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Gene expression

® (Gene expression is a process that takes gene info and creates a functional gene
product (e.g., a protein).

® Gene Expression is a 2-step process:

1) transcription of genes (messenger RNA synthesis)
The Central Dogma
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2) translation of genes (protein synthesis)

® DNA consists of bases A, C, G, T. DNA
e RNA consists of bases A, C, G, U.
W A W A U
® Proteins are long chains of amino acids. RNA
Translation:
the synthesis

® Gene expression is used by all known life forms. b talrilpentids

specified by an
MRNA |

Protein




Transcription

Nontemplate strand
RNA polymerase \ e

| Ribonucleotide
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Direction of transcription

« Transcription occurs inside the cell nucleus.
* A helicase enzyme binds to and “unzips” DNA to read it.
 DNA is copied into mRNA.

« Segments of RNA not needed for protein coding are removed.




Translation
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« During translation, the mRNA is read by ribosomes.
« Each triple of RNA bases codes for an amino acid.
 The result is a protein: a long chain of amino aC|ds
ins fold into a 3-D shape which determin




Gene expression

The expression level is the rate at which a gene is being expressed.

Housekeeping genes are continuously expressed, as they are essential
for basic life processes.

Regulated genes are expressed only under certain outside factors
(environmental, physiological, etc.). Expression is controlled by the
cell.

It is easiest to control gene regulation by affecting transcription.

One way to block transcription is for repressor proteins bind to the
DNA or RNA.

Goal: Understand the complex cell behaviors of gene regulation,
which is the process of turning on/off certain genes depending on the
requirements of the organism.




The lac operon In E. coli

An operon is a region of DNA that contains a cluster of genes that are
transcribed together.

Escherichia coli is a bacterium in the gut of mammals and birds. Its genome
has been sequenced and its physiology is well-understood.

The lactose (lac) operon controls the transport and metabolism of lactose in E.
coll.

The lac operon was discovered by Francois Jacob and Jacques Monod in
1961, which earned them the Nobel Prize.

The lac operon was the first operon discovered and is the most widely studied
mechanism of gene regulation.

The lac operon is used as a “test system” for models of gene regulation.

DNA replication and gene expression were all studied in E. coli before they
studied in eukaryotic cells. :

e



Lactose and B—galactosidase

When a host consumes milk, E. coli is exposed to lactose (milk sugar).
Lactose consists of one glucose sugar linked to one galactose sugar.

If both glucose and lactose are available, then glucose is the preferred energy
source.

Before lactose can be used as energy, the B—galactosidase enzyme is needed
to break it down.

B—galactosidase is encoded by the LacZ gene on the lac operon. Calactose
: : CH,OH
B—galactosidase also catalyzes lactose into allolactose.
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Transporter protein

To bring lactose into the cell, a transport protein, called lac permease, is
required.

This protein is encoded by the LacY gene on the lac operon.

If lactose is not present, then neither of the following are produced:
1) B—galactosidase (LacZ gene)

2) lac permease (LacY gene)

In this case, the lac operon is OFF.

Galactoside
permease

-

Lactose

\. Galactose

Plasma membrane




The lac operon
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with lactose and no glucose

Lactose is brought into the cell by the lac permease transporter protein
B—galactosidase breaks up lactose into glucose and galactose..
B—galactosidase also converts lactose into allolactose.

Allolactose binds to the lac repressor protein, preventing it from binding to the
operator region of the genome.

Transcription begins: mRNA encoding the /lac genes is produced.

Lac proteins are produced, and more lactose is brought into the cell. (The
operon is ON.)

Eventually, all lactose is used up, so there will be no more allolactose.

The lac repressor can now bind to the operator, so mRNA transcription stops.
(The operon has turned itself OFF.)
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An ODE /ac operon model
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Downsides of an ODE model

®* Very mathematically technical.

® Too hard to solve explicitly. Numerical methods are needed.

