
Reverse engineering minimal wiring diagrams

Matthew Macauley

Department of Mathematical Sciences
Clemson University

http://www.math.clemson.edu/~macaule/

Algebraic Biology

M. Macauley (Clemson) Reverse engineering minimal wiring diagrams Algebraic Biology 1 / 39

mailto:macaule@clemson.edu
http://www.math.clemson.edu/
http://www.clemson.edu/
http://www.math.clemson.edu/~macaule/
mailto:macaule@clemson.edu


Broad goals
Suppose we have an unknown Boolean function fi : F3

2 → F2 that satisfies:

fi (1, 1, 1) = 0, fi (0, 0, 0) = 0, fi (1, 1, 0) = 1.

In other words, its truth table looks like

x1x2x3 111 110 101 100 011 010 001 000
fi (x) 0 1 ? ? ? ? ? 0

Goals

1. Reverse engineering the wiring diagram: Which sets of variables can fi depend on?

2. Reverse engineering the model space: Characterize all functions that “fit this data”.

3. Model selection: What is the “best fit” function?

We’lll study the first question in this lecture.

Recall how different types of interactions are indicated in the wiring diagram:

fj = xi ∧ xk

xi xj

“xi activates xj ”

fj = xi ∧ xk

xi xj

“xi inhibits xj ”

fj = xi + xk

xi xj

“xi affects xj positively & negatively”
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Unate functions
Consider the following unknown Boolean function:

x1x2x3 111 110 101 100 011 010 001 000
fi (x) 0 1 ? ? ? ? ? 0

There are 28 = 256 truth tables, and of these, 28−3 = 32 fit this data.

Not all of these functions are biologically meaningful.

Definition

A Boolean function f : Fn
2 → F2 is unate if no variable xi and its negation xi both appear.

Examples

Conjunctions: f = xi1 ∧ · · · ∧ xik .

Disjunctions: f = xi1 ∨ · · · ∨ xik .

AND-NOT functions: f = x ∧ y ∧ z.

OR-NOT functions: f = x ∨ y ∨ z.

Others: f = x ∧ (y ∨ z).

Fact

Most functions that appear in biological networks are unate.
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Min-sets

Recall the following unknown Boolean function:

x1x2x3 111 110 101 100 011 010 001 000
fi (x) 0 1 ? ? ? ? ? 0

Of the 256 Boolean functions on 3 variables, 28−3 = 32 fit this data, and only 4 of these are
unate. They are:

x1 ∧ x3, x2 ∧ x3, x1 ∧ x2 ∧ x3, (x1 ∨ x2) ∧ x3.

The wiring diagrams of these functions are shown below, expressed several different ways.

x1 x2 x3

xi

(1, 0,−1)

{x1, x3}

x1 x2 x3

xi

(0, 1,−1)

{x2, x3}

x1 x2 x3

xi

(1, 1,−1)

{x1, x2, x3}

x1 x2 x3

xi

(1, 1,−1)

{x1, x2, x3}

We will call the minimal wiring diagrams (e.g., the first two) min-sets. If we retain the signs
of the interactions, we call them signed min-sets.
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Finding min-sets using computational algebra

Figure : Image courtesy of Alan Veliz-Cuba.
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Monomials

We will learn how to reverse-engineer wirgram diagrams using computational algebra.

We will encode the partial data using ideals of polynomials rings generated by square-free
monomials.

There is a beautiful relationship between square-free monomial ideals and a combinatoral
object called a simplicial complex.

The min-sets can be found by taking the primary decomposition of the ideal.

Notation

Every monomial can be written as cxα, where xα := xα1
1 · · · x

αn
n and

α = (α1, . . . , αn) ∈ Zn
≥0.

Example

Consider the following polynomial in F3[x1, x2, x3, x4], written several different ways:

f = x3
1 x2x2

4 + 2x1x5
4 = x3

1 x1
2 x0

3 x2
4 + 2x1

1 x0
2 x0

3 x5
4 = x(3,1,0,2) + 2x(1,0,0,5).
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Monomial ideals

Definition

A monomial ideal I ≤ F[x1, . . . , xn] is an ideal generated by monomials.

Proposition (exercise)

Let M(I ) be the set of monomials in I . If I is a monomial ideal, then I = 〈M(I )〉.

Monomial ideals can be visualized by a staircase diagram. Here is an example for the
monomial ideal I = 〈y3, xy2, x3y2, x4〉.

x4

x3y 2xy 2

y 3

x i

y j

Question: Are any of these monomials not needed to generate I ?
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Square-free monomial ideals

Definition

A monomial xα := xα1
1 · · · x

αn
n is square-free if each αi ∈ {0, 1}.

