Exercises.

1. Let I be an ideal of a commutative ring R. Prove that R / I is a field if and only if I is maximal.
2. Prove that any finite integral domain is a field.
3. Let K be a finite field. The characteristic of K, denoted char K, is the smallest positive integer n for which $n 1:=\underbrace{1+1+\cdots+1}_{n \text { times }}=0$.
(a) Prove that the characteristic of K is prime.
(b) Show that K is a vector space over \mathbb{F}_{p}, where $p=$ char K.
(c) Show that the order $|K|$ of K (the number of elements it contains) is a prime power.
(d) Show that if K and L are finite fields with $K \subset L$ and $|K|=p^{m}$ and $|L|=p^{n}$, then m divides n.
4. The finite field \mathbb{F}_{4} on 4 elements can be constructed as the quotient of the polynomial $\mathbb{F}_{2}[x]$ by the ideal $I=\left\langle x^{2}+x+1\right\rangle$ generated by the irreducible polynomial $x^{2}+x+1$. The figure below shows a Cayley diagram, and multiplication and addition tables for the finite field $\mathbb{F}_{2}[x] /\left\langle x^{2}+x+1\right\rangle \cong \mathbb{F}_{4}$.

(a) Find a degree-3 polynomial $f \in \mathbb{F}_{2}[x]$ that is irreducible over \mathbb{F}_{2}, and a degree-2 polynomial $g \in \mathbb{F}_{3}[x]$ that is irreducible over \mathbb{F}_{3}. [Hint: Any polynomial with no roots in the "prime field" \mathbb{F}_{p} will work.]
(b) Construct Cayley diagrams, addition, and multiplication tables for the finite fields

$$
\mathbb{F}_{8} \cong \mathbb{F}_{2}[x] /\langle f\rangle \quad \text { and } \quad \mathbb{F}_{9} \cong \mathbb{F}_{3}[x] /\langle g\rangle
$$

5. Consider the following Boolean network $\left(f_{1}, f_{2}, f_{3}\right)$:

$$
f_{x_{1}}=x_{1} \vee x_{2}, \quad f_{x_{2}}=x_{2} \wedge x_{3}, \quad f_{3}=\overline{x_{1}}
$$

(a) Draw the wiring diagram, synchronous phase space, and asynchronous phase space.
(b) Write down the ideal I of $\mathbb{F}_{2}\left[x_{1}, x_{2}, x_{3}\right] /\left\langle x_{1}^{2}-x_{1}, x_{2}^{2}-x_{2}, x_{3}^{2}-x_{3}\right\rangle$ that describes a system of polynomials whose solutions are the fixed points.
(c) Use Sage or Macaulay2 to find a Gröbner basis of this ideal (with respect to "lex").
6. Recall our original 3-node Boolean model of the lac operon:

$$
f_{M}=\overline{G_{e}} \wedge\left(L \vee L_{e}\right), \quad f_{E}=M, \quad f_{L}=\overline{G_{e}} \wedge\left(\left(E \wedge L_{e}\right) \vee(L \wedge \bar{E})\right)
$$

For each of the 4 possible initial conditions, $\left(G_{e}, L_{e}\right) \in \mathbb{F}_{2}^{2}$, the model had one connected component with the biologically correct fixed point. Compute the probability that this would have happened purely by chance. (Assume a uniform distribution.)