* MANY experimentally determined “rate constants” (I count 22...)

e Often, these rate constants aren’t known even up to orders of magnitude.
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A Boolean approach
Let’'s assume everything is “Boolean” (0 or 1): Q a

o Gene products are either present or absent

o Enzyme concentrations are either high or low.

o The operon is either ON or OFF.
\ 4

MRNA is transcribed (M=1) if there is no external glucose (G=0), and either
internal lactose (L=1) or external lactose (L.=1) are present.

x, (t+1)=f, (t+1)=G A(L(t)VL)
The LacY and LacZ gene products (E=1) will be produced if mRNA is
available (M=1).
x,(t+1) = f,(t+1)= M(t)

Lactose will be present in the cell if there is no external glucose (G.=0), and
either of the following holds:

v'  External lactose is present (L.=1) and /ac permease (E=1) is available.

v' Internal lactose is present (L=1), but p—galactosidase is absent (E=0).




Comments on the Boolean model

® We have two “types” of Boolean quantities:
o mMRNA (M), lac gene products (E), and internal lactose (L) are variables.

o External glucose (G,) and lactose (L.) are parameters (constants).

® Variables and parameters are drawn as nodes.

- )

® [nteractions can be drawn as signed edges.
» A signed graph called the wiring diagram describes the
dependencies of the variables.
e Timeisdiscrete:t=0,1, 2, .... e Q
x, (t+1)=f, (t+1)=G a(L()VL)
X (t+1) = f(t+1) =M (1) \_ /
x, (t+1) = f,(t+1)= G, A (L, AE@)V (L) A E(0)]

hat the variables are updated synchronously.




How to analyze a Boolean model

® At the bare minimum, we should expect: @ ™\

o Lactose absent => operon OFF.

o Lactose present, glucose absent => operon ON.

o Lactose and glucose present => operon OFF. a c

x, (t+1)=f, (t+1)=G A(L()VL)
X (t+D) = f.(t+1)=M (1) -

- - L ¥
x, (t+)=f,(t+1)=G, A [(Le AE@®) v (L(E) A E(t))]

® The state space (or phase space) is the directed graph (V, T), where
V={(xy,xz.x,):x, E{0,1}} T={(x,f(x):xEV}

e We'll draw the state space for all four choices of the parameters:
o (Le Go) = (0, 0). We hope to end up in a fixed point (0,0,0).
o (L, Ge) =(0, 1). We hope to end up in a fixed point (0,0,0).
- Ge) = (1, 0). We hope to end up in a fixed point (1,1,1).

to end up in




How to analyze a Boolean model

® We can plot the state space using the "Cyclone” software package: at
http://cyclone.algorun.org/.

® First, we need to convert our logical functions into polynomials.

x, (t+1)=f, (t+1)=G a(L({)VL)
xg(t+1)=fp(t+1)=M(t)

X (t+1)= £,(1+1)= G, A (L, AEO)V (LA ED))]

® Here is the relationship between Boolean logic and polynomial algebra:

Boolean operations logical form polynomial form
o AND Z=XAY =Xy
o OR Z=XVYy L=X+ Y+ XY
o NOT =X z=1+x

rything is modulo 2, so 1+1=0, and 1=-1, and x2=x, a



http://cyclone.algorun.org/

A LG@R UN Cyclone

Calculate Dynamics of a discrete dynamical system using exhaustive search E Reinhard Laubenbacher (PI)

. 3 3 Center for Quantitative Medicine
More Information: https://github.com/PlantSimLab/cyclone

Packaged by: Abdelrahman Hosny

x, (t+1)=f, t+1)=G a(L({)VL)
X (t+1) = f,(t+1) = M(t)

x,(t+1)= f,(t+1)=G, A|(L, AE(0) v (L(1) AE(1))

input output visualization
1 MODEL NAME: 3-variable lac operon model digraph test {
2 SIMULATION NAME: Lactose but not glucose node® [label=" 0 0
3 NUMBER OF VARIABLES: 3 nodel [label=" 0 O
4 VARIABLE NAMES: x1 x2 x3 node2 [label=" 0 1
5 NUMBER OF STATES: 2 2 2 node3 [label=" 0 1
6 SPEED OF VARIABLES: 111 node4 [label=" 1 0@
7 node5 [label=" 1 0@
8§ fl=1 node6 [label=" 1 1
9 f2 =x1 node7 [label=" 1 1
10 f3 = x2 + x3 + x2*x3 node® node®

nodel node5
node2 nodel
node3 node5
node4 node2
node5 node?7
node6 node3
node?7 node?

