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Fields

Definition

A set F containing 1 6= 0 with addition and multiplication operations is a field if the
following three conditions hold:

F is an abelian group under addition.

F \ {0} is an abelian group under multiplication.

The distributive law holds: a(b + c) = ab + ac.

Examples

The following sets are fields: Q, R, C, Fp := Zp (prime p).

The following sets are not fields: N, Z, Zn (composite n).

In this course, we will mostly deal with finite fields.

Proposition (exercise)

1. If I is an ideal of a commutative ring R, then R/I is a field iff I is maximal.

2. Any finite integral domain is a field.
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Finite fields

Definition

Let F be a finite field. The characteristic of F, denoted char(F), is the smallest positive
integer n for which n1 := 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0.

Remarks

It is elementary to show that char(F) must be prime.

F contains Fp = {0, 1, . . . , p − 1} as a subfield.

F is a vector space over Fp . Therefore, |F| = pk for some k ∈ Z.

Proposition

If K and L are finite fields with K ⊆ L and |K | = pm and |L| = pn, then m divides n.

Proof (sketch)

We have Fp ⊆ K ⊆ L. Then L is not only a Fp-vector space, but also a K -vector space.

Let x1, . . . , xk be a basis for L over K . Every x ∈ L can be written uniquely as
x = a1x1 + · · ·+ ak xk . Now count elements. �
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Finite fields

We know that:

Zp is a field iff p is prime,

finite integral domains are fields,

every finite field has order pk .

But what do these “other” finite fields look like?

Let R = F2[x] be the polynomial ring over F2. (Note: we can ignore all negative signs.)

The polynomial f (x) = x2 + x + 1 is irreducible over F2 because it does not have a root.
(Note that f (0) = f (1) = 1 6= 0.)

Consider the ideal I = 〈x2 + x + 1〉 =
{

(x2 + x + 1)h(x) | h ∈ F2[x]
}

.

In the quotient ring R/I , we have x2 + x + 1 = 0, or equivalently, x2 = −x − 1 = x + 1.

The quotient has only 4 elements:

0 + I , 1 + I , x + I , (x + 1) + I .

As with the quotient group (or ring) Z/nZ, we usually drop the “I ”, and just write

R/I = F2[x]/〈x2 + x + 1〉 ∼= {0, 1, x , x + 1} .

It is easy to check that this is a field!
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The finite field of order 4

Here is a Cayley diagram, and the operation tables for R/I = F2[x]/〈x2 + x + 1〉:
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Theorem

There exists a finite field Fq of order q, which is unique up to isomorphism, iff q = pk for
some prime p. If k > 1, then this field is isomorphic to the quotient ring

Fp [x]/〈f 〉 ,

where f is any irreducible polynomial of degree k.

Much of the error correcting techniques in coding theory are built using mathematics over
F28 = F256. This is what allows your DVD to play despite scratches.
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Polynomials over finite fields
Let F be a field of order q = pk . Every f ∈ F[x] defines a function F→ F, by c 7→ f (c).

The set F[x] is infinite, but there are only qq functions F→ F.

Thus, different polynomials can give the same function. For example, over F2, both x2 and x
define the same function.

Remark

The multiplicative group F∗ := F \ {0} is cyclic of order q − 1. Thus, aq = a for all a ∈ F.

This means that xq and x define the same function over Fq .

Elements in the quotient ring F[x]/I , where I = 〈xq − x〉, have the form

(aq−1xq−1 + · · ·+ a1x + a0) + I , ai ∈ F.

There are clearly qq elements in F[x]/I .

Summary

Elements in the (infinite) ring F[x] are polynomials over F.

Elements in the (finite) quotient ring F[x]/〈xq − x〉 are functions F→ F.

We will soon see why every function F→ F can be written like this.
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Multivariate polynomials over finite fields

Let F be a field of order q = pk . Every f ∈ F[x1, . . . , xn] defines a function

Fn −→ F, (c1, . . . , cn) 7−→ f (c1, . . . , cn).

