
Modeling of the lac
operon in E. coli

Matthew Macauley
Clemson University

Gene expression
� Gene expression is a process that takes gene info and creates a functional gene

product (e.g., a protein).

� Gene Expression is a 2-step process:
1) transcription of genes (messenger RNA synthesis)

2) translation of genes (protein synthesis)

� DNA consists of bases A, C, G, T.

� RNA consists of bases A, C, G, U.

� Proteins are long chains of amino acids.

� Gene expression is used by all known life forms.

Transcription

• Transcription occurs inside the cell nucleus.
• A helicase enzyme binds to and “unzips” DNA to read it.
• DNA is copied into mRNA.
• Segments of RNA not needed for protein coding are removed.

Translation

• During translation, the mRNA is read by ribosomes.
• Each triple of RNA bases codes for an amino acid.
• The result is a protein: a long chain of amino acids.
• Proteins fold into a 3-D shape which determine their function

Gene expression
� The expression level is the rate at which a gene is being expressed.

� Housekeeping genes are continuously expressed, as they are essential
for basic life processes.

� Regulated genes are expressed only under certain outside factors
(environmental, physiological, etc.). Expression is controlled by the
cell.

� It is easiest to control gene regulation by affecting transcription.

� One way to block transcription is for repressor proteins bind to the
DNA or RNA.

� Goal: Understand the complex cell behaviors of gene regulation,
which is the process of turning on/off certain genes depending on the
requirements of the organism.

The lac operon in E. coli
� An operon is a region of DNA that contains a cluster of genes that are

transcribed together.

� Escherichia coli is a bacterium in the gut of mammals and birds. Its genome
has been sequenced and its physiology is well-understood.

� The lactose (lac) operon controls the transport and metabolism of lactose in E.
coli.

� The lac operon was discovered by Francois Jacob and Jacques Monod in
1961, which earned them the Nobel Prize.

� The lac operon was the first operon discovered and is the most widely studied
mechanism of gene regulation.

� The lac operon is used as a “test system” for models of gene regulation.

� DNA replication and gene expression were all studied in E. coli before they
were studied in eukaryotic cells.

Lactose and β−galactosidase
� When a host consumes milk, E. coli is exposed to lactose (milk sugar).

� Lactose consists of one glucose sugar linked to one galactose sugar.

� If both glucose and lactose are available, then glucose is the preferred energy
source.

� Before lactose can be used as energy, the β−galactosidase enzyme is needed
to break it down.

� β−galactosidase is encoded by the LacZ gene on the lac operon.

� β−galactosidase also catalyzes lactose into allolactose.

Transporter protein
� To bring lactose into the cell, a transport protein, called lac permease, is

required.

� This protein is encoded by the LacY gene on the lac operon.

� If lactose is not present, then neither of the following are produced:
1) β−galactosidase (LacZ gene)

2) lac permease (LacY gene)

� In this case, the lac operon is OFF.

The lac operon

with lactose and no glucose

� Lactose is brought into the cell by the lac permease transporter protein

� β−galactosidase breaks up lactose into glucose and galactose..

� β−galactosidase also converts lactose into allolactose.

� Allolactose binds to the lac repressor protein, preventing it from binding to the
operator region of the genome.

� Transcription begins: mRNA encoding the lac genes is produced.

� Lac proteins are produced, and more lactose is brought into the cell. (The
operon is ON.)

� Eventually, all lactose is used up, so there will be no more allolactose.

� The lac repressor can now bind to the operator, so mRNA transcription stops.
(The operon has turned itself OFF.)

An ODE lac operon model
� M: mRNA

� B: β−galactosidase

� A: allolactose

� P: transporter protein

� L: lactose

Downsides of an ODE model
� Very mathematically technical.

� Too hard to solve explicitly. Numerical methods are needed.

� MANY experimentally determined “rate constants” (I count 22…)

� Often, these rate constants aren’t known even up to orders of magnitude.

A Boolean approach
� Let’s assume everything is “Boolean” (0 or 1):

o Gene products are either present or absent

o Enzyme concentrations are either high or low.

o The operon is either ON or OFF.

