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Gene expression
� Gene expression is a process that takes gene info and creates a functional gene 

product (e.g., a protein).

� Gene Expression is a 2-step process:
1) transcription of genes (messenger RNA synthesis)

2) translation of genes (protein synthesis)

� DNA consists of bases A, C, G, T.

� RNA consists of bases A, C, G, U.

� Proteins are long chains of amino acids.

� Gene expression is used by all known life forms. 



Transcription

• Transcription occurs inside the cell nucleus.
• A helicase enzyme binds to and “unzips” DNA to read it. 
• DNA is copied into mRNA.
• Segments of RNA not needed for protein coding are removed. 



Translation

• During translation, the mRNA is read by ribosomes. 
• Each triple of RNA bases codes for an amino acid.
• The result is a protein: a long chain of amino acids.
• Proteins fold into a 3-D shape which determine their function



Gene expression
� The expression level is the rate at which a gene is being expressed. 

� Housekeeping genes are continuously expressed, as they are essential 
for basic life processes.

� Regulated genes are expressed only under certain outside factors 
(environmental, physiological, etc.). Expression is controlled by the 
cell. 

� It is easiest to control gene regulation by affecting transcription. 

� One way to block transcription is for repressor proteins bind to the 
DNA or RNA. 

� Goal: Understand the complex cell behaviors of gene regulation, 
which is the process of turning on/off certain genes depending on the 
requirements of the organism. 



The lac operon in E. coli
� An operon is a region of DNA that contains a cluster of genes that are 

transcribed together.

� Escherichia coli is a bacterium in the gut of mammals and birds. Its genome 
has been sequenced and its physiology is well-understood.

� The lactose (lac) operon controls the transport and metabolism of lactose in E. 
coli.

� The lac operon was discovered by Francois Jacob and Jacques Monod in 
1961, which earned them the Nobel Prize.

� The lac operon was the first operon discovered and is the most widely studied 
mechanism of gene regulation.

� The lac operon is used as a “test system” for models of gene regulation. 

� DNA replication and gene expression were all studied in E. coli before they 
were studied in eukaryotic cells. 



Lactose and β−galactosidase
� When a host consumes milk, E. coli is exposed to lactose (milk sugar).

� Lactose consists of one glucose sugar linked to one galactose sugar.

� If both glucose and lactose are available, then glucose is the preferred energy 
source.

� Before lactose can be used as energy, the β−galactosidase enzyme is needed 
to break it down. 

� β−galactosidase is encoded by the LacZ gene on the lac operon.

� β−galactosidase also catalyzes lactose into allolactose. 



Transporter protein
� To bring lactose into the cell, a transport protein, called lac permease, is 

required.

� This protein is encoded by the LacY gene on the lac operon.

� If lactose is not present, then neither of the following are produced:
1) β−galactosidase (LacZ gene)

2) lac permease (LacY gene)

� In this case, the lac operon is OFF.



The lac operon



with lactose and no glucose

� Lactose is brought into the cell by the lac permease transporter protein

� β−galactosidase breaks up lactose into glucose and galactose..

� β−galactosidase also converts lactose into allolactose.

� Allolactose binds to the lac repressor protein, preventing it from binding to the 
operator region of the genome.

� Transcription begins: mRNA encoding the lac genes is produced.

� Lac proteins are produced, and more lactose is brought into the cell. (The 
operon is ON.)

� Eventually, all lactose is used up, so there will be no more allolactose.

� The lac repressor can now bind to the operator, so mRNA transcription stops. 
(The operon has turned itself OFF.) 



An ODE lac operon model
� M:  mRNA

� B:  β−galactosidase

� A:  allolactose

� P:  transporter protein

� L:  lactose



Downsides of an ODE model
� Very mathematically technical.

� Too hard to solve explicitly. Numerical methods are needed. 

� MANY experimentally determined “rate constants” (I count 22…)

� Often, these rate constants aren’t known even up to orders of magnitude. 



A Boolean approach
� Let’s assume everything is “Boolean” (0 or 1):

o Gene products are either present or absent

o Enzyme concentrations are either high or low.

o The operon is either ON or OFF. 

� mRNA is transcribed (M=1) if there is no external glucose (G=0), and either 
internal lactose (L=1) or external lactose (Le=1) are present.

