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Read: Chapter 1: Mechanisms of gene regulation: Boolean network models of the lactose
operon in Escherichia coli, by R. Robeva, B. Kirkwood, and R. Davis, pages 1–35.

Do: Create an account on the Sage Math Cloud (http://www.sagemath.com).

Exercises.

1. Given a Boolean network (f1, f2, f3, f4, f5), suppose that {x1 +x5, x3 +1, x2 +x5 +1, x4}
is a Gröbner basis of the ideal I = 〈fi + xi | i = 1, . . . , 5〉. What, if anything, can you
deduce from this?

2. Consider the following system of polynomial equations:

x2 + y2 + xyz = 1

x2 + y + z2 = 0

x− z = 0

To compute a Gröbner basis for this system over Q, type the following commands into
Sage, one-by-one, and press Shift+Enter after each one:

P.<x,y,z> = PolynomialRing(QQ, 3, order=’lex’); P

I = ideal(x^2+y^2+x*y*z-1, x^2+y+z^2, x-z); I

B = I.groebner_basis(); B

(a) For the system above, use the Gröbner basis you just computed to write a simpler
system of polynomial equations that has the same set of solutions. Solve that system
by hand (it’s not hard) to find all solutions to the original system.

(b) Next, solve the original system but over the binary field, F2 = {0, 1}. For this, you
need to replace QQ with GF(2) in the Sage code.

(c) Now, solve the original system but over the ternary field, F3 = {0, 1, 2}.

3. Repeat the previous problem for this system of polynomial equations:

x2y − z3 = 0

2xy − 4z = 1

z − y2 = 0

x3 − 4yz = 0

4. Consider the following simple model of the lac operon:

fM = R fR = A
fP = M fA = L ∧B
fB = M fL = P

For this problem, make the convention that (x1, x2, x3, x4, x5, x6) = (M,P,B,R,A, L).
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(a) Justify each function in a single sentence. What other assumptions are made in this
model? (E.g., presence or absense of external lactose and glucose?)

(b) Write each function as a polynomial over F2 = {0, 1}. Then, write out the system
of equations {fi + xi = 0, i = 1, . . . , 6}, whose solutions are the fixed points of the
Boolean network.

(c) Go into Sage and type the following command:

P.<x1,x2,x3,x4,x5,x6> = PolynomialRing(GF(2), 6, order=’lex’); P

Now, define an ideal I generated by the six polynomials, fi + xi, from Part (b). Use
Sage to compute the Gröbner basis of this ideal.

(d) The Gröbner basis describes a simpler system of equations with the same solutions
as the original. Write out this system and then solve it by hand to determine the
fixed points of the Boolean network.

(e) Compute the entire phase space of your model with the help of either the Analysis of
Dynamic Algebraic Models (ADAM) toolbox, at http://adam.plantsimlab.org/,
or TURING: Algorithms for computation with finite dynamical systems, at http:

//www.discretedynamics.org. Are there any periodic points that are not fixed
points?

5. Consider a Boolean model of the lac operon, based on five variables: mRNA (M), β-
galactosidase (B), allolactose (A), intracellular lactose (L), and lac permease (P ), and
the following transition functions:

fM = A

fB = M

fA = A ∨ (L ∧B)

fL = P ∨ (L ∧B)

fP = M

This model does not have any parameters – it assumes that extracellular lactose is always
available and extracellular glucose is always unavailable, and thus it is only able to describe
the behavior of the system under the conditions.

(a) Sketch the wiring diagram for this model.

(b) Print out or draw the state space for this model using ADAM or TURING.

(c) Use Sage to find the fixed points. Hint : There are three of them.

(d) Explain why two of the fixed points are biologically reasonable, and why the third
fixed point does not make sense biologically.

(e) Since the dynamics do not accurately reflect the behavior of the biological system
it is meant to model, something is wrong. For each function, decide if it accurately
reflects the underlying biology and/or the model assumptions.
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(f) Propose a modification of the transition functions aimed at eliminating the biologi-
cally infeasible fixed point. Give the rationale for your modification and specify the
biological mechanism or model assumptions that justify the change.

(g) Draw the wiring diagram and print and state space of your modified model. Use
either the ADAM or TURING software.

(h) Analyze your model. How many fixed points are there? Do they all correspond to
biologically realistic situations? Note that there should be no limit cycles of size
k ≥ 2.

6. An alternative to using Sage to compute the fixed points is to use Macaulay2, an open
source software system for computational algebraic geometry and commutative algebra.
This can be accessed online at http://web.macaulay2.com, or from within Sage, by
typing:

%default_mode macaulay2

The following three commands in Macaulay2 perform the same task as the three Sage
commands from Exercise 1. Adding a semi-colon at the end of each line will suppress the
output.

P = QQ[x,y,z]

I = ideal(x^2+y^2+x*y*z-1, x^2+y+z^2, x-z)

G = gens gb I

For each of the previous problems, convert your Sage code into Macaulay2 code and check
that you get the same results. Finite fields are entered as e.g., ZZ/2 instead of GF(2).

Summary of relevant literature.

Francois Jacob and Jacques Monod won the 1965 Nobel Prize in medicine for discovering
the lac operon [JPSM60]. This has since been modeled with differential equations in
[BM85], [YM03], in [YSHM04]. More recently, the first Boolean network model of it was
published in [VCS11].

Boolean networks were first proposed as models of gene regulatory networks in 1969 by
Stuart Kauffman [Kau69]. A few years later, René Thomas developed the framework
of “logical models” [Tho73], and his collaborators have been studying them ever since.
See also [Td90] for a book on the topic. These are like Boolean networks but the main
differences are that the functions are updated asynchronously, and the set of states of the
nodes can be different, e.g., {0, 1, 2} or {0, 1, 2, 3}.
The paper [DJ02] contains a nice survey of modeling gene regulatory networks and [Alb04]
contains a survey of Boolean network modeling. The paper [LS09] from the Mathematical
Monthly gives an overview of the new field of Algebraic Biology.

Freely available online software for include the Analysis of Dynamical and Algebraic Mod-
els (ADAM) [HBG+11], which has since been improved by the crowd-sourced TURING
[HL16]. The software Gene Interaction Network simulation (GINsim) [CNT12] is a tool
for logical networks.
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