A square-free monomial ideal is any ideal generated by square-free monomials.

The exponent vector α = (α1, . . . , αn) of a square-free monomial xα canonically determines
a subset of [n] = {1, . . . , n}.

Notations

Given xα, we may speak of α as a subset of [n] rather than a vector.

We will write subsets as strings, e.g., xz for {x , z}.

Key property

Let I be a square-free monomial ideal of F[x1 . . . , xn], and α, β ⊆ [n]. Then

xα ∈ I and xβ ∈ I =⇒ xα∪β ∈ I ,

xα 6∈ I and xβ 6∈ I =⇒ xα∩β 6∈ I .
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Simplicial complexes

Definition

A simplicial complex over a finite set X is a collection ∆ of subsets of X , closed under taking
subsets. That is,

β ∈ ∆ and α ⊂ β =⇒ α ∈ ∆.

Elements in ∆ are called simplices or faces.

Example 1

X = {a, b, c, d , e, f }

∆ = {∅, a, b, c, d , e, f , bc, cd , ce, de, cde, df , ef } a b c

d

e

f

A k-dimensional face (size-(k + 1) subset) is called a k-face. For small k, we also say that a:

0-face is a vertex, or node,

1-face is an edge,

2-face is a triangle,

3-face is a (solid) triangular pyramid.
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Simplicial complexes

We will often be interested in the non-faces of a simplicial complex, i.e., ∆c := 2X \∆.

Key property

Let ∆ be a simplicial complex.

(i) Faces of ∆ are closed under intersection: α, β ∈ ∆⇒ α ∩ β ∈ ∆.

(ii) Non-faces of ∆ are closed under unions: α, β ∈ ∆c ⇒ α ∪ β ∈ ∆c .

Remark

∆ is determined by its maximal faces.

∆c is determined by its minimal non-faces.

Example 1 (continued)

14 faces in ∆ = {∅, a, b, c, d , e, f , bc, cd , ce, de, cde, df , ef }.
50 non-faces in ∆c .

Maximal faces: a, bc, cde, df , ef .

Minimal non-faces: ab, ac, ad , ae, af , bd , be, bf , cf , def .

a b c

d

e

f
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Example 2

Consider the following simplicial complex ∆ over X = {x , y , z}.

Faces: ∆ = {∅, x , y , z, xz} (maximal: y , xz)

Non-faces: ∆c = {xy , yz, xyz} (minimal: xy , yz)

y

zx

The faces ∆ and non-faces ∆c form a down-set and a up-set on the Boolean lattice.

xyz

xy xz yz

x y z

∅

Faces in ∆

Facets are shaded

xyz

xy xz yz

x y z

∅

Non-faces in ∆c

Minimal non-faces are shaded

∅

z y x

yz xz xy

xyz

Complements of faces in ∆

Maximal complements are shaded
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An interplay between algebra and combinatorics (Example 1)
Consider the following square-free monomial ideal I in F[a, b, c, d , e, f ]:

I = 〈ab, ac, ad , ae, af , bd , be, bf , cf , def 〉.

The monomials not in I are closed under intersection, and so they form a simplicial complex

X = {a, b, c, d , e, f }

∆I c = {∅, a, b, c, d , e, f , bc, cd , ce, de, cde, df , ef } a b c

d

e

f

Note that ∆I c is determined by its maximal faces: a, bc, cde, df , ef .

The unique minimal generating set of I are the minimal non-faces: ab, ac, ad , ae, af , bd ,
be, bf , cf , def .

In summary:

Every square-free monomial ideal I defines a canonical simplicial complex, ∆I c .

Every simplicial complex ∆ defines a canonical square-free monomial ideal I∆c .

This process is bijective, and is called Alexander duality.
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An interplay between algebra and combinatorics (Example 2)

Let’s see another example, this time the square-free monomial ideal I in F[x , y , z]:

I = 〈xy , yz〉.

The monomials not in I are closed under intersection, and so they form a simplicial complex

X = {x , y , z}

∆I c = {∅, x , y , z, xz}

y

zx

Note that ∆I c is determined by its maximal faces: y , xz.

The unique minimal generating set of I are the minimal non-faces: xy , xz.

Also, note that

I = 〈xy , yz〉 =
{

xy · h1(x , y , z) + yz · h2(x , y , z)︸ ︷︷ ︸
y
(

x·h1(x,y,z)+z·h2(x,y,z)
)
∈〈y〉∩〈x,z〉

: h1, h2 ∈ R
}

= 〈y〉 ∩ 〈x , z〉.