� The LacY and LacZ gene products (E=1) will be produced if mRNA is 
available (M=1). 

� Lactose will be present in the cell if there is no external glucose (Ge=0), and 
either of the following holds:

ü External lactose is present (Le=1) and lac permease (E=1) is available.

ü Internal lactose is present (L=1), but β−galactosidase is absent (E=0).

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )

xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))⎡
⎣

⎤
⎦



Comments on the Boolean model
� We have two “types” of Boolean quantities:

o mRNA (M), lac gene products (E), and internal lactose (L) are variables.

o External glucose (Ge) and lactose (Le) are parameters (constants). 

� Variables and parameters are drawn as nodes.

� Interactions can be drawn as signed edges.

� A signed graph called the wiring diagram describes the 
dependencies of the variables.

� Time is discrete: t = 0, 1, 2, ….

� Assume that the variables are updated synchronously. 

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))⎡
⎣

⎤
⎦



How to analyze a Boolean model
� At the bare minimum, we should expect:

o Lactose absent => operon OFF.

o Lactose present, glucose absent => operon ON.

o Lactose and glucose present => operon OFF. 

� The state space (or phase space) is the directed graph (V, T), where  

� We’ll draw the state space for all four choices of the parameters:

o (Le, Ge) = (0, 0).  We hope to end up in a fixed point (0,0,0).

o (Le, Ge) = (0, 1).  We hope to end up in a fixed point (0,0,0).

o (Le, Ge) = (1, 0).  We hope to end up in a fixed point (1,1,1).

o (Le, Ge) = (1, 1).  We hope to end up in a fixed point (0,0,0).

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

T = (x, f (x)) : x ∈V{ }V = (xM , xE, xL ) : xi ∈ {0,1}{ }



How to analyze a Boolean model
� We can plot the state space using the ”Cyclone” software package: at 

http://cyclone.algorun.org/.

� First, we need to convert our logical functions into polynomials. 

� Here is the relationship between Boolean logic and polynomial algebra:

Boolean operations logical form polynomial form

o AND

o OR

o NOT

• Also, everything is modulo 2, so 1+1=0, and 1=-1, and x2=x, and thus 
x(x+1)=0.

xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

z = x∧ y
z = x∨ y
z = x

z = xy
z = x + y+ xy
z =1+ x

http://cyclone.algorun.org/


xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&



xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (0, 1). The operon is ON.



xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (0, 0). 

The operon is OFF.



xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (1, 0). The operon is OFF.



xM (t +1) = fM (t +1) =Ge ∧(L(t)∨Le )
xE (t +1) = fE (t +1) =M (t)

xL (t +1) = fL (t +1) =Ge ∧ (Le ∧E(t))∨(L(t)∧E(t))#
$

%
&

State space when (Ge, Le) = (1, 1). The operon is OFF.



Summary so far
� Gene regulatory networks consist of a collection of gene products that interact 

with each other to control a specific cell function.

� Classically, these have been modeled quantitatively with differential equations 
(continuous models).

� Boolean networks take a different approach. They are discrete models that are 
inherently qualitative.

� The state space graph encodes all of the dynamics. The most important 
features are the fixed points, and a necessary step in model validation is to 
check that they are biologically meaningful. 

� The model of the lac operon shown here is a “toy model”. Next, we will see 
more complicated models of the lac operon that capture intricate biological 
features of these systems.

� Modeling with Boolean logic is a relatively new concept, first done in the 
1970s. It is a popular research topic in the field of systems biology. 



A more refined model

� Our first model only used 3 variables: mRNA (M), enzymes (E), and lactose (L).

� Let’s propose a new model with 5 variables:

� M:  mRNA

� B:  β−galactosidase

� A:  allolactose

� L:  intracellular lactose

� P:  lac permease (transporter protein)

� Assumptions
� Extracellular lactose is always available.

� Extracellular glucose is always unavailable. 

� Translation and transcription require one unit of time.