The set R = F[x1, . . . , xn] is infinite, but there are only q(qn) functions Fn → F.

Elements in the quotient ring R/I , where I = 〈xq
1 − x1, . . . , x

q
n − xn〉 are sums of monomials

with each exponent from 0, . . . , q − 1:

f =
∑

cαxα, xα := xα1
1 xα2

2 · · · x
αn
n , α = (α1, . . . , αn) ∈ Zn

q ,

where the sum is taken over all qn monomials, and cα ∈ F. This is the algebraic normal form
of f ∈ R/I .

By counting monomials, there are q(qn) elements in F[x1, . . . , xn]/〈xq
1 − x1, . . . , x

q
n − xn〉.

Summary

Elements in the ring F[x1, . . . , xn] are multivariate polynomials over F.

Elements in the quotient ring F[x1, . . . , xn]/〈xq
1 − x1, . . . , x

q
n − xn〉 are functions Fn → F.

We will soon see why every function Fn → F can be written like this.

M. Macauley (Clemson) Algebraic models and finite dynamical systems Algebraic Biology 7 / 23

mailto:macaule@clemson.edu


A familiar example: Boolean functions

There are several standard ways to write a Boolean function f : Fn
2 → F2.

1. As a logical expression, using ∧, ∨, and ¬ (or X )

2. As a “square-free” polynomial in F[x1, . . . , xn]/〈x2
1 − x1, . . . , x2

n − xn〉
3. As a truth table.

Boolean operation logical form polynomial form
AND z = x ∧ y z = xy
OR z = x ∨ y z = x + y + xy
NOT z = x z = 1 + x

Example

The following are three different ways to express the function that outputs 0 if
x = y = z = 1, and 1 otherwise.

f (x , y , z) = x ∧ y ∧ z

f (x , y , z) = 1 + xyz

x 1 1 1 1 0 0 0 0
y 1 1 0 0 1 1 0 0
z 1 0 1 0 1 0 1 0

f (x, y , z) 0 1 1 1 1 1 1 1

Recall that there are 2(2n) Boolean functions on n-variables.
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Boolean networks
Classically, a Boolean network (BN) is an n-tuple f = (f1, . . . , fn) of Boolean functions,
where fi : Fn

2 → F2. This defines a finite dynamical system (FDS) map

f : Fn
2 −→ Fn

2, x = (x1, . . . , xn) 7−→
(
f1(x), . . . , fn(x)).

Any function from a finite set to itself can be described by a directed graph with every node
having out-degree 1. For a BN, this is called the phase space, or state space.

Definition

The phase space of a BN is the digraph with vertex set Fn
2 and edges

{
(x , f (x)) | x ∈ Fn

2

}
.

Proposition

Every function f : Fn
2 → Fn

2 is the phase space of a Boolean network f = (f1, . . . , fn).

Proof

Clearly, every BN defines a function Fn
2 → Fn

2. We want to prove the converse. It suffices to
show that these sets have the same cardinality.

To count functions Fn
2 → Fn

2, we count phase spaces. Each of the 2n nodes has 1 out-going

edge, and 2n destinations. Thus, there are (2n)2n
= 2(n2n) phase spaces.

To count BNs: there are 2(2n) choices for each fi , and so (2(2n))n = 2(n2n) possible BNs. �
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Local models and FDSs

Corollary

Every function f = Fn
2 → Fn

2 can be written as an n-tuple of “square-free” polynomials over
F2. That is,

f = (f1, . . . , fn), fi ∈ F2[x1, . . . , xn]/〈x2
1 − x1, . . . , x

2
n − xn〉.

This all carries over to generic finite fields, but we will carefully re-define things first.

Definition

Let F be a finite field. A local model over F is an n-tuple of functions f = (f1, . . . , fn), where
each fi : Fn → F.