� mRNA is transcribed (M=1) if there is no external glucose (G=0), and either
internal lactose (L=1) or external lactose (Le=1) are present.

� The LacY and LacZ gene products (E=1) will be produced if mRNA is
available (M=1).

� Lactose will be present in the cell if there is no external glucose (Ge=0), and
either of the following holds:

ü External lactose is present (Le=1) and lac permease (E=1) is available.

ü Internal lactose is present (L=1), but β−galactosidase is absent (E=0).

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le)

xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))⎡
⎣

⎤
⎦

Comments on the Boolean model
� We have two “types” of Boolean quantities:

o mRNA (M), lac gene products (E), and internal lactose (L) are variables.

o External glucose (Ge) and lactose (Le) are parameters (constants).

� Variables and parameters are drawn as nodes.

� Interactions can be drawn as signed edges.

� A signed graph called the wiring diagram describes the
dependencies of the variables.

� Time is discrete: t = 0, 1, 2, ….

� Assume that the variables are updated synchronously.

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le)
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))⎡
⎣

⎤
⎦

How to analyze a Boolean model
� At the bare minimum, we should expect:

o Lactose absent => operon OFF.

o Lactose present, glucose absent => operon ON.

o Lactose and glucose present => operon OFF.

� The state space (or phase space) is the directed graph (V, T), where

� We’ll draw the state space for all four choices of the parameters:

o (Le, Ge) = (0, 0). We hope to end up in a fixed point (0,0,0).

o (Le, Ge) = (0, 1). We hope to end up in a fixed point (0,0,0).

o (Le, Ge) = (1, 0). We hope to end up in a fixed point (1,1,1).

o (Le, Ge) = (1, 1). We hope to end up in a fixed point (0,0,0).

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le)
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

T = (x, f (x)) : x ∈V{ }V = (xM , xE, xL) : xi ∈ {0,1}{ }

How to analyze a Boolean model
� We can plot the state space using the ”Cyclone” software package: at

http://cyclone.algorun.org/.

� First, we need to convert our logical functions into polynomials.

� Here is the relationship between Boolean logic and polynomial algebra:

Boolean operations logical form polynomial form

o AND

o OR

o NOT

• Also, everything is modulo 2, so 1+1=0, and 1=-1, and x2=x, and thus
x(x+1)=0.

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le)
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

z = x∧ y
z = x∨ y
z = x

z = xy
z = x + y+ xy
z =1+ x

http://cyclone.algorun.org/

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le)
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le)
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (0, 1). The operon is ON.

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le)
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (0, 0).

The operon is OFF.

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le)
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (1, 0). The operon is OFF.

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le)
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (1, 1). The operon is OFF.

Summary so far
� Gene regulatory networks consist of a collection of gene products that interact

with each other to control a specific cell function.

� Classically, these have been modeled quantitatively with differential equations
(continuous models).

� Boolean networks take a different approach. They are discrete models that are
inherently qualitative.

� The state space graph encodes all of the dynamics. The most important
features are the fixed points, and a necessary step in model validation is to
check that they are biologically meaningful.

� The model of the lac operon shown here is a “toy model”. Next, we will see
more complicated models of the lac operon that capture intricate biological
features of these systems.

� Modeling with Boolean logic is a relatively new concept, first done in the
1970s. It is a popular research topic in the field of systems biology.

A more refined model

� Our first model only used 3 variables: mRNA (M), enzymes (E), and lactose (L).

� Let’s propose a new model with 5 variables:

� M: mRNA

� B: β−galactosidase

� A: allolactose

� L: intracellular lactose

� P: lac permease (transporter protein)

� Assumptions
� Extracellular lactose is always available.

� Extracellular glucose is always unavailable.

� Translation and transcription require one unit of time.

� Protein and mRNA degradation require one unit of time

� Lactose metabolism require one unit of time

fM = A
fB =M
fA = A∨(L∧B)

fL = P∨(L∧B)
fP =M

Using Cyclone to compute the state space
fM = A
fB =M
fA = A∨(L∧B)

fL = P∨(L∧B)
fP =M

Problems with our refined model

� Model variables:

� M: mRNA

� B: β−galactosidase

� A: allolactose

� L: intracellular lactose

� P: lac permease (transporter protein)

� Problems:

� The fixed point (M,B,A,L,P) = (0,0,0,0,0) should not happen with lactose
present but not glucose. [though let’s try to justify this...]