� Protein and mRNA degradation require one unit of time

� Lactose metabolism require one unit of time

fM = A
fB =M
fA = A∨(L∧B)

fL = P∨(L∧B)
fP =M



Using Cyclone to compute the state space
fM = A
fB =M
fA = A∨(L∧B)

fL = P∨(L∧B)
fP =M



Problems with our refined model

� Model variables:

� M:  mRNA

� B:  β−galactosidase

� A:  allolactose

� L:  intracellular lactose

� P:  lac permease (transporter protein)

� Problems:

� The fixed point (M,B,A,L,P) = (0,0,0,0,0) should not happen with lactose 
present but not glucose. [though let’s try to justify this...]

� The fixed point (M,B,A,L,P) = (0,0,0,1,0) is not biologically feasible: it would 
describe a scenario where the bacterium does not metabolize intracellular 
lactose. 

� Conclusion:  The model fails the initial testing and validation, and is in need of 
modification. (Homework!)

fM = A
fB =M
fA = A∨(L∧B)

fL = P∨(L∧B)
fP =M



Catabolite repression

� We haven’t yet discussed the cellular mechanism that turns the lac operon 
OFF when both glucose and lactose are present. This is done by catabolite
repression. 

� The lac operon promoter region has 2 binding sites:
� One for RNA polymerase (this “unzips” and reads the DNA)

� One for the CAP-cAMP complex. This is a complex of two molecules: catabolite
activator protein (CAP), and the cyclic AMP receptor protein (cAMP, or crp).

� Binding of the CAP-cAMP complex is required for transcription for the lac
operon.

� Intracellular glucose causes the cAMP concentration to decrease. 

� When cAMP levels get too low, so do CAP-cAMP complex levels. 

� Without the CAP-cAMP complex, the promoter is inactivated, and the lac
operon is OFF. 



Lac operon gene regulatory network



A more refined model
� Variables:

� M:  mRNA

� P:  lac permease

� B:  β−galactosidase

� C:  catabolite activator protein (CAP)

� R:  repressor protein (LacI)

� A:  high allolactose

� Am:  at least med. allolactose

� L:  high (intracellular) lactose

� Lm:  at least med. levels of lactose

� Assumptions:

� Transcription and translation require 1 unit of time. 

� Degradation of all mRNA and proteins occur in 1 time-step.

� High levels of lactose or allolactose at any time t imply (at least) medium 
levels for the next time-step t+1.

fM = R∧C
fP =M
fB =M

fC =Ge

fR = A∧Am
fA = L∧B
fAm = A∨L∨Lm
fL =Ge ∧P∧Le
fLm =Ge ∧(L∨Le )



A more refined model
� This 9-variable model is about as big of a state space that can be 

rendered.

� Here’s a sample piece of the state space:

fM = R∧C
fP =M
fB =M

fC =Ge

fR = A∧Am
fA = L∧B
fAm = A∨L∨Lm
fL =Ge ∧P∧Le
fLm =Ge ∧(L∨Le )



What if the state space is too big?
� The previous 9-variable model is about as big as Cyclone can handle.

� However, many gene regulatory networks are much bigger.

� A Boolean network model (2006) of T helper cell differentiation 
has 23 nodes, and thus a state space of size 223 = 8,388,608.

� A Boolean network model (2003) of the segment polarity genes in 
Drosophila melanogaster (fruit fly) has 60 nodes, and a state 
space of size 260 ≈1.15 × 1018.

� There are many more examples…

� For these systems, we need to be able to analyze them without 
constructing the entire state space. 

� Our first goal is to find the fixed points. This amounts to solving a 
system of equations:

fM = R∧C
fP =M
fB =M

fC =Ge

fR = A∧Am
fA = L∧B
fAm = A∨L∨Lm
fL =Ge ∧P∧Le
fLm =Ge ∧(L∨Le )

fx 1 = x 1
fx 2 = x 2
!

fx n = x n

!