This is called the primary decomposition of I = 〈xy , yz〉. The ideals 〈y〉 and 〈x , z〉 are called
the primary components.
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Let’s see that last example again

But this time we’ll start with the simplicial complex ∆.

Example 2

Faces: ∆ = {∅, x , y , z, xz} (maximal: y , xz)

Non-faces: ∆c = {xy , yz, xyz} (minimal: xy , yz)

I∆c = 〈xy , yz〉 = 〈y〉 ∩ 〈x , z〉

y

zx

xyz

xy xz yz

x y z

∅

Faces in ∆

Facets are shaded

xyz

xy xz yz

x y z

∅

Monomials in I∆c

Minimal generators are shaded

∅

z y x

yz xz xy

xyz

Complements of faces in ∆

Primary components of I∆c shaded
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Now let’s see those examples together

Example 2 (continued)

Faces: ∆ = {∅, x , y , z, xz} (maximal: y , xz)

Non-faces: ∆c = {xy , yz, xyz} (minimal: xy , yz)

Complements of maximal faces: xz, y

I∆c = 〈xy , yz〉 = 〈x , z〉 ∩ 〈y〉

y

zx

Example 1 (continued)

∆ = {∅, a, b, c, d , e, f , bc, cd , ce, de, cde, df , ef }

Maximal faces: a, bc, cde, df , ef

Complements of max’l faces: bcdef , adef , abf , abce, abcd

Minimal non-faces: ab, ac, ad , ae, af , bd , be, bf , cf , def

I∆c = 〈ab, ac, ad , ae, af , bd , be, bf , cf , def 〉

= 〈b, c, d , e, f 〉 ∩ 〈a, d , e, f 〉 ∩ 〈a, b, f 〉 ∩ 〈a, b, c, e〉 ∩ 〈a, b, c, d〉

a b c

d

e

f
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Summary so far

Key property

A square-free monomial ideal I is completely determined by the subsets α for which xα ∈ I .

If α ⊆ β and xα ∈ I , then xβ ∈ I .

If α ⊆ β and xβ 6∈ I , then xα 6∈ I .

In other words,

(i) As subsets, exponents of square-free monomials in I are closed under unions.

(ii) As subsets, exponents of square-free monomials not in I are closed under intersections.

Key property

We can describe a square-free monomial ideal I combinatorially as a collection of subsets,
closed under intersections.

These subsets have two interpretations, one algebraic and one combinatorial.

algebraically: the monomials xα not in I ;

combinatorially: the faces α of a simplicial complex, that we will denote by ∆I c .
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Alexander duality

Definition

Given an ideal I in F[x1, . . . , xn], define the simplicial complex

∆I c :=
{
α | xα 6∈ I

}
.

Given a simplicial complex ∆, define a square-free monomial ideal

I∆c :=
〈
xα | α 6∈ ∆

〉
.

This is called the Stanley-Reisner ideal of ∆.

Theorem

The correspondence I 7→ ∆I c and ∆ 7→ I∆c is a bijection between:

(i) simplicial complexes on [n] = {1, . . . , n},
(ii) square-free monomial ideals in F[x1, . . . , xn].

This correspondence is called Alexander duality.
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Primary decomposition

Defintion

Let I be an ideal of a commutative ring R.

I is a prime ideal if fg ∈ I implies either f ∈ I or g ∈ I .

I is a primary ideal if fg ∈ I implies either f ∈ I or gk ∈ I for some k ∈ N.

Example

Consider the ring R = Z. Recall that all ideals I are principal, i.e. I = 〈a〉 for some a ∈ Z.

The prime ideals (excluding 0 and Z) are of the form I = 〈p〉 for some prime p.

The primary ideals (excluding 0 and Z) are of the form I = 〈pk 〉 for k ∈ N.

The following theorem can be thought of as a way to “factor” ideals in polynomial rings,
much like how integers can be factored into primes.

Lasker-Noether Theorem

Every ideal I of F[x1, . . . , xn] can be written as I =
r⋂

i=1

pi , where pi is a primary ideal. We

call this a primary decomposition of I . The pi are called primary components.

In general, primary decompositions are hard to compute and need not be unique. But for
square-free monomial ideals, they have a simple combinatorial description.
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Ideals and varieties
Definition

Given an ideal I ≤ F[x1, . . . , xn], the variety of I is its set of common zeros:

V (I ) := {x ∈ Fn : f (x) = 0 for all f ∈ I}.

