes plane ¥, the Fano subplanes fall into three orbits under
the collineation group of the plane, which, in the notation of Denniston [11], are a of
length 5616, (3 of length 16,848, and ~ of length 11,232. Using Magma [5] we tested all
the Fano subplanes planes for a suitable absolutely disjoint complement, and found that
the only such pairs that occur are both in the v orbit. Using the Denniston notation
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for points and lines, a suitable pair is the following:

a3: P3 S3 T3 ad: P4 S4 VT
b3: T3 V6 X6 b5: 15 V7 Z8
d3: S3 X6 Z6 dd: S4 X8 Z8
gb: V6 Z6 P3 g8: Z8 P4 RS
6: P3 R3 X3 i8: X8 P4 Th
k6: Z6 R3 T3 k7: Rb T5 5S4
m3: R3 S3 V6 mb: Rb V7 X8

Thus the code C* for the Hughes plane has minimum weight 14. O

Since the 3-ranks of the planes are well known, we now have completed the infor-
mation on the parameters for the ternary codes of the four projective planes:

plane code dual

d [91,37,10]3 | [91,54,15]3
Q [91,41,10]3 | [91,50,15]3
Qb [91,41,10]3 | [91,50, 153
v [91,41,10]3 | [91,50,14]3

The seven affine planes that can be obtained from the projective planes, i.e. one from
®, and two each from the others, have the parameters:

plane code dual

P [81,36,9]3 | [81,44,15]3
Q [81,40,9]5 | [81,41,15]3
Qb [81,40,9]3 | [81,41,15]3
W 81,40,9]3 | [81,41,14]3

This was justified in the case of minimum weight 15 in the proof of Proposition 5, and
for the affine planes from the Hughes plane, absolutely disjoint Fano planes can be
found with the line at infinity exterior in each case.

Note: 1. By considering cases, it is not hard to show that the words of weight 15
described in Proposition 5 in the dual code of the ternary code of a projective plane of
order 9, are the only words of this weight in the dual.

2. If the smallest weight for an incidence vector (i.e. a vector all of whose entries are 0
or 1) in the dual code is sought, we must look for an (n1,ns,...,ns)-set where all the
n; are divisible by 3. Clearly such a set must have at least 21 points, and if such a set
existed it would be a (0, 3)-set, which does not exist, by Cossu [7] for the desarguesian
plane, and according to [15, Section 5] for the other planes of order 9. (See also [3, 2]
for desarguesian planes of other odd orders.) The next possibility is 24 (since the size
of the set must be divisible by 3), and this does exist for each of the planes, simply
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by taking the set of 24 points on four lines of a Baer subplane, through a point of the
Baer subplane, that are not in the subplane. This gives a (0,3, 6)-set. Thus 24 is the
minimum size for a constant (i.e. (0,1)) vector in each case. This construction works
for any plane of square order ¢ with a Baer subplane, yielding a set of size q(¢?> — 1)
with intersection numbers (0, ¢, ¢*> — q).

3. Sachar [18] deduces the lower bound %q + 2 for any projective plane of odd order
q, which agrees with our value of 14 for ¢ = 9; he also mentions the Baer subplane
construction for planes of square order. Further, he obtains some bounds for the
minimum weight of the hull of a projective plane, i.e. C'N C*, which is just 18, in the
case of order 9.

4. Magliveras and Tam [14] have some estimation of the weight enumerator of the
ternary code of the desarguesian plane of order 9.

4 The general case

Values for the minimum weight of the dual codes of the p-ary codes of the geometry for
p > 2 are known, in general, only for ¢ = p. In this case the minimum weight for the
designs of points and r-dimensional subspaces or flats in an m-dimensional projective
or affine geometry is 2p™ ", since the codes here are generalized Reed-Muller codes
and the lower and upper bounds in the affine case of Result 2 actually coincide. The
minimum vectors are not constant in this case, and unlikely to be in the general case.
Words of weight 2¢"~" are easily constructed, and this does provide an upper bound
for the minimum weight: see [1, Chapter 5].

In some cases, however, we can construct words of smaller weight in the dual code:
In fact, a construction as in Result 1, but placing signs on added points, will yield a
word in the dual code for PG, 1(F,) from a word in the dual code for PG,,—11(Fy):
we use the sign + for points on lines through V' that meet the set for the hyperplane in
a point with a positive sign, and — for points on lines through V' that meet in points
with a negative sign. This will provide a vector in the dual code for PGy, 1(Fy) of
weight ¢s, where s is the weight of the word in the dual code for the hyperplane. For
example, using the construction of Proposition 5 with a Baer subplane, we get a word
of weight (2¢* — ¢)(¢*)™ 2 in the dual code of the p-ary code for PG, 1(F,2). This
does work in the even case as well, but is not particularly useful, since the word will
be larger than the minimum, except in the case ¢ = 4, where the construction gives a
hyperoval.

Using this, we get an improvement on the upper bound in Result 2 in the case
where ¢ is a square:

Proposition 6 Suppose ¢ = p', where t is even and p is prime. Let C be the p-ary
code of the design PGy, (Fy) or AGpy, r(Fy), where 0 < r < m. Then the minimum
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weight d*+ of C satisfies

(q+p)qm—r—1 S dj_ S (261— \/a)qm—r—l'

Note: In the case where ¢ = p, the upper bound of Result 2 is attained, so we cannot
hope to do better in every case.
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