"

#
#

$

#
#



How to find the fixed points
� Let’s rename variables:

� Writing each function in polynomial form, and then                         for each i=1,…,9 
yields the following system:

� We need to solve this for all 4 combinations: 

fM = R∧C =M
fP =M = P
fB =M = B

fC =Ge =C

fR = A∧Am = R
fA = L∧B = A
fAm = A∨L∨Lm = Am
fL =Ge ∧P∧Le = L

fLm =Ge ∧(L∨Le ) = Lm

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le ) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

fxi = xi

(Ge,Le ) = (0, 0), (0,1), (1, 0), (1,1)



How to find the fixed points with Macaulay2
� Let’s first consider the case when 

� We can solve the system by typing the following commands into Macaulay2
an open-source software package for computational algebraic geometry:

�

𝐺#, 𝐿# = 0,1



What does this code mean?
The output of   G = Gens gb I; is the following:

|x9+1, x8+1, x7+1, x6+1, x5, x4+1, x3+1, x2+1, x1+1|

This is short-hand for the following system of equations:

This simple system has the same set of solutions as the much more complicated system 
we started with: 

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le ) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

𝑥* + 1 = 0, 𝑥, + 1 = 0, … , 𝑥. + 1 = 0, 𝑥/ = 0, 𝑥0 + 1 = 0, … , 𝑥1 + 1 = 0



What does a Gröbner basis tell us?
The output of   G = Gens gb I; is the following:

|x9+1, x8+1, x7+1, x6+1, x5, x4+1, x3+1, x2+1, x1+1|

This is short-hand for the following system of equations:

This simple system has the same set of solutions as the much more complicated system 
we started with: 

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le ) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

𝑥* + 1 = 0, 𝑥, + 1 = 0, … , 𝑥. + 1 = 0, 𝑥/ = 0, 𝑥0 + 1 = 0, … , 𝑥1 + 1 = 0



How to find the fixed points with Sage
� Let’s first consider the case when 

� We can solve the system by typing the following commands into Sage the 
free open-source mathematical software.

� Here, we did not take the quotient ideal, but we still could have.

�

(Ge,Le ) = (1,1)



What those Sage commands mean
Let’s go over what the following commands mean:

Ø P.<x1,x2,x3,x4,x5,x6,x7,x8,x9> = 
PolynomialRing(GF(2),9,order=‘lex’);

§ Define P to be the polynomial ring over 9 variables, x1,…,x9.

§ GF(2)={0,1} because the coefficients are binary. 

§ order=‘lex’ specifies a monomial order. More on this later.  

Ø Le=1; Ge=1; print "Le =", Le; print "Ge =", Ge;

§ This defines two constants                             and prints them.

Ø I = ideal(x1+x4*x5+x4, x1+x2, x1+x3, x4+(Ge+1), x5+x6*x7+x6+x7+1, 
x6+x3*x8, x6+x7+x8+x9+x8*x9+x6*x8+x6*x9+x6*x8*x9, x8+Le*(Ge+1)*x2, 
x9+(Ge+1)*(Le+x8+Le*x8)); I

§ Defines I to be the ideal generated by those following 9 polynomials, i.e., 

Ø B = I.groebner_basis(); B

§ Define B to be the Gröbner basis of I w.r.t. the lex monomial order. (More on 
this later)

(Ge,Le ) = (1,1)

I = p1 f1 +!+ pk fk : pk ∈ P{ }



Gröbner bases vs. Gaussian elimination
² Gröbner bases are a generalization of Gaussian elimination, but for 

systems of polynomials (instead of systems of linear equations)

² In both cases:
§ The input is a complicated system that we wish to solve. 

§ The output is a simple system that we can easily solve by inspection. 

² Consider the following example:
§ Input:  The 2x2 system of linear equations

§ Gaussian elimination yields the following:

§ This is just the much simpler system 

with the same solution! 

1 2
3 8

1
1

!

"
#
#

$

%
&
&
→ 1 2

0 2
1
−2

!

"
#
#

$

%
&
&
→ 1 0

0 2
3
−2

!

"
#
#

$

%
&
&
→ 1 0

0 1
3
−1

!

"
#
#

$

%
&
&

x + 2y =1
3x +8y =1

!
"
#

$#

x + 0y = 3
0x + y = −1

"
#
$

%$



Back-substitution & Gaussian elimination

² We don’t necessarily need to do Gaussian elimination until the matrix is 
the identity. As long as it is upper-triangular, we can back-substitute and 
solve by hand. 

² For example:

² Similarly, when Sage outputs a Gröbner basis, it will be in “upper-triangular 
form”, and we can solve the system easily by back-substituting.

² We’ll do an example right away. For this part of the class, you can think of 
Gröbner bases as a mysterious “black box” that does what we want.