The ideal generated by a variety V ⊆ Fn is

I (V ) := {f ∈ F[x1, . . . , xn] | f (v) = 0, ∀v ∈ V }.

Proposition

For any two varieties V1 and V2 in Fn,

I (V1 ∪ V2) = I (V1) ∩ I (V2).

For any α ⊆ [n], define pα = 〈xi : i ∈ α〉 and pα = p[n]−α = 〈xi : i 6∈ α〉. Both are prime.

Theorem

Let ∆ be a simplicial complex over [n]. The Stanley-Reisner ideal of ∆ in R = F[x1, . . . , xn] is

I∆c =
⋂
α∈∆

pα =
⋂
α∈∆

maximal

pα.
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Computing the primary decomposition

Example 2 (continued)

Faces: ∆ = {∅, x , y , z, xz} (maximal: y , xz)

Non-faces: ∆c = {xy , yz, xyz} (minimal: xy , yz)

I∆c = 〈xy , yz〉 = 〈x , z〉 ∩ 〈y〉

y

zx

The primary decomposition of I∆c is generated by the complements of the 5 faces in ∆.

This is not the set complement of ∆, i.e., the 3 non-faces ∆c = {xy , yz, xyz}, but rather,

{∅, x , z, y , xz} = {xyz, yz, xy , xz, y}.

By the previous theorem, the primary decomposition of I∆c is

I∆c = 〈xy , yz〉 =
⋂
α∈∆

pα = p∅ ∩ px ∩ pz ∩ py ∩ pxz

= pxyz ∩ pyz ∩ pxy ∩ pxz ∩ py

= 〈x , y , z〉 ∩ 〈y , z〉 ∩ 〈x , y〉︸ ︷︷ ︸
unnecessary

∩〈x , z〉 ∩ 〈y〉

= 〈x , z〉 ∩ 〈y〉 =
⋂
α∈∆

maximal

pα.
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Computing the primary decomposition

Example 1 (continued)

Faces: ∆ = {∅, a, b, c, d , e, f , bc, cd , ce, de, cde, df , ef }

Maximal faces: a, bc, cde, df , ef

Complements of maximal faces: bcdef , adef , abf , abce, abcd

Minimal non-faces: ab, ac, ad , ae, af , bd , be, bf , cf , def

a b c

d

e

f

The Stanley-Reisner ideal I∆c is generated by the (minimal) non-faces.

The primary components correspond to the complement of the maximal faces:

I∆c = 〈ab, ac, ad , ae, af , bd , be, bf , cf , def 〉 =
⋂
α∈∆

pα =
⋂
α∈∆

maximal

pα

= 〈b, c, d , e, f 〉 ∩ 〈a, d , e, f 〉 ∩ 〈a, b, f 〉 ∩ 〈a, b, c, e〉 ∩ 〈a, b, c, d〉.
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The plan from here
Now, we are ready to apply Stanley-Reisner theory to reverse engineering the wiring diagram
of a local model.

Here is a summary of the process:

1. Consider every pair of input vectors that give a different output.

2. For each pair, take the monomial xα, where α ⊆ [n] is the set where the entries differ.

3. These generate an ideal. The primary decomposition encodes all minimal wiring
diagrams.

Simplification

We can consider each coordinate independently.

This is best seen with an example. Consider the following Boolean local model
f = (f1, f2, f3).

f1 = x2

f2 = x2 ∧ x3

f3 = x1 ∨ x2 x1

x2

x3

=
x1

x2

x3

⋃
x1

x2

x3

⋃
x1

x2

x3

Thus, we will consider a function f : Fn → F with partial data, and attempt to
reverse-engineer its wiring diagram.
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Data and model spaces

Let f : Fn → F be a function, where F = Fp .

Definition

Consider a set
D =

{
(s1, t1), . . . , (sm, tm)

}
, si ∈ Fn, ti ∈ F

of input-output pairs, all si are distinct. We call such a set data, and say that f fits the data
D if

f (si ) = f (si1, . . . , sin) = ti , for all i = 1, . . . ,m.

The model space of D is the set Mod(D) of all functions that fit the data, i.e.,

Mod(D) =
{

f : Fn → F | f (si ) = ti for all i = 1, . . . ,m
}
.

For any f in Mod(D), the support of f , denoted supp(f ), is the set of variables on which f
depends.

Under a slight abuse of notation, we can think of the support as a subset of {x1, . . . , xn} or
as a subset α ⊆ [n] = {1, . . . , n}.