� The fixed point (M,B,A,L,P) = (0,0,0,1,0) is not biologically feasible: it would
describe a scenario where the bacterium does not metabolize intracellular
lactose.

� Conclusion: The model fails the initial testing and validation, and is in need of
modification. (Homework!)

fM = A
fB =M
fA = A∨(L∧B)

fL = P∨(L∧B)
fP =M

Catabolite repression

� We haven’t yet discussed the cellular mechanism that turns the lac operon
OFF when both glucose and lactose are present. This is done by catabolite
repression.

� The lac operon promoter region has 2 binding sites:
� One for RNA polymerase (this “unzips” and reads the DNA)

� One for the CAP-cAMP complex. This is a complex of two molecules: catabolite
activator protein (CAP), and the cyclic AMP receptor protein (cAMP, or crp).

� Binding of the CAP-cAMP complex is required for transcription for the lac
operon.

� Intracellular glucose causes the cAMP concentration to decrease.

� When cAMP levels get too low, so do CAP-cAMP complex levels.

� Without the CAP-cAMP complex, the promoter is inactivated, and the lac
operon is OFF.

Lac operon gene regulatory network

A more refined model
� Variables:

� M: mRNA

� P: lac permease

� B: β−galactosidase

� C: catabolite activator protein (CAP)

� R: repressor protein (LacI)

� A: high allolactose

� Am: at least med. allolactose

� L: high (intracellular) lactose

� Lm: at least med. levels of lactose

� Assumptions:

� Transcription and translation require 1 unit of time.

� Degradation of all mRNA and proteins occur in 1 time-step.

� High levels of lactose or allolactose at any time t imply (at least) medium
levels for the next time-step t+1.

fM = R∧C
fP =M
fB =M

fC =Ge

fR = A∧Am
fA = L∧B
fAm = A∨L∨Lm
fL =Ge ∧P∧Le
fLm =Ge ∧(L∨Le)

A more refined model
� This 9-variable model is about as big of a state space that can be

rendered.

� Here’s a sample piece of the state space:

fM = R∧C
fP =M
fB =M

fC =Ge

fR = A∧Am
fA = L∧B
fAm = A∨L∨Lm
fL =Ge ∧P∧Le
fLm =Ge ∧(L∨Le)

What if the state space is too big?
� The previous 9-variable model is about as big as Cyclone can handle.

� However, many gene regulatory networks are much bigger.

� A Boolean network model (2006) of T helper cell differentiation
has 23 nodes, and thus a state space of size 223 = 8,388,608.

� A Boolean network model (2003) of the segment polarity genes in
Drosophila melanogaster (fruit fly) has 60 nodes, and a state
space of size 260 ≈1.15 × 1018.

� There are many more examples…

� For these systems, we need to be able to analyze them without
constructing the entire state space.

� Our first goal is to find the fixed points. This amounts to solving a
system of equations:

fM = R∧C
fP =M
fB =M

fC =Ge

fR = A∧Am
fA = L∧B
fAm = A∨L∨Lm
fL =Ge ∧P∧Le
fLm =Ge ∧(L∨Le)

fx 1 = x 1
fx 2 = x 2
!

fx n = x n

!

"

#
#

$

#
#

How to find the fixed points
� Let’s rename variables:

� Writing each function in polynomial form, and then for each i=1,…,9
yields the following system:

� We need to solve this for all 4 combinations:

fM = R∧C =M
fP =M = P
fB =M = B

fC =Ge =C

fR = A∧Am = R
fA = L∧B = A
fAm = A∨L∨Lm = Am
fL =Ge ∧P∧Le = L

fLm =Ge ∧(L∨Le) = Lm

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

(M,P,B,C,R,A,Am,L,Lm) = (x1, x2, x3, x4, x5, x6, x7, x8, x9)

fxi = xi

(Ge,Le) = (0, 0), (0,1), (1, 0), (1,1)