² We’ll study them in more detail shortly, and understand what’s going on behind 
the scenes. 

x + z = 2
y− z = 8
0 = 0

"

#
$

%
$
$



Gröbner bases: an example

² Let’s use Sage to solve the following system:

² From this, we get an “upper-triangular” system: 

² This is something we can solve by hand.

x2 + y2 + z2 =1

x2 − y+z2 = 0
x − z = 0

"

#
$$

%
$
$

x − z = 0

y− 2z2 = 0

z4 + .5z2 −.25= 0

"

#
$$

%
$
$



Gröbner bases: an example (cont.)

² To solve the reduced system:

§ Solve for z in Eq. 3:

§ Plug z into Eq. 2 and solve for y:

§ Plug y & z into Eq. 1 and solve for x:

² Thus, we get 2 solutions to the original system: 

x − z = 0

y− 2z2 = 0

z4 + .5z2 −.25= 0

"

#
$$

%
$
$z = ± −1+ 5

4

y = 2z2 = −1+ 5
2

x = z = ± −1+ 5
4 x2 + y2 + z2 =1

x2 − y+z2 = 0
x − z = 0

"

#
$$

%
$
$

(x1, y1, z1) =
−1+ 5
4

, −1+ 5
2

, −1+ 5
4

"

#
$
$

%

&
'
' (x2, y2, z2 ) = −

−1+ 5
4

, −1+ 5
2

,− −1+ 5
4

"

#
$
$

%

&
'
'



Returning to the lac operon
� We have 9 variables:

� Writing each function in polynomial form, we need to solve the system                     
for each i=1,…,9, which is the following:

� We need to solve this for all 4 combinations:                                                                     
(we already did (1,1)).

fM = R∧C =M
fP =M = P
fB =M = B

fC =Ge =C

fR = A∧Am = R
fA = L∧B = A
fAm = A∨L∨Lm = Am
fL =Ge ∧P∧Le = Am
fLm =Ge ∧(L∨Le ) = Lm

x 1+x 4 x 5+x4 = 0
x 1+x2 = 0
x 1+x3 = 0
x 4+(Ge +1) = 0
x 5+x 6 x 7+x6 + x7 +1= 0
x 6+x3x8 = 0
x 6+x 7+x 8+x 9+x 8 x 9+x 6 x 8+x 6 x 9+x6x8x9 = 0
x 8+x2Le(Ge +1) = 0
x 9+(Ge +1)(x8 + x8Le + Le ) = 0

!

"

#
#
#
#
##

$

#
#
#
#
#
#

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

fxi = xi

(Ge,Le ) = (0, 0), (0,1), (1, 0), (1,1)



Returning to the lac operon
� Again, we use variables                                                                                                      

and parameters  

� Here is the output from Sage:

�

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

(Ge,Le ) = (0, 0)

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0,1,1, 0, 0, 0, 0)



Returning to the lac operon
� Again, we use variables                                                                                                      

and parameters  

� Here is the output from Sage:

�

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

(Ge,Le ) = (1, 0)

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0, 0,1, 0, 0, 0, 0)



Returning to the lac operon
� Again, we use variables                                                                                                      

and parameters  

� Here is the output from Sage:

�

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

(Ge,Le ) = (0,1)

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (1,1,1,1, 0,1,1,1,1)



Fixed point analysis of the lac operon
Using the variables                                                                                                  

we got the following fixed points for each choice of parameters  

� Input:     

Fixed point: 

� Input: 

Fixed point:   

� Input: 

Fixed point:      

� Input:  

Fixed point: 

All of these fixed points make biological sense!

(M,P,B,C,R,A,Am,L,Lm ) = (x1, x2, x3, x4, x5, x6, x7, x8, x9 )

(Ge,Le )

(x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (1,1,1,1, 0,1,1,1,1)

(Ge,Le ) = (0, 0)

(Ge,Le ) = (1, 0)

(Ge,Le ) = (1,1)

(Ge,Le ) = (0,1)

(x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0, 0,1, 0, 0, 0, 0)

(x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0,1,1, 0, 0, 0, 0)

(x1, x2, x3, x4, x5, x6, x7, x8, x9 ) = (0, 0, 0, 0,1, 0, 0, 0, 0)