Definition

Every local model f = (f1, . . . , fn) over F defines a finite dynamical system (FDS), by
iterating the map

f : Fn −→ Fn, x = (x1, . . . , xn) 7−→
(
f1(x), . . . , fn(x)).

Remark

A classical Boolean network (BN) is just a local model over F2.
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Local models and FDSs

Let F be a finite field of order q = pk . Recall that

R/I = F[x1, . . . , xn]/〈xq
1 − x1, . . . , x

q
n − xn〉

is the set of functions F→ F.

Remark

Every local model f = (f1, . . . , fn) can be associated with an element in (R/I )× · · · × (R/I ).

Recall that there are qqn
elements in R/I .

Summary

(i) There are q(nqn) local models (f1, . . . , fn) over F.

(ii) There are q(nqn) functions Fn → Fn (i.e., FDS maps, or phase spaces).

In other words, there is a natural bijection between these sets.

Said differently every function Fn → Fn is indeed the finite dynamical system (FDS) map
(i.e., phase space) of a local model (f1, . . . , fn) over F.
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Asynchronous Boolean networks

Consider a Boolean network f = (f1, . . . , fn).

Composing the functions synchronously defines the FDS map f : Fn
2 → Fn

2.

We can also compose them asynchronously. For each local function fi , define the function

Fi : Fn
2 −→ Fn

2, x = (x1, . . . , xi , . . . , xn) 7−→ (x1, . . . , fi (x), . . . , xn).

Definition

The asynchronous phase space of (f1, . . . , fn) is the digraph with vertex set Fn
2 and edges{

(x ,Fi (x)) | i = 1, . . . , n; x ∈ Fn
2

}
.

Remarks

Clearly, this graph has n · 2n edges, though self-loops are often omitted.

Every non-loop edge connect two vertices that differ in exactly one bit. That is, all
non-loops are of the form (x , x + ei ), where ei is the ith standard unit basis vector.

Unless we specifiy otherwise, the term “phase space” refers to the “synchronous phase
space.”

It is elementary to extend this concept from BNs to local models over finite fields.
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Examples: synchronous vs. asynchronous

00

01

10

11

Asynchronous

phase space

00

01

10

11

Synchronous phase space

f1(x1, x2) = x2

f2(x1, x2) = x1
1 2

Functions Wiring diagram

010

000

111

101

110 011 100 001

Synchronous
phase space

111

110 101 011

100 010 001

000

Asynchronous phase space
(self-loops omitted)

f1 = x2

f2 = x1 ∧ x3

f3 = x2
1

2

3

Functions Wiring diagram

Remarks

The 2-cycle in the 1st BN is an “artifact of synchrony.”

In the 2nd asynchronous BN, there is a directed path between any two nodes.

M. Macauley (Clemson) Algebraic models and finite dynamical systems Algebraic Biology 13 / 23

mailto:macaule@clemson.edu


Asynchronous local models over finite fields

Recall: every function Fn → Fn can be realized as the FDS map (i.e., phase space) of a local
model over F.

Similarly, every digraph with vertex set Fn that “could be” the asynchronous phase space of
a local model, is one.

Theorem

Let G = (Fn,E) be a digraph with the following local property (definition):

For every x ∈ Fn and i = 1, . . . , n: E contains exactly one edge of the form (x , x + kei ),
where k ∈ F (possibly a self-loop)

Then G is the asynchronous phase space of some local model (f1, . . . , fn) over F.

Proof

It suffices to show there there are q(nqn) digraphs G = (Fn,E) with the “local property”.

Each of the qn nodes x ∈ Fn has n out-going edges (including loops). Each edge has q
possible destinations: x + kei for k ∈ F.

This gives qn choices at each node, for all qn nodes, for (qn)qn
= q(nqn) graphs in total. �
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Local models over general finite fields: synchronous vs. asynchronous
Let F be a finite field of order q = pk , and let

R/I = F[x1, . . . , xn]/〈xq
1 − x1, . . . , x

q
n − xn〉,

which has cardinality q(qn).