Either way, we can write supp(f ) as a string.
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Feasible, disposable, and min-sets

Definition

With respect to a set D of data, a set α ⊆ [n] is:

feasible if there is there is some f ∈ Mod(D) for which supp(f ) ⊆ α.

disposable if there is some f ∈ Mod(D) for which supp(f ) ∩ α = ∅.
Note that a set α is feasible if and only if its complement α := [n]− α is disposable.

Remark

These are not opposite concepts; a set can be both feasible and disposable, or neither.

Key point

Let D be a set of data, and α, β ⊆ [n].

(i) If α and β are feasible with respect to D, then so is α ∪ β.

(ii) If α and β are disposable with respect to D, then so is α ∩ β.

In particular, the disposable sets of D form a simplicial complex ∆D.

Definition

A subset α ⊆ [n] is a min-set of D if its complement α := [n]− α is a maximal disposable
set of D.
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Min-sets and Stanley-Reisner theory applied to min-sets

Theorem

There is a bijective correspondence between:

the simplicial complex ∆D of disposable sets,

the square-free monomial ideal I∆c
D

in F[x1, . . . , xn] of non-disposable sets.

In other words, α is a min-set of D if and only if α is a maximal disposable set, and

xα ∈ I∆c
D

if and only if α is non-disposable.

For each pair (s, t), (s′, t′) ∈ D, define the monomial

m(s, s′) :=
∏

si 6=s′i

xi .

By construction, if t 6= t′, then supp(m(s, s′)) must be non-disposible.

Theorem

The ideal of non-disposable sets is the ideal in F2[x1, . . . , xn] defined by

I∆c
D

=
〈
m(s, s′) | t 6= t′

〉
.

The generators of the primary components of I∆c
D

are the min-sets of D.
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Example 2 (continued)

Consider a Boolean function f : F3
2 → F2 with the following partial data:

xyz 101 000 110
f (x , y , z) 0 0 1

Using our notation, the data D, grouped by output value, is

D =
{

(s1, t1), (s2, t2), (s3, t3)
}

=
{

(101, 0), (000, 0), (110, 1)
}
.

Since t1 = t2 6= t3, we compute m(s1, s3) = yz and m(s2, s3) = xy .

xyz

xy xz yz

x y z

∅

Non-disposable sets ∆c
D ;

Monomials in I∆c
D

xyz

xy xz yz

x y z

∅

Disposable sets ∆D

∅

z y x

yz xz xy

xyz

Feasible sets of D
The min-sets are shaded
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Example 3

Consider a Boolean function f : F3
2 → F2 with the following partial data:

xyz 111 000 110
f (x , y , z) 0 0 1

Using our notation, the data D, grouped by output value, is

D =
{

(s1, t1), (s2, t2), (s3, t3)
}

=
{

(111, 0), (000, 0), (110, 1)
}
.

Since t1 = t2 6= t3, we compute m(s1, s3) = z and m(s2, s3) = xy .

xyz

xy xz yz

x y z

∅

Non-disposable sets ∆c
D ;

Monomials in I∆c
D

xyz

xy xz yz

x y z

∅

Disposable sets ∆D

∅

z y x

yz xz xy

xyz

Feasible sets of D
The min-sets are shaded
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Summary so far

The following table summarizes the correspondence between the combinatorial structures in
the Boolean network problem to Stanley-Reisner theory and Alexander duality.

Reverse engineering of local models Stanley-Reisner theory

Disposable sets of D Faces of the simplicial complex ∆D

Non-disposable sets of D The non-faces, ∆c
D

The ideal 〈m(s, s′) | t 6= t′〉 of The Stanley-Reisner ideal I∆c
D

non-disposable sets

Feasible sets of D Complements of faces of ∆D

Min-sets of D Complements of max’l faces of ∆D
↔ primary components of I∆c

D
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Min-sets over non-Boolean fields

Consider a function f : F5
5 → F5 with the following partial data:

(s1, t1) =
(
01210, 0

)
,

(s2, t2) =
(
01211, 0

)
,

(s3, t3) =
(
01214, 1

)
,

(s4, t4) =
(
30000, 3

)
,

(s5, t5) =
(
11113, 4

)
.

The monomials m(si , sj ) are:

m(s1, s4) = x1x2x3x4,

m(s1, s5) = m(s2, s5) = m(s3, s5) = x1x3x5,

m(s2, s4) = m(s3, s4) = m(s4, s5) = x1x2x3x4x5,

m(s1, s3) = m(s2, s3) = x5.

The ideal of non-disposable sets in F2[x1, x2, x3, x4, x5] is

I∆c
D

= 〈m(si , sj ) | ti 6= tj 〉 = 〈x1x2x3x4x5, x1x3x5, x1x2x3x4, x5〉 = 〈x1x2x3x4, x5〉.

