Read: Chapter 2 of Mathematical Concepts and Methods in Modern Biology (Robeva \& Hodge, 2013). Bistability in the lactose operon of Echerichia coli: A comparison of differential equation and Boolean network models. By R. Robeva and N. Yildirim.

Chapter 6 of Algebraic and Discrete Mathematical Methods for Modern Biology (Robeva, 2015). Steady state analysis of Boolean models: a dimension reduction approach. By D. Murrugarra and A. Veliz-Cuba, pages 121-139.

Exercises.

1. In this exercise, you will construct the finite field of order 9 .
(a) Find an irreducible polynomial of degree 2 in $\mathbb{F}_{3}[x]$. Note that any such $f \in \mathbb{F}_{3}[x]$ for which $f(c) \neq 0$ for all $c \in \mathbb{F}_{3}=\{0,1,2\}$ will work.
(b) Write down all 9 elements of $\mathbb{F}_{9} \cong \mathbb{F}_{3}[x] / I$, where $I=\langle f\rangle$ is the ideal generated by the polynomial you found in Part (a). All of the elements should be of the form $g+I$, for some $g \in \mathbb{F}_{3}[x]$.
(c) Construct the addition table of \mathbb{F}_{9} and the multiplication table of $\mathbb{F}_{9}^{*}:=\mathbb{F}_{9} \backslash\{0\}$, like what we did for \mathbb{F}_{4} in class. You should omit the " $+I$ " for clarity of notation.
2. Consider the reactions where two substrates S and T compete for binding to an enzyme E to produce two different products P and Q :

$$
\begin{aligned}
& E+S \underset{p_{2}}{\stackrel{p_{1}}{\rightleftharpoons}} E S \xrightarrow{\stackrel{p_{3}}{\longrightarrow} P+E} \\
& E+T \underset{q_{2}}{q_{1}} E T \xrightarrow{q_{3}} Q+E
\end{aligned}
$$

Assume that each reaction follows the Michaelis-Menten kinetics. Also, assume that that the initial enzyme concentration is $E_{0}=[E]+[E S]+[E T]$.
(a) Derive rate equations for P and Q in this system in terms of $[E S]$ and $[E T]$. That is, determine $d[P] / d t$ and $d[Q] / d t$.
(b) Derive rate equations for $E S$ and $E T$.
(c) Assume that the enzyme-substrate complexes reach equilibrium quickly: $d[E S] / d t \approx$ 0 and $d[E T] / d t \approx 0$. Solve for $[E]$ in each of these equations.
(d) Equate the two expressions for $[E]$ from Part (c) and solve for $[E T]$.
(e) Solve for $[E S]$ by plugging your answers to Parts (c) and (d) into $E_{0}=[E]+[E S]+$ $[E T]$. You should not have $[E]$ or $[E T]$ in your final answer.
(f) Plug this into the original ODE for $d[P] / d t$.
(g) Repeat the previous three steps but solve for $[E S]$ instead of $[E T]$.
(h) Explain the effects of the competition occuring.
3. Recall our original 3 -variable Boolean model of the lac operon:

$$
\begin{aligned}
f_{M} & =\overline{G_{e}} \wedge\left(L \vee L_{e}\right), \\
f_{E} & =M \\
f_{L} & =\overline{G_{e}} \wedge\left(\left(E \wedge L_{e}\right) \vee(L \wedge \bar{E})\right) .
\end{aligned}
$$

For each of the 4 possible initial conditions, $G_{e}, L_{e} \in \mathbb{F}_{2}^{2}$, the model had one connected component with the biologically correct fixed point. Compute the probability that this would have happened purely by chance. (Assume a uniform distribution.)
4. Recall the 3 -variable ODE model of the lac operon proposed by Yildirim and Mackey in 2004, where $M(t)=$ mRNA, $B(t)=\beta$-galactosidase, and $A(t)=$ allolactose (concentrations), respectively.

$$
\begin{aligned}
\frac{d M}{d t} & =\alpha_{M} \frac{1+K_{1}\left(e^{-\mu \tau_{M}} A_{\tau_{M}}\right)^{n}}{K+K_{1}\left(e^{-\mu \tau_{M}} A_{\tau_{M}}\right)^{n}}-\widetilde{\gamma_{M}} M \\
\frac{d B}{d t} & =\alpha_{B} e^{-\mu \tau_{B}} M_{\tau_{B}}-\widetilde{\gamma_{B}} B \\
\frac{d A}{d t} & =\alpha_{A} B \frac{L}{K_{L}+L}-\beta_{A} B \frac{A}{K_{A}+A}-\widetilde{\gamma_{A}} A
\end{aligned}
$$

Suppose the exponential decay constants are estimated from the literature to be $\widetilde{\gamma_{M}}=$ $.441, \widetilde{\gamma_{B}}=.031$, and $\widetilde{\gamma_{A}}=.55$.
(a) Compute the half life for M, B, and A.
(b) Justify the following Boolean model by explaining the logical expression defining each transition function:

$$
\begin{array}{ll}
f_{M}=A & f_{B_{\text {old }}}=\bar{M} \wedge B \\
f_{B}=M \vee\left(B \wedge \overline{B_{\text {old }}}\right) & f_{A}=\left(B \wedge L_{m}\right) \vee L
\end{array}
$$

What approximate timestep is assumed by this model?
(c) Find the fixed points of this model using computational algebra. Use the variable order $\left(M, B, B_{\text {old }}, A\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, and include your code from Macaulay2, Singular, or Sage.
(d) Does this model exhibit bistability? Justify your answer.