}




A LG@-R U N Cyclone Run About Web API Help

Calculate Dynamics of a discrete dynamical system using exhaustive search Reinhard Laubenbacher (PIl)
Center for Quantitative Medicine

More Information: https://github.com/PlantSimLab/cyclone

x, (t+1)=f, (t+1)=G a(L()VL)
X (t+D) = f.(t+1)=M (1)

x, (t+1)= f,(t+1)= G, A (L, AE@)V (L) A E(D)]




A LG@-R U N Cyclone Run About Web API Help

Calculate Dynamics of a discrete dynamical system using exhaustive search Reinhard Laubenbacher (Pl)
Center for Quantitative Medicine

More Information: https://github.com/PlantSimLab/cyclone

00Dy, (1+D)=f,(1+1)=G, A(L()VL)
xp(t+1) = f,(r+1)= M(1)
D x, (t+1)= £, (t+1) =G, A (L A E@) v (L) AE(D) ]

State space when (G, L.) = (O, 0).

@ o The operon is OFF.




A LG@-R U N Cyclone Run About Web API Help

Cyclone Authors

Calculate Dynamics of a discrete dynamical system using exhaustive search E Reinhard Laubenbacher (Pl)

Center for Quantitative Medicine

More Information: https://github.com/PlantSimLab/cyclone

Packaged by: Abdelrahman Hosny

x, (t+1)=f, (t+1)=G a(L()VL)
xp(t+1)= fo(t+1)= M(2)
x, (t+1)= f,(t+1)= G, A (L, AE@)V (L) A E(D)]




A LG@-R U N Cyclone Run About Web API Help

Cyclone Authors

Calculate Dynamics of a discrete dynamical system using exhaustive search E Reinhard Laubenbacher (Pl)

Center for Quantitative Medicine

More Information: https://github.com/PlantSimLab/cyclone

Packaged by: Abdelrahman Hosny

x, (t+1)=f, (t+1)=G a(L()VL)
x,(t+1) = £, (t+1)= M(7)
x, (t+1) = f,(t+1)=G, A [(Le AE(D))V (L) A %)]

<>




Summary so far

Gene regulatory networks consist of a collection of gene products that interact
with each other to control a specific cell function.

Classically, these have been modeled quantitatively with differential equations
(continuous models).

Boolean networks take a different approach. They are discrete models that are
inherently qualitative.

The state space graph encodes all of the dynamics. The most important
features are the fixed points, and a necessary step in model validation is to
check that they are biologically meaningful.

The model of the lac operon shown here is a “toy model”. Next, we will see
more complicated models of the /ac operon that capture intricate biological
features of these systems.

Modeling with Boolean logic is a relatively new concept, first done in the
s. It is a popular research topic in the field of systems biology.



A more refined model

® Qur first model only used 3 variables: mRNA (M), enzymes (E), and lactose (L).

® |et's propose a new model with 5 variables:

e M: mRNA Ju=A
e B: B—galactosidase fe=M
e A: allolactose fa=AV(LAB)
¢ L. intracellular lactose f,=Pv(LAB)
® P: /ac permease (transporter protein) fr=M

® Assumptions
e Extracellular lactose is always available.
e Extracellular glucose is always unavailable.
e TJranslation and transcription require one unit of time.
e Protein and mRNA degradation require one unit of time
e | actose metabolism require one unit of time

A_\-




Using Cyclone to compute the state space

fM =A input
1 MODEL NAME: lac-operon
fa=M 2 SIMULATION NAME: siml
3 NUMBER OF VARIABLES: 5
fa=Av(LAB) 4 VARIABLE NAMES: MB A L P
— 5 NUMBER OF STATES: 222 2 2
f,=PVv(LAB) 6 SPEED OF VARIABLES: 11111
7
fr=M 8 fl=A
9 f2=M
10 3 = B*A*L + B*L + A
11 f4 = B*¥L*P + B*L + L*P + L + P
12 f5 =M

\

01011 11010 11011 @ 01110 00100
\ /  J

(1111 33




Problems with our refined model

Model variables:

e M: mRNA

® B: B—galactosidase

e A: allolactose

® |: intracellular lactose

® P: /ac permease (transporter protein)
Problems:

fM=A
Je=M
fi=Av(LAB)
f,=PVv(LAB)
fP=M

The fixed point (M,B,A,L,P) = (0,0,0,0,0) should not happen with lactose
present but not glucose. [though let’s try to justify this...]