We can compute the primary decomposition in Macaulay2:

R = ZZ/2[x1,x2,x3,x4,x5];

I_nonDisp = ideal(x5, x1*x2*x3*x4);

primaryDecomposition I_nonDisp

Output: {ideal (x1, x5), ideal(x2, x5), ideal(x3, x5), ideal(x4, x5)}

Primary decomposition: I∆c
D

= 〈x1, x5〉 ∩ 〈x2, x5〉 ∩ 〈x3, x5〉 ∩ 〈x4, x5〉.

Unsigned min-sets: {x1, x5}, {x2, x5}, {x3, x5}, {x4, x5}.
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Finding signed min-sets of local models
Consider a set of data (i.e., input-output pairs) with all si distinct:

D =
{

(s1, t1), . . . , (sm, tm)
}
, si ∈ Fn, ti ∈ F.

Order the data so the output values are non-decreasing, i.e., t1 ≤ · · · ≤ tm.

Last time: For each pair (s, t), (s′, t′) ∈ D, define the monomial m(s, s′) :=
∏

si 6=s′i
xi .

That is, for each coordinate i where s and s′ differ, include xi .

This time: For each coordinate i that s and s′ differ, include:

(xi − 1) if the interaction is positive (si < s′i ),

(xi + 1) if the interaction is negative (si > s′i ).

Then define the pseudomonomial

p(s, s′) :=
∏

si 6=s′i

(
xi − sign(s′i − si )

)
.

Theorem

The ideal of signed non-disposable sets is the ideal in F3[x1, . . . , xn] defined by

J∆c
D

=
〈
p(si , sj ) | i < j , ti 6= tj

〉
.

The primary components of J∆c
D

give the signed min-sets.
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Example 3

Consider a Boolean function f : F3
2 → F2 with the following partial data:

xyz 111 000 110
f (x , y , z) 0 0 1

The data D is

D =
{

(s1, t1), (s2, t2), (s3, t3)
}

=
{

(111, 0), (000, 0), (110, 1)
}
.

Note that

p(s1, s3) = z − (sign(s33 − s13)) = z + 1, p(s2, s3) = (x − 1)(y − 1).

The ideal of signed non-disposable sets for D is thus

J∆c
D

=
〈
p(s1, s3), p(s2, s3)

〉
=
〈
z + 1, (x − 1)(y − 1)

〉
.

The following Macaulay2 commands compute the primary decomposition of J∆c
D

:

R = ZZ/3[x,y,z];

J_nonDisp = ideal(z+1, (x-1)*(y-1));

primaryDecomposition J_nonDisp

Output: {ideal (z + 1, y - 1), ideal (z + 1, x - 1)}

Primary decomposition: J∆c
D

=
〈
x − 1, z + 1

〉
∩ 〈y − 1, z + 1〉.

Signed min-sets: {x , z} and {y , z}.
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Signed min-sets over non-Boolean fields

Let’s compute the pseudomonomials for our previous example of f : F5
5 → F5 with data:

(s1, t1) =
(
01210, 0

)
,

(s2, t2) =
(
01211, 0

)
,

(s3, t3) =
(
01214, 1

)
,

(s4, t4) =
(
30000, 3

)
,

(s5, t5) =
(
11113, 4

)
.

p(s1, s3) = p(s2, s3) = x5 − 1,

p(s3, s5) = (x1 − 1)(x3 + 1)(x5 + 1),

p(s1, s4) = (x1 − 1)(x2 + 1)(x3 + 1)(x4 + 1),

p(s1, s5) = p(s2, s5) = (x1 − 1)(x3 + 1)(x5 − 1),

p(s4, s5) = (x1 + 1)(x2 − 1)(x3 − 1)(x4 − 1)(x5 − 1),

p(s2, s4) = p(s3, s4) = (x1 − 1)(x2 + 1)(x3 + 1)(x4 + 1)(x5 + 1).

The last three are redundant. The ideal of signed non-disposable sets in F3[x1, x2, x3, x4, x5] is

J∆c
D

= 〈p(si , sj ) | ti 6= tj 〉 = 〈x5−1, (x1−1)(x3 +1)(x5 +1), (x1−1)(x2 +1)(x3 +1)(x4 +1)〉.

We can compute the primary decomposition in Macaulay2:

R = ZZ/3[x1,x2,x3,x4,x5];

J_nonDisp = ideal(x5-1, (x1-1)*(x3+1)*(x5+1), (x1-1)*(x2+1)*(x3+1)*(x4+1));

primaryDecomposition J_nonDisp

Output: {ideal (x5-1, x3+1), ideal(x5-1, x1-1)}

Primary decomposition: J∆c
D

= 〈x1 − 1, x5 − 1〉 ∩ 〈x3 + 1, x5 − 1〉.