Summary (updated)

Each of the following sets have cardinality q(nqn):

local models (f1, . . . , fn) over F.

synchronous phase spaces, i.e., FDS maps Fn → Fn;

asynchronous phase spaces: a digraph G = (Fn,E) with the “local property”.

Open-ended question

Better understand the following:
local model
(f1, . . . , fn)

synch. phase space

Fn → Fn

asynch. phase space
(Fn, E)
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Phase spaces: synchronous vs. asynchronous

The synchronous phase space of a local model f = (f1, . . . , fn) has two types of nodes:

transient points: f k (x) 6= x for all k ≥ 1.

periodic points: f k (x) = x for some k ≥ 1. (k = 1: fixed point)

Thus, the phase space consists of periodic cycles and directed paths leading into these cycles.

The asynchronous phase space of f = (f1, . . . , fn) can be more complicated.

For x , y ∈ Fn, define x ∼ y iff there is a directed path from x to y and from y to x .

The resulting equivalence classes are the strongly connected components (SCC) of the phase
space. An SCC is terminal if it has no out-going edges from it.

A point x ∈ Fn:

is transient if it is not in a terminal SCC.

lies on a cyclic attractor if its terminal SCC is a chordless k-cycle (k = 1: fixed point).

lies on a complex attractor otherwise.

Proposition

The fixed points of a local model are the same under synchronous and asynchronous update.
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Wiring diagrams

A function fj : Fn → F is essential in xi if for some x ∈ Fn and k ∈ F,

fj (x) 6= f (x + kei ),

where ei ∈ Fn is the ith standard unit basis vector.

Definition

The wiring diagram of a local model (f1, . . . , fn) over F is a directed graph G with vertex set
x1, . . . , xn (or just 1, . . . , n) and a directed edge (xi , xj ) if fj is essential in xi .

If F = Fp , then an edge xi −→ xj is positive if a ≤ b implies

fj (x1, . . . , xi−1, a, xi+1, . . . , xn) ≤ fj (x1, . . . , xi−1, b, xi+1, . . . , xn)

and negative if the second inequality is reversed.

Negative edges are denoted with circles or blunt arrows instead of traditional arrowheads.

Definition

A function fj : Fn → F is unate (or monotone) if every edge in the wiring diagram is either
positive or negative.
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Wiring diagrams in Boolean networks

A positive edge xi xj represents a situation where i activates j .

Examples.

fj = xi ∧ y : 0 = fj (xi = 0, y) ≤ fj (xi = 1, y) ≤ 1.

fj = xi ∨ y : 0 ≤ fj (xi = 0, y) ≤ fj (xi = 1, y) = 1.

A negative edge xi xj represents a situation where i inhibits j .

Examples.

fj = xi ∧ y : 1 ≥ fj (xi = 0, y) ≥ fj (xi = 1, y) = 0.

fj = xi ∨ y : 1 = fj (xi = 0, y) ≥ fj (xi = 1, y) ≥ 0.

Occasionally, edges are neither positive nor negative:

Example. (The logical “XOR” function):

fj = (xi ∧ y) ∨ (xi ∧ y):
0 = fj (x1 = 0, y = 0) < fj (x1 = 1, y = 0) = 1

1 = fj (x1 = 0, y = 1) > fj (x1 = 1, y = 1) = 0

Most edges in Boolean network models are either positive or negative because most
biological interactions are either simple activations or inhibitions.
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Enumerating Boolean networks

Motivating question

Recall our 9-node Boolean network model of the lac operon. For all 4 initial conditions
(Ge , Le ) ∈ F2

2, the phase space had exactly 1 fixed point that made biological sense.

What are the chances that this would have happened purely by coincidence?

To answer this, we need to count the number of Boolean networks, as well as those that
have just that one fixed point.

Recall

Every graph G = (Fn,E) with uniform out-degree 1 is the phase space of some local model
(f1, . . . , fn) over F.