The fixed point (M,B,A,L,P) = (0,0,0,1,0) is not biologically feasible: it would
describe a scenario where the bacterium does not metabolize intracellular
lactose.

Conclusion: The model fails the initial testing and validation, and is in need of

modification. (Homework!)



Catabolite repression

We haven’t yet discussed the cellular mechanism that turns the /ac operon
OFF when both glucose and lactose are present. This is done by catabolite

repression.

The lac operon promoter region has 2 binding sites:
e One for RNA polymerase (this “unzips” and reads the DNA)

e One for the CAP-cAMP complex. This is a complex of two molecules: catabolite
activator protein (CAP), and the cyclic AMP receptor protein (CAMP, or crp).

Binding of the CAP-cAMP complex is required for transcription for the lac
operon.

Intracellular glucose causes the cAMP concentration to decrease.

When cAMP levels get too low, so do CAP-cAMP complex levels.

Without the CAP-cAMP complex, the promoter is inactivated, and the /lac
operon is OFF. L




[Lac operon gene regulatory network

B /acP W lacZ lacY lacA W




A more refined model

® Variables:
e M: mRNA
® P: Jac permease
° B—galactosidase

catabolite activator protein (CAP)
repressor protein (Lacl)

high allolactose e
o A_: atleast med. allolactose

°
2o O W

® [: high (intracellular) lactose

o | . atleast med. levels of lactose

® Assumptions:
® Transcription and translation require 1 unit of time.
® Degradation of all mMRNA and proteins occur in 1 time-step.

® High levels of lactose or allolactose at any time t imply (at least) medium
levels for the next time-step t+1.




A more refined model f.=Rac

® This 9-variable model is about as big of a state space that can be f.=M
rendered. B

® Here's a sample piece of the state space: S

110101010 > ¢ 110101011 3 ¢ 110101100 3 ¢_ llelellel 3 ¢ 1101011le 5 ¢_ 110101111 _ -C_::llllOlO o
_————___ T— — T — _———————:-— ———— — e — e :
_____:_______M = — _ _ _ — — —
" 111100111 5(_" 11100110 5 ¢ 111101010 5 ¢ 111101011 111101110 3

— I __-—___ _‘:—T—— —— I— -—__?_ I —-_ o —




What if the state space is too big?

® The previous 9-variable model is about as big as Cyclone can handle. f,; =RAC

® However, many gene regulatory networks are much bigger.

® A Boolean network model (2006) of T helper cell differentiation
has 23 nodes, and thus a state space of size 223 = 8,388,608. f.=G

® A Boolean network model (2003) of the segment polarity genes in f ANA
Drosophila melanogaster (fruit fly) has 60 nodes, and a state s

space of size 260=1.15 x 1018, fi=LAB
® There are many more examples... f, =AVLVL,
® For these systems, we need to be able to analyze them without fi=G,APAL,
tructing the entire state space. ~
constr g P fLm -G A(LVL)

® Qur first goal is to find the fixed points. This amounts to solving a
system of equations: r
1,




How to find the fixed points

* Let's rename variables: (M,P,B,C,R,A,A, ,L,L )=(X,Xy,X;5,X;,X5,Xc,X7,Xg5Xg)

® Writing each function in polynomial form, and then fx-

= )Cl- for each i=1,....9
yields the following system: !

f,=RAC=M (X, +x,x.+x, =0

Jp=M=P x,+x,=0

Jy=M=8B x,+x,=0

f-=G,=C x,+(G, +1)=0

fR=ZAA_m=R JXs+x X +x,+x,+1=0

fo=LAB=A o a5, o0

Ja,=AVLVL, =A, XXX g+ X g+ X g X g+ X (X g+ X X g+ X X X9 =0
f,=G,APAL,=L xg+x,L,(G,+1)=0

fi =G ALVL)=L, |xsHG, +D(xg+x,L +L)=0

this for all 4 combinations: (G, L




How to find the fixed points with Macaulay?