Signed min-sets: {x1, x5}, {x3, x5}.
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Application to a real gene network

Caenorhabditis elegans is a microscopic roundworm and common organism in biology.

It was the first multicellular organism to have its full genome sequenced, and its nervous
system (connectome) completely mapped. The latter consists of just 302 neurons and
≈ 7000 synapses.

In 2012, Stigler & Chamberlin studied a network with 20 genes involved in embryonal
development of C. elegans.

They discretized data from two time series, s1, . . . , s10 and u1, . . . , u10, to 7 states, i.e.,
si , ui ∈ F20

7 .

The ith input state is si and the ith output state is ti = f (si ) = si+1, where f : F20
7 → F20

7 is
the FDS map of an unknown local model over F7. Similarly, vi = f (ui ) = ui+1.

M. Macauley (Clemson) Reverse engineering minimal wiring diagrams Algebraic Biology 33 / 39

mailto:macaule@clemson.edu


Time-series data

Note that the 20 points in F20
7 in two time series describe 18 input-output pairs.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

s1 4 6 5 0 3 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0
s2 = t1 3 6 5 0 2 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0
s3 = t2 1 3 1 0 2 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1
s4 = t3 1 3 1 2 2 1 1 1 1 1 0 0 0 1 0 0 0 1 2 1
s5 = t4 0 1 1 2 2 1 1 1 1 1 0 0 1 1 0 1 0 1 2 1
s6 = t5 0 2 1 4 6 4 1 3 1 1 0 0 1 2 0 1 0 1 1 1
s7 = t6 0 3 1 6 5 5 1 4 2 1 0 0 1 1 1 2 1 1 1 0
s8 = t7 1 3 1 4 2 6 1 4 2 3 1 1 3 2 4 4 0 3 3 0
s9 = t8 1 3 1 6 2 5 1 5 1 5 2 5 6 2 5 5 0 4 4 0
s10 =t9 0 2 1 4 2 3 1 3 1 4 1 3 4 2 5 3 1 5 5 2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

u1 4 3 3 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0
u2 = v1 4 0 0 0 0 0 1 0 0 1 1 0 1 2 1 1 0 0 0 0
u3 = v2 5 3 2 0 1 0 0 0 0 1 0 1 0 2 0 1 0 0 0 0
u4 = v3 4 4 3 0 2 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1
u5 = v4 1 2 1 1 2 0 1 1 1 1 0 1 2 0 0 1 0 1 0 1
u6 = v5 2 3 1 2 4 2 2 2 3 1 0 0 2 1 0 1 0 1 1 1
u7 = v6 5 3 1 3 2 2 3 3 5 2 0 1 2 3 1 1 1 1 0 1
u8 = v7 6 5 6 5 4 5 6 4 6 1 0 4 2 2 3 2 1 2 2 0
u9 = v8 3 3 1 4 2 2 4 2 4 3 0 4 5 0 3 2 2 2 4 0
u10 =v9 4 5 4 6 2 3 5 6 2 6 2 6 5 2 6 6 1 6 6 3
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Application to a real gene network

Goal

Reconstruct a wiring diagram for the subnetwork of three genes responsible for body wall
(mesodermal) tissue development.

Gene Variable Muscle Type
hlh-1 x8 skeletal
hnd-1 x18 cardiac

unc-120 x19 cardiac, smooth, skeletal

These genes are known to be regulated by the maternally controlled pal-1 genes.

Though all three regulate a single tissue type in C. elegans, some vertebrates have
homologous transcription factors related to these genes that regulate three different muscle
types.

Understanding their regulatory interactions has implications in human muscle development
and disease.

For each gene j of interest (j = 8, 18, 19), we extract a set Dj of data. For example, the
data for the hlh-1 gene is

D8 = {(s1, t18), (s2, t28), . . . , (s9, t98), (u1, v18), (u2, v28), . . . , (u9, v98)}.
The ideal of non-disposable sets for the hlh-1 gene is

IDc
8

= 〈{m(si , sj ) | ti8 6= tj8} ∪ {m(ui , uj ) | vi8 6= vj8} ∪ {m(si , uj ) | ti8 6= vj8}〉.
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The ideal of non-disposable sets for the hlh-1 gene