Corollary

Start with a phase space with vertex set Fn
2. Remove k edges. There are exactly 2nk local

models that “fit this data”.

Proof

The tail of each “missing edge” is a state x ∈ Fn
2, and there are 2n possibile destinations

x → y when replacing it. �
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An example

Exercise (easy)

How many Boolean networks contain the 4-cycle 000→ 101→ 111→ 010→ 000 in their
phase space?

We saw one of these earlier:

010 000

111 101

110

011

100

001

Synchronous phase space

f1 = x2

f2 = x1 ∧ x3

f3 = x2
1

2

3

Functions Wiring diagram

Suppose we remove all of the “dashed edges.” Then we can replace each one 8 different
ways. Thus, there are 84 = 4096 possibilities.

Exercise (harder)

How many Boolean networks contain a 4-cycle in their phase space? What if we require that
there is additionally only one connected component?
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Counting local models

Theorem

There are q(nqn) local models on n nodes. Of these:

(a) qn! have a phase space consisting of a length-qn chain of transient points.

(b) qn! are invertible (i.e., have no transient points).

(c) (qn − 1)! are invertible with a phase space consisting of a single cycle.

(d) (qn − 1)qn
have no fixed points.

(e) (qn)qn−1 have a single connected component and fixed point.

(f) (qn + 1)qn−1 have only fixed points (i.e., no longer periodic cycles).

As an example, the number of Boolean networks (that is, q = 2) on n nodes with various
properties is shown below.

n = 2 n = 3 n = 4 n = 5 n = 6
total BNs 256 1.678× 107 1.845× 1019 1.462× 1048 3.940× 10115

invertible 24 40320 2.092× 1013 2.631× 1035 1.269× 1089

single big cycle 6 5040 1.308× 1012 8.223× 1033 1.983× 1087

no fixed points 81 5.765× 106 6.568× 1018 5.291× 1047 1.438× 10115

1 component & f.p. 64 2.097× 106 1.153× 1018 4.567× 1046 6.157× 10113

only fixed points 125 4.782× 106 2.862× 1018 1.189× 1047 1.635× 10114
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Counting local models
Theorem

There are q(nqn) local models on n nodes. Of these:

(a) qn! have a phase space consisting of a length-qn chain of transient points.

(b) qn! are invertible (i.e., have no transient points).

(c) (qn − 1)! are invertible with a phase space consisting of a single cycle.

(d) (qn − 1)qn
have no fixed points.

(e) (qn)qn−1 have a single connected component and fixed point.

(f) (qn + 1)qn−1 have only fixed points (i.e., no longer periodic cycles).

Proof (sketch)

(a)–(d) are elementary counting arguments.

(e) is just the number labeled rooted trees on qn nodes.

For (f), use a bijection between phase spaces and labeled unrooted trees on qn + 1 nodes. �

Cayley’s formula (and corollaries)

#
{

labeled unrooted trees on n nodes
}

= nn−2.

#
{

labeled rooted trees on n nodes
}

= nn−1.

The number of labeled forests on n labeled vertices is (n + 1)n−1.
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Back to the lac operon

Motivating question

Recall our 9-node Boolean network model of the lac operon. For all 4 initial conditions
(Ge , Le ) ∈ F2

2, the phase space had exactly 1 fixed point that made biological sense.

What are the chances that this would have happened purely by coincidence?

There are (29)(29) = 512512 ≈ 1.400× 101387 Boolean networks on 9 nodes.

Of these, (29)29−1 = 512511 ≈ 2.735× 101384 have a single component and fixed point.

Of these, (29)29−2 = 512510 ≈ 5.342× 101381 have the “correct” fixed point.

In other words, 1 in 262,141 Boolean networks on n nodes have this property.

Thus, the probability that each (Ge , Le ) ∈ F2
2 would yield such a phase space purely by

chance is approximately (
1

262,141

)4

≈ 2.118× 10−22.
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