® Let's first consider the case when (G,,L,) = (0,1)

®* We can solve the system by typing the following commands into Macaulay?2
an open-source software package for computational algebraic geometry:

-- Define a ring of polynomials in 9 variables.
R = 22/2[x1,x2,x3,x4,x5,%x6,x7,%x8,%x9];

-- Define a quotient ring, where each x_i"2 = x i.

I
Q

ideal(x1"2-x1, x2"2-x2, x3"2-x3, x4"2-x4, x5"2-x5, x6"2-x6, x7"2-x7, x8"2-x8, x9"2-x9);
R/ I;

-- Shortcut for AND and OR functions.

RingElement | RingElement :=(x,y)->x+y+x*y;
RingElement & RingElement :=(x,y)->x*y;

-- Set the parameters (constants).

Ge
Le

0_0
1.0

—- This is the 9-variable lac operon model.

fl = (1+x5) & x4;

f2 = x1;

£f3 = x1;

f4 = 1+Ge;

f5 = (1+x6) & (1+4x7);

f6 = x8 & x3;

£7 = x6 | x8 | x9;

f8 = (1+Ge) & x2 & Le;
f9 = (14+Ge) & (x8 | Le);

—- Compute the ideal to find the fixed point(s).
I = ideal(fl+x1l, f2+x2, £3+x3, f4+x4, £f5+x5, f6+x6, £7+x7, £8+x8, £9+x9)

-- Compute a Groebner basis.

G = gens gb I




What does this code mean?

The output of G = Gens gb I; is the following:

|Xx9+1, x8+1, x7+1, x6+1, xb, x4+1, x3+1, x2+1, x1+1 |
This is short-hand for the following system of equations:

X9+1=0,xg+1=0,..., x4 +1=0,x5=0,x3+1=0,...,x;+1=0

This simple system has the same set of solutions as the much more complicated system
we started with:

(X, +x,x+x, =0
x,+x,=0
x,+x;=0
x,+#(G,+1)=0

Xs+X X +x,+x,+1=0

J\\

Xet+x3%3 =0
XX ot X o b X o Xo X o+ X o X o X o Xig b Ko Xou=10
Xg+x,L (G, +1)=0




What does a Grobner basis tell us?

The output of G = Gens gb I; is the following:

|Xx9+1, x8+1, x7+1, x6+1, xb, x4+1, x3+1, x2+1, x1+1 |
This is short-hand for the following system of equations:

X9+1=0,xg+1=0,..., x4 +1=0,x5=0,x3+1=0,...,x;+1=0

This simple system has the same set of solutions as the much more complicated system
we started with:

(X, +x,x+x, =0
x,+x,=0
x,+x;=0
x,+#(G,+1)=0

Xs+X X +x,+x,+1=0

J\\

Xet+x3%3 =0
XX ot X o b X o Xo X o+ X o X o X o Xig b Ko Xou=10
Xg+x,L (G, +1)=0




How to find the fixed points with Sage

Let’s first consider the case when (G, ,L )= (1,1)

We can solve the system by typing the following commands into Sage the
free open-source mathematical software.

Here, we did not take the quotient ideal, but we still could have.

print "Le =", Le;_

print "Ge =", Ge;

Le
Ge

11 I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), x5+x6*x7+x6+x7+1, xX6+x3*x8,
X6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Get+l)*x2, x9+(Ge+l)*(Let+x8+Le*x8)); I

1

2 P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P

3 I Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
4

5 Le=1;_

6 Ge=1;_

7

8

9

1
1

12 Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*xX7 + x6 + X7 + 1, x3*x8 + x6, x6*x8*x9 +
X6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2

13 I
14 B = I.groebner basis(); B

15 I [x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9]




What those Sage commands mean

Let’s go over what the following commands mean:

» P.<x1,x2,x3,x4,%X5,x6,x7,%x8,%X9> =
PolynomialRing(GF(2),9,order='1lex’);

=  Define P to be the polynomial ring over 9 variables, x1,...,x9.
= GF(2)={0,1} because the coefficients are binary.
= order=‘lex’ specifies a monomial order. More on this later.