How to find the fixed points with Macaulay2
� Let’s first consider the case when

� We can solve the system by typing the following commands into Macaulay2
an open-source software package for computational algebraic geometry:

�

𝐺#, 𝐿# = 0,1

What does this code mean?
The output of G = Gens gb I; is the following:

|x9+1, x8+1, x7+1, x6+1, x5, x4+1, x3+1, x2+1, x1+1|

This is short-hand for the following system of equations:

This simple system has the same set of solutions as the much more complicated system
we started with:

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

𝑥* + 1 = 0, 𝑥, + 1 = 0, … , 𝑥. + 1 = 0, 𝑥/ = 0, 𝑥0 + 1 = 0, … , 𝑥1 + 1 = 0

What does a Gröbner basis tell us?
The output of G = Gens gb I; is the following:

|x9+1, x8+1, x7+1, x6+1, x5, x4+1, x3+1, x2+1, x1+1|

This is short-hand for the following system of equations:

This simple system has the same set of solutions as the much more complicated system
we started with:

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

𝑥* + 1 = 0, 𝑥, + 1 = 0, … , 𝑥. + 1 = 0, 𝑥/ = 0, 𝑥0 + 1 = 0, … , 𝑥1 + 1 = 0

How to find the fixed points with Sage
� Let’s first consider the case when

� We can solve the system by typing the following commands into Sage the
free open-source mathematical software.

� Here, we did not take the quotient ideal, but we still could have.

�

(Ge,Le) = (1,1)

What those Sage commands mean
Let’s go over what the following commands mean:

Ø P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> =
PolynomialRing(GF(2),9,order=‘lex’);

§ Define P to be the polynomial ring over 9 variables, x1,…,x9.

§ GF(2)={0,1} because the coefficients are binary.

§ order=‘lex’ specifies a monomial order. More on this later.

Ø Le=1; Ge=1; print "Le =", Le; print "Ge =", Ge;

§ This defines two constants and prints them.

Ø I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1,
x6+x3*x8, x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2,
x9+(Ge+1)*(Le+x8+Le*x8)); I

§ Defines I to be the ideal generated by those following 9 polynomials, i.e.,

Ø B = I.groebner_basis(); B

§ Define B to be the Gröbner basis of I w.r.t. the lex monomial order. (More on
this later)

(Ge,Le) = (1,1)

I = p1 f1 +!+ pk fk : pk ∈ P{ }

Gröbner bases vs. Gaussian elimination
² Gröbner bases are a generalization of Gaussian elimination, but for

systems of polynomials (instead of systems of linear equations)

² In both cases:
§ The input is a complicated system that we wish to solve.

§ The output is a simple system that we can easily solve by inspection.

² Consider the following example:
§ Input: The 2x2 system of linear equations

§ Gaussian elimination yields the following:

§ This is just the much simpler system

with the same solution!

1 2
3 8

1
1

!

"
#
#

$

%
&
&
→ 1 2

0 2
1
−2

!

"
#
#

$

%
&
&
→ 1 0

0 2
3
−2

!

"
#
#

$

%
&
&
→ 1 0

0 1
3
−1

!

"
#
#

$

%
&
&

x + 2y =1
3x +8y =1

!
"
#

$#

x + 0y = 3
0x + y = −1

"
#
$

%$

Back-substitution & Gaussian elimination

² We don’t necessarily need to do Gaussian elimination until the matrix is
the identity. As long as it is upper-triangular, we can back-substitute and
solve by hand.

² For example:

² Similarly, when Sage outputs a Gröbner basis, it will be in “upper-triangular
form”, and we can solve the system easily by back-substituting.

² We’ll do an example right away. For this part of the class, you can think of
Gröbner bases as a mysterious “black box” that does what we want.

² We’ll study them in more detail shortly, and understand what’s going on behind
the scenes.

x + z = 2
y− z = 8
0 = 0

"

#
$

%
$
$

Gröbner bases: an example

² Let’s use Sage to solve the following system:

² From this, we get an “upper-triangular” system:

² This is something we can solve by hand.

x2 + y2 + z2 =1

x2 − y+z2 = 0
x − z = 0

"

#
$$

%
$
$

x − z = 0

y− 2z2 = 0

z4 + .5z2 −.25= 0

"

#
$$

%
$
$

Gröbner bases: an example (cont.)