IDc
8

= 〈x1x2x4x5x6x7x8x9x13x14, x2x3x5x9x11x13x14, x2x4x6x9x12x13x14, x1x3x9x11x12x13x14,

x1x2x3x5x7x11x12x13x15, x2x3x5x7x11x13x14x15, x1x2x13x16, x1x2x4x6x7x8x9x10x14x15x17,

x1x4x6x7x8x9x10x12x13x14x15x17, x1x2x3x4x5x6x7x8x9x12x13x18, x1x2x3x4x5x6x8x12x14x18,

x1x2x3x5x6x7x8x9x10x11x14x16x18, x1x2x3x5x6x8x10x11x14x15x16x18, x1x2x4x9x19,

x1x4x5x6x7x8x9x13x19, x2x4x5x6x8x14x19, x1x2x4x6x12x13x14x19, x1x4x5x6x8x12x13x14x19,

x1x5x6x7x8x9x13x16x19, x2x4x6x12x13x14x16x19, x1x4x5x7x8x9x10x12x14x15x17x19,

x1x2x3x4x6x12x18x19, x1x2x3x4x13x14x18x19, x4x6x8x9x10x11x12x13x15x16x18x19,

x1x3x4x5x6x7x8x9x11x14x15x16x17x18x19, x1x6x7x8x9x11x12x13x14x15x16x17x18x19,

x1x4x5x6x10x11x12x13x14x15x16x17x18x19, x1x5x8x9x10x11x12x13x14x15x16x17x18x19,

x1x4x5x6x7x8x9x13x15x16x17x20, x1x2x3x4x5x7x8x11x12x13x18x20,

x1x3x5x6x7x8x9x11x14x18x20, x1x2x3x4x5x7x8x9x13x14x18x20,

x1x2x3x5x6x8x11x14x15x18x20, x3x4x5x6x7x8x9x10x13x14x15x17x18x20,

x1x2x3x4x5x6x8x9x12x15x16x17x18x20, x2x4x5x6x8x9x15x16x17x19x20,

x2x3x5x8x9x11x12x14x15x19x20, x1x4x5x6x8x9x15x16x17x19x20, x2x5x7x8x11x12x14x19x20,

x1x3x4x5x6x7x8x11x13x14x16x18x19x20, x2x4x6x8x9x10x11x13x14x15x16x18x19x20,

x4x6x8x10x11x12x13x14x15x16x18x19x20, x1x4x6x7x8x9x10x11x13x14x15x16x17x18x19x20,

x1x4x5x7x9x10x12x13x14x15x16x17x18x19x20, x1x4x7x8x9x10x12x13x14x15x16x17x18x19x20〉.
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Min-sets of the hlh-1 gene

The primary decomposition of IDc
8

consists of 483 primary components (min-sets). That is,

IDc
8

=
483⋂
i=1

pi .

However, it is known experimentally that hlh-1 is controlled by the pal-1 genes (variables
x1, x2, x3).

Therefore, we can disregard all min-sets that involve none of these variables.

This happens to be 481 of them, leaving two candidates for min-sets of hlh-1:

{x2, x3, x8, x18} and {x2, x3, x8, x19}.

There are two possible wiring diagrams at the hlh-1 gene (variable x8):

x8

P

x18

x19

x8

P

x18

x19
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Min-sets of the hnd-1 and unc-120 genes

Applying a similar process for the other two genes gives:

580 min-sets for the hnd-1 gene,

498 min-sets for the unc-120 gene.

As before, these can be drastically reduced by discarding those that do not contain any of
the pal-1 genes (x1, x2, x3).

Then, they are filtered so that they contain (i) as many of the variables for hlh-1, hnd-1,
unc-120 (x8, x18, x19) as possible, and (ii) no other variables. The min-sets are:

hlh-1 (x8) hnd-1 (x18) unc-120 (x19)
{x2, x3, x8, x18} {x2, x8, x18} {x2, x3, x8, x18}
{x2, x3, x8, x19} {x2, x8, x19} {x2, x3, x8, x19}

{x3, x8, x19} {x2, x8, x9, x19}
{x3, x8, x9, x18}

Collapsing the pal-1 variables into a single node P gives the following simplified min-sets:

hlh-1 (x8) hnd-1 (x18) unc-120 (x19)
{P, x8, x18} {P, x8, x18} {P, x8, x18}
{P, x8, x19} {P, x8, x19} {P, x8, x19}
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Minimal wiring diagrams

hlh-1 : x8

P

x18

x19

OR x8

P

x18

x19

hnd-1 : x8

P

x18

x19

OR x8

P

x18

x19

unc-120 : x8

P

x18

x19

OR x8

P

x18

x19
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