» Le=l; Ge=1l; print "Le =", Le; print "Ge =", Ge;
= This defines two constants (G,,L,)=(,1) and prints them.
» I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), xX5+xX6*x7+x6+x7+1,

X6+x3*x8, X6+xX7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le* (Ge+l)*x2,
X9+ (Ge+l)*(Le+x8+Le*x8)); I

= Defines | to be the ideal generated by those following 9 polynomials, i.e.,

I={pfi++pJ.:p EP}

= I.groebner basis(); B

be the Grobner basis of | w.r.t. the lex m



Grobner bases vs. Gaussian elimination

<~ Grobner bases are a generalization of Gaussian elimination, but for
systems of polynomials (instead of systems of linear equations)

< In both cases:

= The inputis a complicated system that we wish to solve.
= The output is a simple system that we can easily solve by inspection.

<> Consider the following example: I e 2v=]
= |nput: The 2x2 system of linear equations < Y
3x+8y=1
= (aussian elimination yields the following:
L2121 (|10} 3 |[_|10]|3
3 8|1 0 21| -2 0O 2| -2 0O 1| -1
= This is just the much simpler system x+0y=3

same solution!



Back-substitution & Gaussian elimination

We don’t necessarily need to do Gaussian elimination until the matrix is
the identity. As long as it is upper-triangular, we can back-substitute and
solve by hand.

-

X+

4
. V-2
0

Il
S oo N

For example:

Similarly, when Sage outputs a Grobner basis, it will be in “upper-triangular
form”, and we can solve the system easily by back-substituting.

We'll do an example right away. For this part of the class, you can think of
Grobner bases as a mysterious “black box” that does what we want.

We’ll study them in more detail shortly, and understand what’s going on behlnd
the scenes.




Grobner bases: an example

-

2 2, .2 _
< Let’s use Sage to solve the following system: Xy +z =1

x'-y+z7° =0

J/\\

x-z=0

17 P.<x,y,z>=PolynomialRing(RR,3,order="'lex"'); P
18 I Multivariate Polynomial Ring in x, y, z over Real Field with 53 bits of precision

19
20 I = ideal(x"2+y"2+z"2-1, x"2-y+2"2, x-2z); I

21 I Ideal (x"2 + y*"2 + z"2 - 1.00000000000000, x"2 -y + 272, x - z) of Multivariate Polynomial

Ring in x, y, z over Real Field with 53 bits of precision

22
23 B = I.groebner basis(); B

24 I [x -2, y - 2.00000000000000*%2z"2, z"4 + 0.500000000000000*%z"2 - 0.250000000000000]

< From this, we get an “upper-triangular” system:

ething we can solve by hand.



Grobner bases: an example (cont.)

x—-z=0
<> To solve the reduced system:
3 y—2z2 =0
~1++/5 4 2 mg_
= Solve for zin Eq. 3: Z=i\/ A i ' +.572°-25=0
5 ~1++/5
= Plugzinto Eq. 2 and solve fory: Y= 27" = >
oy — _1"'\/5 [ 2 2 2
= Plugy & zinto Eqg. 1 and solve for x: A=1== 4 X“+y +z° =1
2 2
<> Thus, we get 2 solutions to the original system: 1 X —y+z7 =0
x—-z=0

G R e e £ —1++/5 =1++/5
) ) 5 4 (xzayzaZ2)= ~ 4 ) s Al




Returning to the /lac operon

*  We have 9 variables: (M,P,B,C,R,A,A ,L,L )=(X,Xy,X;5,X;,Xs5,Xc,X7,Xg,Xg)

® Writing each function in polynomial form, we need to solve the system f — X
for each i=1,...,9, which is the following:
f,=RAC=M (X, +x,x.+x, =0
fP=M=P X1+X2=O
Js=M=8B x,+x,=0
fe=G,=C x,+G, +1)=0
fe=ArA,=R IXs+X X 4+X +x,+1=0
Ja=LAB=A Xo+x,%, =0
Ja,=AVLVL, =A, XXX g+ X g+ X g X g+ X (X g+ X X g+ X X X9 =0
f,=G,APAL,=A Xe+x, L (G,+1)=0
fi =G, A(LVL)=L, |xo+(G, +1)(xg+x,L,+L,)=0 »

this for all 4 combinations: (G,,L




Returning to the /ac operon
* Again, we use variables (M,P,B,C,R,A,A, ,L,L )=(X,Xy,X;5,X;,X5,Xc,X7,Xg5Xg)
and parameters (G,,L,) =(0,0)