² To solve the reduced system:

§ Solve for z in Eq. 3:

§ Plug z into Eq. 2 and solve for y:

§ Plug y & z into Eq. 1 and solve for x:

² Thus, we get 2 solutions to the original system:

x − z = 0

y− 2z2 = 0

z4 + .5z2 −.25= 0

"

#
$$

%
$
$z = ± −1+ 5

4

y = 2z2 = −1+ 5
2

x = z = ± −1+ 5
4 x2 + y2 + z2 =1

x2 − y+z2 = 0
x − z = 0

"

#
$$

%
$
$

(x1, y1, z1) =
−1+ 5
4

, −1+ 5
2

, −1+ 5
4

"

#
$
$

%

&
'
' (x2, y2, z2) = −

−1+ 5
4

, −1+ 5
2

,− −1+ 5
4

"

#
$
$

%

&
'
'

Returning to the lac operon
� We have 9 variables:

� Writing each function in polynomial form, we need to solve the system
for each i=1,…,9, which is the following:

� We need to solve this for all 4 combinations:
(we already did (1,1)).

fM = R∧C =M
fP =M = P
fB =M = B

fC =Ge =C

fR = A∧Am = R
fA = L∧B = A
fAm = A∨L∨Lm = Am
fL =Ge ∧P∧Le = Am
fLm =Ge ∧(L∨Le) = Lm

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

(M,P,B,C,R,A,Am,L,Lm) = (x1, x2, x3, x4, x5, x6, x7, x8, x9)

fxi = xi

(Ge,Le) = (0, 0), (0,1), (1, 0), (1,1)

Returning to the lac operon
� Again, we use variables

and parameters

� Here is the output from Sage:

�

(M,P,B,C,R,A,Am,L,Lm) = (x1, x2, x3, x4, x5, x6, x7, x8, x9)

(Ge,Le) = (0, 0)

(M,P,B,C,R,A,Am,L,Lm) = (x1, x2, x3, x4, x5, x6, x7, x8, x9) = (0, 0, 0,1,1, 0, 0, 0, 0)

Returning to the lac operon
� Again, we use variables

and parameters

� Here is the output from Sage:

�

(M,P,B,C,R,A,Am,L,Lm) = (x1, x2, x3, x4, x5, x6, x7, x8, x9)

(Ge,Le) = (1, 0)

(M,P,B,C,R,A,Am,L,Lm) = (x1, x2, x3, x4, x5, x6, x7, x8, x9) = (0, 0, 0, 0,1, 0, 0, 0, 0)

Returning to the lac operon
� Again, we use variables

and parameters

� Here is the output from Sage:

�

(M,P,B,C,R,A,Am,L,Lm) = (x1, x2, x3, x4, x5, x6, x7, x8, x9)

(Ge,Le) = (0,1)

(M,P,B,C,R,A,Am,L,Lm) = (x1, x2, x3, x4, x5, x6, x7, x8, x9) = (1,1,1,1, 0,1,1,1,1)

Fixed point analysis of the lac operon
Using the variables

we got the following fixed points for each choice of parameters

� Input:

Fixed point:

� Input:

Fixed point:

� Input:

Fixed point:

� Input:

Fixed point:

All of these fixed points make biological sense!

(M,P,B,C,R,A,Am,L,Lm) = (x1, x2, x3, x4, x5, x6, x7, x8, x9)

(Ge,Le)

(x1, x2, x3, x4, x5, x6, x7, x8, x9) = (1,1,1,1, 0,1,1,1,1)

(Ge,Le) = (0, 0)

(Ge,Le) = (1, 0)

(Ge,Le) = (1,1)

(Ge,Le) = (0,1)

(x1, x2, x3, x4, x5, x6, x7, x8, x9) = (0, 0, 0, 0,1, 0, 0, 0, 0)

(x1, x2, x3, x4, x5, x6, x7, x8, x9) = (0, 0, 0,1,1, 0, 0, 0, 0)

(x1, x2, x3, x4, x5, x6, x7, x8, x9) = (0, 0, 0, 0,1, 0, 0, 0, 0)