® Here is the output from Sage:

1
2 P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P
3 I Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, x9 over Finite Field of size 2
4
5 Le=0;_
6 Ge=0;_
7 print "Le =", Le;_
8 print "Ge =", Ge;
9 Le = 0
Ge =0
10

11 I = ideal(x1l+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), x5+x6*x7+x6+x7+1, X6+x3*x8,
X6+x7+x8+x9+x8*x9+xX6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+l)*x2, x9+(Ge+l)*(Let+x8+Le*x8)); I

12 Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4 + 1, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + X6, x6*x8*x9 +
x6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x8 + x9) of Multivariate Polynomial Ring in x1, x2
, X3, x4, x5, X6, x7, X8, X9 over Finite Field of size 2

13

14 B = I.groebner basis(); B
15 I [x1, x2, x3, x4 + 1, x5 + 1, x6, x7, x8, x9]




Returning to the /ac operon
* Again, we use variables (M,P,B,C,R,A,A, ,L,L )=(X,Xy,X;5,X;,X5,Xc,X7,Xg5Xg)
and parameters  (G,,L,) = (1,0)

® Here is the output from Sage:

print "Le =", Le;_

print "Ge =", Ge;

1|

2 P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P

3 I Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, X9 over Finite Field of size 2
4

5 Le=0;_

6 Ge=l;__

7

8

9

Le = 0
Ge =1

11 I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), x5+x6*x7+x6+x7+1, X6+x3*x8,
X6+xX7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, xB+Le*(Ge+l)*x2, x9+(Ge+l)*(Let+x8+Le*x8)); I

12 Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 +
X6*x8 + x6*x9 + x6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
x3, x4, x5, x6, X7, X8, X9 over Finite Field of size 2

13
14 B = I.groebner basis(); B

15 I [x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9]




Returning to the /ac operon
* Again, we use variables (M,P,B,C,R,A,A, ,L,L )=(X,Xy,X;5,X;,X5,Xc,X7,Xg5Xg)
and parameters (G,,L,) = (0,1)

® Here is the output from Sage:

print "Le =", Le;
print "Ge =", Ge;

1

2 P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = PolynomialRing(GF(2), 9, order ='lex'); P

3 I Multivariate Polynomial Ring in x1, x2, x3, x4, x5, x6, x7, x8, X9 over Finite Field of size 2
4

5 Le=0;

6 Ge=1l;_

7

8

9

Le = 0
Ge 1

11 I = ideal(xl+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+l), x5+x6*x7+x6+x7+1, x6+x3*x8,
X6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le* (Ge+l)*x2, x9+(Ge+l)*(Le+x8+Le*x8)); I

12 Ideal (x1 + x4*x5 + x4, x1 + x2, x1 + x3, x4, x5 + x6*x7 + x6 + x7 + 1, x3*x8 + x6, x6*x8*x9 +
X6*x8 + xX6*x9 + X6 + x7 + x8*x9 + x8 + x9, x8, x9) of Multivariate Polynomial Ring in x1, x2,
x3, x4, x5, x6, x7, x8, X9 over Finite Field of size 2

13

14 B = I.groebner basis(); B
15 I [x1, x2, x3, x4, x5 + 1, x6, x7, x8, x9]




Fixed point analysis of the lac operon
Using the variables (M,P,B,C,R,A,A, ,L,L )= (X,X),X5,X,,X5,X¢,X7,Xg,Xg)

we got the following fixed points for each choice of parameters (Ge,Le)
® |nput: (GeaLe) = (090)

Fixed point: (X1, X5, X5, Xy, X5, X, X7, X5, X ) = (0,0,0,1,1,0,0,0,0)

© It (G,,L,) =(1,0)
Fixed point: (x19x2’x37x47x59x69x79x87x9) = (09070909190909070)

° Inputt (G,,L,)=(1,1)
Fixed point: (xl’xz’x3’x4’x5’x69x7’x8’x9)=(0’0’0’0’1’090’0’0)

« Input: (G,,L,)=(0,1)

Fixed point: — (X;,X,,X3,X,, X5, Xg,X7,Xg,%9) = (1,1,1,1,0,1,1,1,1)

fixed points make biological sense!




